Сложные эфиры все для егэ

Сложные эфиры: способы получения, химические и физические свойства, строение.

Сложные эфиры – это органические вещества, в молекулах которых углеводородные радикалы соединены через карбоксильную группу -СОО-, а именно R1-COOH-R2.

Общая формула предельных сложных эфиров: СnH2nO2

Классификация сложных эфиров

По числу карбоксильных групп:

  • сложные эфиры одноосновных карбоновых кислот  — содержат одну карбоксильную группу -СОО-. Общая формула CnH2nO2

H-COO-CH3

  • сложные эфиры многоатомных спиртов — содержат две и более карбоксильные группы -СОО-. 

Например, тристеарат глицерина

  • Сложные эфиры многоосновных органических кислот.

Например, общая формула сложных эфиров двухосновных карбоновых кислот  CnH2n-2O4

Номенклатура сложных эфиров

В названии сложного эфира сначала указывают алкильную группу, связанную с кислородом, затем кислоту, заменяя суффикс в названии кислоты (-овая кислота) на суффикс -оат.

Название сложного эфира Тривиальное название Формула эфира
Метилметаноат Метилформиат HCOOCH3
Этилметаноат Этилформиат HCOOC2H5
Метилэтаноат Метилацетат CH3COOCH3
Этилэтаноат Этилацетат CH3COOC2H5
Пропилэтаноат Пропилацетат CH3COOCH2CH2CH3

Химические свойства сложных эфиров

.1. Гидролиз

Сложные эфиры устойчивы в нейтральной среде, но легко разлагаются при нагревании в присутствии кислот или в присутствии щелочей. 

В присутствии кислот гидролиз сложных эфиров протекает как реакция, обратная этерификации. при гидролизе сложных эфиров образуются спирты и карбоновые кислоты.

R-COO-R’ + H2O = R-COOH + R’-OH

Например, при гидролизе метилацетата образуются уксусная кислота и метанол.

При щелочном гидролизе сложных эфиров образуются соли карбоновых кислот и спирты.

Например, при щелочном гидролизе этилформиата образуются этанол и формиат натрия:

При щелочном гидролизе этилацетата образуются ацетат и этанол:

Щелочной гидролиз сложных эфиров — реакция, имеющая промышленное значение. Гидролиз жиров в присутствии оснований — древнейший способ получения мыла. Первые способы получения мыла связаны со смешиванием жира с золой. Один из основных компонентов животного жира — тристеарат глицерина. В щелочной среде тристеарат глицерина разлагается на глицерин и соль стеариновой кислоты:

2. Переэтерификация

Переэтерификация — это реакция превращения одного сложного эфира в другой под действием соответствующих спиртов в присутствии катализатора (кислоты или основания)

R-COO-CH3 + R’-OH = R-COOR’ + CH3-OH

3.Восстановление сложных эфиров 

Сложные эфиры восстанавливаются с разрывом связи С-О карбоксильной группы. При этом образуется смесь спиртов. 

Например, этилбензоат восстанавливается литийалюминийгидридом до бензилового спирта и этанола

C6H5-COO-C2H5 + [H] = C6H5-CH2OH + C2H5-OH

Получение сложных эфиров

1. Этерификация карбоновых кислот спиртами

Карбоновые кислоты вступают в реакции с одноатомными и многоатомными спиртами с образованием сложных эфиров.

Например, этанол реагирует с уксусной кислотой с образованием этилацетата (этилового эфира уксусной кислоты):

2. Соли карбоновых кислот с галогеналканами

При взаимодействии солей карбоновых кислот с галогеналканами образуются сложные эфиры.

Например, при взаимодействии ацетата натрия с хлорметаном образуется метилацетат.

CH3-COONa + CH3-Cl = CH3-COOCH3 + NaCl

Например, при взаимодействии формиата натрия с хлорэтаном образуется этилформиат.

H-COONa + C2H5-Cl = H-COOC2H5 + NaCl

Чтобы поделиться, нажимайте

Сложные эфиры – функциональные производные карбоновых кислот,
в молекулах которых гидроксильная группа (-ОН) замещена на остаток спирта (-OR)

Сложные эфиры карбоновых кислот – соединения с общей формулой

R–COOR’,         где R и R’ – углеводородные радикалы.

Физические свойства:

  • ·        Летучие, бесцветные жидкости
  • ·        Плохо растворимы в воде
  • ·        Чаще с приятным запахом
  • ·        Легче воды 

Сложные эфиры содержатся в цветах, фруктах, ягодах. Они определяют их специфический запах.
Являются составной частью эфирных масел (известно около 3000 эф.м. – апельсиновое, лавандовое, розовое и т. д.)

Эфиры низших карбоновых кислот и низших одноатомных спиртов имеют приятный запах цветов, ягод и фруктов. Эфиры высших одноосновных кислот и высших одноатомных спиртов – основа природных восков. Например, пчелиный воск содержит сложный эфир пальмитиновой кислоты и мирицилового спирта (мирицилпальмитат):

CH3(CH2)14–CO–O–(CH2)29CH3

Краткие названия сложных эфиров строятся по названию радикала (R’) в остатке спирта и названию группы RCOOв остатке кислоты. Например, этиловый эфир уксусной кислоты CH3COOC2H5 называется этилацетат.

0023-023-nomenklatura-slozhnykh-efirov1

Применение

·        В качестве отдушек и усилителей запаха в пищевой и парфюмерной (изготовление мыла, духов, кремов) промышленности;

·        В производстве пластмасс, резины в качестве пластификаторов.      

Пластификаторы – вещества, которые вводят в состав полимерных материалов для придания (или повышения) эластичности и (или) пластичности при  переработке и эксплуатации. 

Применение в медицине

В конце XIX — начале ХХ века, когда органический синтез делал свои первые шаги, было синтезировано и испытано фармакологами множество сложных эфиров. Они стали основой таких лекарственных средств, как салол, валидол и др. Как местнораздражающее и обезболивающее средство широко использовался метилсалицилат, в настоящее время практически вытесненный более эффективными средствами.

Получение сложных эфиров 

Cложные эфиры могут быть получены при взаимодействии карбоновых кислот со спиртами (реакция этерификации). Катализаторами являются минеральные кислоты.

o421

Реакция этерификации в условиях кислотного катализа обратима. Обратный процесс – расщепление сложного эфира при действии воды с образованием карбоновой кислоты и спирта – называют гидролизом сложного эфира.

RCOOR’ + H2O (H+)↔   RCOOH + R’OH

Гидролиз в присутствии щелочи протекает необратимо (т.к. образующийся отрицательно заряженный карбоксилат-анион RCOO не вступает в реакцию с нуклеофильным реагентом – спиртом).

o422

Эта реакция называется омылением сложных эфиров (по аналогии со щелочным гидролизом сложноэфирных связей в жирах при получении мыла). 

Жиры

Жиры — сложные эфиры глицерина и высших одноатомных карбоновых кислот .

Общее название таких соединений — триглицериды или триацилглицерины, где ацил — остаток карбоновой кислоты -C(O)R.

В состав природных триглицеридов входят остатки насыщенных кислот (пальмитиновой C15H31COOH, стеариновой C17H35COOH) и ненасыщенных (олеиновой C17H33COOH, линолевой C17H29COOH).

Жиры содержатся во всех растениях и животных. Животные жиры (бараний, свиной, говяжий и т.п.), как правило, являются твердыми веществами с невысокой температурой плавления (исключение — рыбий жир). Они состоят главным образом из триглицеридов предельных кислот.

Растительные жиры (подсолнечное масло, соевое, хлопковое и др.) – жидкости (исключение — кокосовое масло). В состав этих триглицеридов входят остатки непредельных кислот.

Жидкие жиры превращают в твердые путем реакции гидрогенизации (гидрирования). При этом водород присоединяется по двойной связи, содержащейся в углеводородном радикале молекул масел .

Продукт гидрогенизации масел — твердый жир (искусственное сало, саломас).

Маргарин — пищевой жир, состоит из смеси гидрогенизированных масел (подсолнечного, кукурузного, хлопкого и др.), животных жиров, молока и вкусовых добавок (соли, сахара, витаминов и др.).

Жирам как сложным эфирам свойственна обратимая реакция гидролиза, катализируемая минеральными кислотами. При участии щелочей гидролиз жиров происходит необратимо. Продуктами в этом случае являются мыла – соли высших карбоновых кислот и щелочных металлов.

Натриевые соли — твердые мыла, калиевые — жидкие. Реакция щелочного гидролиза жиров, и вообще всех сложных эфиров, называется также омылением.

Природные жиры содержат следующие жирные кислоты

Насыщенные:

стеариновая (C17H35COOH)

пальмитиновая (C15H31COOH)

Масляная (C3H7COOH)

В СОСТАВЕ

ЖИВОТНЫХ

 ЖИРОВ

Ненасыщенные:

олеиновая (C17H33COOH, 1 двойная связь)

линолевая (C17H31COOH, 2 двойные связи)

линоленовая (C17H29COOH, 3 двойные связи)

арахидоновая (C19H31COOH, 4 двойные связи, реже встречается)

В СОСТАВЕ

РАСТИТЕЛЬНЫХ

ЖИРОВ

Жиры содержатся во всех растениях и животных. Они представляют собой смеси полных сложных эфиров глицерина и не имеют чётко выраженной температуры плавления.

                    Физические свойства жиров

  • Животные жиры (бараний, свиной, говяжий и т.п.), как правило, являются твердыми веществами с невысокой температурой плавления (исключение – рыбий жир). В твёрдых жирах преобладают остатки насыщенных кислот.
  • Растительные жиры – масла (подсолнечное, соевое, хлопковое и др.) – жидкости (исключение – кокосовое масло, масло какао-бобов). Масла содержат в основном остатки ненасыщенных (непредельных) кислот.

 Химические свойства жиров

1. Гидролиз, или омыление, жиров происходит под действием воды, с участием ферментов или кислотных катализаторов (обратимо) , при этом образуются спирт — глицерин и смесь карбоновых кислот:

2089_3041

или щелочей (необратимо). При щелочном гидролизе образуются соли высших жирных кислот, называемые мылами. Мыла получаются при гидролизе жиров в присутствии щелочей:

1

Мыла — это калиевые и натриевые соли высших карбоновых кислот. 

2.Гидрирование жиров – превращение жидких растительных масел в твердые жиры – имеет большое значение для пищевых целей. Продукт гидрогенизации масел – твердый жир (искусственное сало, саломас). Маргарин – пищевой жир, состоит из смеси гидрогенизированных масел (подсолнечного, кукурузного, хлопкого и др.), животных жиров, молока и вкусовых добавок (соли, сахара, витаминов и др.).

Так в промышленности получают маргарин:

o4602

В условиях процесса гидрогенизации масел (высокая температура, металлический катализатор) происходит изомеризация части кислотных остатков, содержащих цис-связи С=С, в более устойчивые транс-изомеры. Повышенное содержание в маргарине (особенно, в дешевых сортах) остатков транс-ненасыщенных кислот увеличивает опасность атеросклероза, сердечно-сосудистых и других заболеваний.

20-1

Реакция получения жиров (этерификация)

vyay

Применение жиров 

    1. Пищевая промышленность
    1. Фармацевтика
    1. Производство мыла и косметических изделий
    1. Производство смазочных материалов

slozhnye-efiry-nomenklatura-poluchenie-svojstva

Эфиры – простые и сложные

Разбор сложных заданий в тг-канале:

Сложные эфиры

При взаимодействии карбоновых кислот со спиртами (реакция этерификации) образуются сложные эфиры:

Эта реакция обратима. Продукты реакции могут взаимодействовать друг с другом с образованием исходных веществ — спирта и кислоты. Таким образом, реакция сложных эфиров с водой — гидролиз сложного эфира — обратна реакции этерификации. Химическое равновесие, устанавливающееся при равенстве скоростей прямой (этерификация) и обратной (гидролиз) реакций, может быть смещено в сторону образования эфира присутствием водоотнимающих средств.

Жиры — производные соединения, которые представляют собой сложные эфиры глицерина и высших карбоновых кислот.

Все жиры, как и другие сложные эфиры, подвергаются гидролизу:

При проведении гидролиза жира в щелочной среде $(NaOH)$ и в присутствии кальцинированной соды $Na_2CO_3$ он протекает необратимо и приводит к образованию не карбоновых кислот, а их солей, которые называются мылами. Поэтому гидролиз жиров в щелочной среде называются омылением.

Сложные эфиры  — R1C=O  
CnH2n
О2– общая
формула.

                                      
                       

                                        
                       
OR2

Получают реакцией этерификации из спирта и
карбоновых кислот;

(для жиров – спирт глицерин CH2OH  и высшие
карбоновые кислоты)

                                                     |

                                                     СН-ОН

                                                      |

                                                     CH2OH

Реакция этерификации:

                                          H+

СН3 + H] –OCH3 ßà
CH3C=O   +H2O

                                        NaOH                       

          [OH          метанол
                      
OCH3 à уксуснометиловый
эфир,

  Уксусная кислота                       метилацетат,
метиловый эфир  уксусной кислоты

Необратимая реакция гидролиза в присутствии NaOH с образованием мыла — омыление жиров.

Ж ,З, н в H2O
Ржир<Р(H2O); tкип<  низкая;
        

Воск — сл. эфир высших карбоновых кислот и
высших одноосновных спиртов, например, пчелиный воск — эфир пальмитиновой кислоты
и мирицилового спирта,
C15H31COOC31H63

Жир

CH2OCOR1                         Большинство жиров образованы тремя карбоновыми
кислотами:

  |                                         2мя
предельными – С15Н31СООН пальмитиновой, С17Н35СООН
стеариновой

СН-О-СО-R2                     1ой непредельной – С17Н33СООН
олеиновой

  |

CH2OCOR3

   Жир, в состав которого входят непредельные
кислоты, называются маслами, они растительного происхождения, исключение рыбий
жир).

Твёрдый жир состоит из  предельные кислот (животного
происхождении, исключение —  пальмовое масло твёрдое).

 Для жиров, содержащие остатки ненасыщенных
кислот характерны реакции непредельных соединений:
Br2
(обеспечивают), Н2(гидрирование à получение маргарина) и др.
реакции присоединения, С17Н35СОО
Na
твёрдое мыло,  С17Н35СООК – жидкое мыло,

                               Стеарат Na(Тв)                            Стеарат К(Ж)

В жесткой воде (Са 2+,
Mg 2+) моющее действие слабое, т. к . часть мыла идет на осаждение
Са2
+, (C17H35COO)2Ca

Синтетические моющие средства – СМС- Na
соли моноэфиров серной кислоты с высшими спиртами

-R-CH2-O-SO2-ONa

            CMC

Сложные эфиры карбоновых кислот: Строение

Сложные эфиры являются производными карбоновых кислот, в молекулах которых группа -ОН (в карбоксильной группе) замещена на спиртовый остаток –O-R:

 строение сложного эфира

Общая формула сложных эфиров карбоновых кислот R–COOR’, где R и R’ — углеводородные радикалы. В сложных эфирах муравьиной кислоты R – это атом водорода.

Общая формула сложных эфиров предельных одноосновных карбоновых кислот, имеющих в качестве спиртового остатка предельные одноатомные спирты совпадает с общей формулой карбоновых кислот: CnH2nO2 или СnH2n+1-COO-СnH2n+1

Например, молекула метилацетата выглядит следующим образом:

строение сложных эфиров_метилацетат

Сложные эфиры карбоновых кислот: Классификация

Сложные эфиры карбоновых кислот можно разделить на три группы.

  • Сложные эфиры, образованные низшими карбоновыми кислотами и спиртами. Например, этилацетат, метилпропионат, пропилформиат:
сложные эфиры низших кислот
  • Сложные эфиры, образованные высшими карбоновыми кислотами и высшими одноосновными спиртами (воски).

Воски делятся на:

  • Растительные, например, пальмовый воск, японский воск
  • Животные, например, пчелиный воск, шерстяной (шерстный) воск –
    ланолин, кожное сало, ушная сера.
  • Ископаемые,  например, торфяной
    воск, буроугольный воск (монтан-воск) горный, воск (озокерит).
  • Синтетические, например, канифоль — хрупкая стекловидная прозрачная масса.

Например, пчелиный воск – сложный эфир пальмитиновой кислоты и мирицилового спирта; кашалотовый воск (спермацет) сложный эфир пальмитиновой кислоты и цетилового спирта:

воски
  • Сложные эфиры, образованные трехатомным спиртом глицерином и высшими карбоновыми кислотами (жиры). См. раздел Жиры: Строение, получение, химические свойства

Сложные эфиры карбоновых кислот: Изомерия и номенклатура

Изомерия сложных эфиров карбоновых кислот

Для сложных эфиров характерны изомерия углеродной цепи, положения сложноэфирной группировки, и межклассовая виды изомерии. Для сложных эфиров, образованных непредельной кислотой или непредельным спиртом, возможна пространственная изомерия (цис- , транс-изомерия) и изомерия положения кратной связи.

  • Изомерия углеродной цепи может наблюдаться по кислотному остатку, начиная с бутановой кислоты, и по спиртовому остатку, начиная с пропилового спирта. Например, сложный эфир с брутто формулой С5H10O2 может иметь такие изомеры, как: метиловый эфир бутановой (масляной) кислоты, бутирату, метиловый эфир изобутановой (изомасляной) кислоты, пропиловый эфир уксусной кислоты и изопропиловый эфир уксусной кислоты  изомерны метилизобутират, пропилацетат и изопропилацетат.
сложные эфиры изомерия углеродного скелета
  • Изомерия положения сложноэфирной группировки наблюдается у сложных эфиров, состоящих не мене чем из 4 атомов углерода, например этиловый эфир пропановой кислоты и метиловый эфир бутановой (масляной) кислоты.
Сложные эфиры: изомерия положения сложноэфирной группы
  • Межклассовая изомерия. Сложные эфиры изомерны карбоновым кислотам, например, изомерами являются метиловый эфир уксусной кислоты (метилацетат) и пропановая кислота. 
сложные эфиры межклассовая изомерия
  • Изомерия положения кратной связи. Например, метиловый эфир 2-пентеновой кислоты и метиловый эфир 3-пентеновой кислоты:
сложные эфиры изомерия положения кратной связи
  • Пространственная цис-, транс-изомерия. Например, метиловый эфир цис-2-бутеновой кислоты и метиловый эфир транс-2-бутеновой кислоты:
сложные эфиры пространственная изомерия

Номенклатура сложных эфиров карбоновых кислот

Согласно систематической номенклатуры ИЮПАК названия сложных эфиров строятся исходя из названий двух остатков: спиртового и кислотного. К названию спиртового остатка прибавляют название кислотного остатка и суффикс –оaт, например:

сложные эфиры номенклатура ИЮПАК

Согласно тривиальной номенклатуры названия сложных эфиров строятся исходя из названий образующих его кислот и спиртов с добавлением слова эфир. Например:

сложные эфиры тривиальная номенклатура

Кроме этого, название сложного эфира может быть построено из названий кислотной и спиртовой частей, добавляя окончание «ый» и слово «эфир». Например, приведенное в примере соединение по этому правилу можно назвать маслянопропиловый эфир. 

Примеры названий сложных эфиров карбоновых кислот:

Примеры названий сложных эфиров карбоновых кислот

Жиры — органические соединения, по строению являющиеся сложными эфирами трехатомного спирта глицерина и высших карбоновых (жирных)
кислот.

К жирным кислотам (их формулы лучше выучить ;) относятся:

  • Пальмитиновая — C15H31COOH (предельная)
  • Стеариновая — C17H35COOH (предельная)
  • Олеиновая — C17H33COOH (непредельная, 1 двойная связь в радикале)
  • Линолевая — C17H31COOH (непредельная, 2 двойные связи в радикале)
  • Линоленовая — C17H29COOH (непредельная, 3 двойные связи в радикале)
Растительные и животные жиры

Жиры образуются в организме растений и животных, служат запасным питательным веществом. В строении растительных и животных жиров
есть некоторые важные отличия.

Заметьте, что растительные жиры чаще жидкие и в них входят преимущественно остатки непредельных жирных кислот, а животные жиры — твердые и
содержат остатки предельных жирных кислот.

Растительные и животные жиры

Номенклатура жиров

По систематической номенклатуре жиры принято называть триацилглицеринами. Названия жирам дают в зависимости от ацилов — остатков жирных
кислот, входящих в их состав. Для формирования единого названия к остаткам кислот добавляют суффикс «оил».

В соответствии с тривиальной номенклатурой, жиры называют, добавляя окончание «ин» к названию кислоты и приставку, указывая, сколько гидроксогрупп
в молекуле глицерина подверглось этерификации. В общем лучше 1 раз увидеть, чем 100 раз услышать ;)

Номенклатура жиров

Получение жиров

Жиры (по строению сложные эфиры) получаются в реакции этерификации, протекающей между трехатомным спиртом глицерином и высшими карбоновыми
(жирными) кислотами.

В зависимости от того, какие именно кислоты участвуют в реакции, образуются различные жиры.

Получение жиров

Химические свойства жиров
  • Гидрирование растительных жиров
  • В состав растительных жиров входят непредельные кислоты, которые поддаются гидрированию и превращаются в предельные. Таким путем в пищевой
    промышленности получают маргарин.

    Гидрирование жиров

  • Гидролиз
  • Как сложные эфиры, жиры способны вступать в реакцию гидролиза, который может быть кислотным и щелочным. В результате кислотного гидролиза
    образуется глицерин и исходные жирные кислоты, в результате щелочного гидролиза — глицерин и соли жирных кислот.

    Реакция щелочного гидролиза жиров называется реакцией омыления, в результате получаются соли жирных кислот — мыла. Кислотный гидролиз протекает
    обратимо, щелочной — необратимо.

    Гидролиз жиров

    В состав твердого мыла входят соли Na, в состав жидкого — K.

    Сила карбоновых кислот

© Беллевич Юрий Сергеевич 2018-2023

Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение
(в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов
без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования,
обратитесь, пожалуйста, к Беллевичу Юрию.

Для начала дадим определение и разберемся, почему эти эфиры — сложные.

Сложные эфиры или эсте́ры (от древнегреческого αἰθήρ — «эфир») — это класс соединений на основе неорганических (минеральных) или органических (карбоновых) одно- или многоосновных кислот, у которых атом водорода в гидроксогруппе замещен на радикал. Эпитет «сложные» они получили для того, чтобы их не путали с простыми эфирами — производными спиртов.

Общая формула сложных эфиров выглядит так:

Общая формула сложных эфиров

Однако представители сложных эфиров муравьиной кислоты выглядят иначе. Для них общая формула приобретает такой вид:

Общая формула сложных эфиров муравьиной кислоты

Номенклатура сложных эфиров

Теперь поговорим о том, как называть представителей данного класса. Различают два способа, позволяющие назвать сложные эфиры: по систематической номенклатуре (ИЮПАК) или по рациональной номенклатуре. Рассмотрим оба варианта.

  1. По номенклатуре ИЮПАК название строится следующим образом:

    Названия сложных эфиров по номенклатуре ИЮПАК

    Например:

    Формула метилформиата

  2. По рациональной номенклатуре название строится так:

    Названия сложных эфиров по рациональной номенклатуре

    Например:

    Формула муравьинометилового эфира

    По этой же номенклатуре эфиры можно называть, используя четыре слова: радикал спирта + слово «эфир» + название кислоты + слово «кислота». Например, муравьинометиловый эфир можно иначе назвать метиловый эфир муравьиной кислоты:

    Другой вариант названий сложных эфиров по рациональной номенклатуре

    Формула метилового эфира муравьиной кислоты

Получай лайфхаки, статьи, видео и чек-листы по обучению на почту

Альтернативный текст для изображения

Практикующий детский психолог Екатерина Мурашова

Бесплатный курс для современных мам и пап от Екатерины Мурашовой. Запишитесь и участвуйте в розыгрыше 8 уроков

Практикующий детский психолог Екатерина Мурашова

Изомерия сложных эфиров

Возможна ли изомерия для сложных эфиров? Давайте разбираться.

  1. Возможна изомерия углеродного скелета у радикала кислоты и радикала спирта при наличии трех и более углеродных атомов.

    Изомерия углеродного скелета у сложных эфиров

  2. Изомерия положения функциональной группы:

    Изомерия положения функциональной группы у сложных эфиров

  3. Межклассовая изомерия также определяется общей формулой органических соединений. Например:

    Межклассовая измерия между эфирами и кислотами

Физические свойства сложных эфиров

Агрегатное состояние сложного эфира напрямую зависит от молекулярной массы образующих его кислоты и спирта. Так, например, сложные эфиры низших и средних гомологов являются летучими жидкостями с характерным запахом. Чаще всего у них фруктовые или плодовые ароматы. Сложные эфиры хуже растворяются в воде, чем образующие их кислоты и спирты. Чем больше атомов углерода в составе сложного эфира, тем хуже его растворимость в воде.

Эфиры высших карбоновых кислот и высших одноатомных первичных спиртов — основа природного воска. Например, известный пчелиный воск — это сложный эфир пальмитиновой кислоты (C15H31COOH) и мирицилового спирта (С31H63OH).

Химические свойства сложных эфиров

Сложные эфиры подвергаются гидролизу (разложению под действием воды), который бывает двух видов: в кислой среде и в щелочной. Рассмотрим каждый из этих видов.

  • В кислой среде реакция протекает следующим образом:

    Гидролиз сложных эфиров в кислой среде

    Эта реакция обратима, так как образующиеся в процессе кислота и спирт подвергаются взаимодействию с образованием этого же сложного эфира. Обратная реакция имеет название реакция этерификации.

  • Щелочной гидролиз или реакция омыления:

    Щелочной гидролиз сложных эфиров

    Этот вид гидролиза протекает необратимо, так как образовавшаяся в ходе реакции соль не может реагировать со спиртом.

Сложные эфиры можно восстановить водородом в присутствии катализатора до двух спиртов. Причем один из спиртов будет иметь в составе столько атомов углерода, сколько было в кислоте, а во втором спирте количество углерода будет соответствовать исходному спирту. Рассмотрим на примере:

Восстановление сложных эфиров водородом

Эфиры подвергаются полному окислению, то есть горят с образованием углекислого газа и воды:

Полное окисление сложных эфиров

Следующее химическое свойство относится только к тем сложным эфирам, которые образованы непредельной карбоновой кислотой. Сложные эфиры таких кислот могут подвергаться галогенированию. Посмотрим, как происходит эта реакция:

Галогенирование сложных эфиров

Способы получения сложных эфиров

  1. Реакция этерификации.

    Реакция этерификации

    Реакция обратимая, поэтому требуется либо избыток одного из реагентов, либо отгонка образующегося сложного эфира, чтобы предотвратить обратную реакцию гидролиза.

  2. Взаимодействие ангидрида карбоновой кислоты со спиртом с образованием сложного эфира и карбоновой кислоты.

    Получение сложного эфира — второй способ

  3. Взаимодействие солей карбоновых кислот с галогеналканами.

    Получение сложного эфира — третий способ

Нахождение сложных эфиров в природе и применение

Сложные эфиры широко представлены в природе, но их количество минимально. Они участвуют в процессах, которые протекают в живых организмах, а также являются компонентами аромата ряда растений.

Некоторые эфиры получают искусственным способом. Например, за грушевый вкус в лимонаде отвечает уксусноизоамиловый эфир, а за яблочный — изовалерианоэтиловый эфир.

Помимо пищевой промышленности, сложные эфиры применяют в качестве растворителей для приготовления лаков, а также как пластификаторы для приготовления пластических масс.

Сложные эфиры на основе ароматических спиртов нашли применение в парфюмерной промышленности.

Like this post? Please share to your friends:
  • Сложные цепочки по органической химии для егэ по химии
  • Сложные фразеологизмы егэ по русскому
  • Сложные фразеологизмы для егэ
  • Сложные уравнения егэ математика профиль
  • Сложные ударения для егэ по русскому языку