Сложные уравнения егэ математика профиль

Каталог заданий.
Сложные урав­не­ния смешанного типа


Пройти тестирование по этим заданиям
Вернуться к каталогу заданий

Версия для печати и копирования в MS Word

1

а)  Решите уравнение 5 умножить на левая круглая скобка дробь: числитель: 1, знаменатель: 25 конец дроби правая круглая скобка в степени левая круглая скобка синус правая круглая скобка в квадрате x плюс 4 умножить на 5 в степени левая круглая скобка косинус 2x правая круглая скобка =25 в степени левая круглая скобка дробь: числитель: синус 2x, знаменатель: 2 конец дроби правая круглая скобка .

б)  Найдите все корни на промежутке левая квадратная скобка дробь: числитель: 1, знаменатель: 2 конец дроби ; дробь: числитель: 3 Пи , знаменатель: 2 конец дроби правая квадратная скобка .

Источник: А. Ларин: Тренировочный вариант № 48.


2

а)  Решите уравнение 4 в степени левая круглая скобка косинус 2x правая круглая скобка плюс 4 в степени левая круглая скобка косинус в квадрате x правая круглая скобка =3.

б)  Найдите все корни на промежутке  левая квадратная скобка дробь: числитель: 3, знаменатель: 4 конец дроби ;1 правая квадратная скобка .

Источник: А. Ларин: Тренировочный вариант № 49.


3

а)  Решите уравнение log _2 левая круглая скобка 3 синус x минус косинус x правая круглая скобка плюс log _2 косинус x=0.

б)  Найдите все корни на промежутке  левая квадратная скобка 0; дробь: числитель: 3 Пи , знаменатель: 2 конец дроби правая квадратная скобка .

Источник: А. Ларин: Тренировочный вариант № 59.


4

а)  Решите уравнение log _ косинус 2x минус синус 2x левая круглая скобка 1 минус косинус x минус синус x правая круглая скобка =1.

б)  Найдите все корни на промежутке  левая квадратная скобка минус дробь: числитель: 8 Пи , знаменатель: 7 конец дроби ; дробь: числитель: 7 Пи , знаменатель: 8 конец дроби правая квадратная скобка .

Источник: А. Ларин: Тренировочный вариант № 69.


5

а)  Решите уравнение log _ синус 2x левая круглая скобка тангенс x плюс ctg x правая круглая скобка =1 минус логарифм по основанию левая круглая скобка синус 2x правая круглая скобка в квадрате 2

б)  Найдите все корни на промежутке  левая квадратная скобка 0; Пи правая квадратная скобка .

Источник: А. Ларин: Тренировочный вариант № 73.

Пройти тестирование по этим заданиям

ЕГЭ по математике профиль

Прототипы задания №12 ЕГЭ по математике профильного уровня — уравнения. Практический материал для подготовки к экзамену в 11 классе.

Для успешного выполнения задания №12 необходимо уметь решать уравнения и неравенства.

Практика

Коды проверяемых элементов содержания (по кодификатору) — 2.1, 2.2

Уровень сложности задания — повышенный.

Максимальный балл за выполнение задания — 2

Примерное время выполнения задания выпускником, изучавшим математику на профильном уровне (в мин.) — 10

Связанные страницы:

Задание №12. Уравнения — профильный ЕГЭ по математике

Задание 12 Профильного ЕГЭ по математике – это решение уравнений. Чаще всего, конечно, это тригонометрические уравнения. Но встречаются и другие типы – показательные, логарифмические, комбинированные.

Сейчас задание 12 Профильного ЕГЭ на решение уравнения состоят из двух пунктов: собственно решения и отбора корней на определенном отрезке.

Что нужно знать, чтобы справиться с этой задачей на ЕГЭ? Вот необходимые темы для повторения.

Что необходимо помнить при решении уравнений?

1) Помним про область допустимых значений уравнения! Если в уравнении есть дроби, корни, логарифмы или арксинусы с арккосинусами — сразу записываем ОДЗ. А найдя корни, проверяем, входят они в эту область или нет. Есть в уравнении есть — помним, что он существует, только если

2) Стараемся записывать решение в виде цепочки равносильных переходов.

3) Если есть возможность сделать замену переменной — делаем замену переменной! Уравнение сразу станет проще.

4) Если еще не выучили формулы тригонометрии — пора это сделать! Много формул не нужно. Самое главное — тригонометрический круг, формулы синусов и косинусов двойных углов, синусов и косинусов суммы (разности), понижения степени. Формулы приведения не надо зубрить наизусть! Надо знать, как они получаются.

5) Как отбирать решения с помощью тригонометрического круга? Вспомним, что крайняя правая точка тригонометрического круга соответствует числам Дальше всё просто. Смотрим, какая из точек этого типа попадает в указанный в условии промежуток. И к ней прибавляем (или вычитаем) нужные значения.

Например, вы нашли серию решений , где — целое, а найти надо корни на отрезке На указанном промежутке лежит точка . От нее и будем отсчитывать. Получим:

6) Получив ответ, проверьте его правильность. Просто подставьте найденные решения в исходное уравнение!

а) Решите уравнение

б) Найдите все корни этого уравнения, принадлежащие промежутку

Упростим левую часть по формуле приведения.

Вынесем за скобки. Произведение двух (или нескольких) множителей равно нулю тогда и только тогда, когда хотя бы один из них равен нулю.

б) Отметим на тригонометрическом круге найденные серии решений и отрезок

Видим, что указанному отрезку принадлежат решения

Как отбирать решения с помощью тригонометрического круга? Вспомним, что крайняя правая точка тригонометрического круга соответствует числам Дальше всё просто. Смотрим, какая из точек этого типа попадает в указанный в условии промежуток. И к ней прибавляем (или вычитаем) нужные значения.

Например, вы нашли серию решений , где — целое, а найти надо корни на отрезке На указанном промежутке лежит точка От нее и отсчитываем.

2. а) Решите уравнение

б) Найдите все корни этого уравнения, принадлежащие отрезку

Это уравнение — комбинированное. Кроме тригонометрии, применяем свойства степеней.

Степени равны, их основания равны. Значит, равны и показатели.

Это ответ в пункте (а).

б) Отберем корни, принадлежащие отрезку

Отметим на тригонометрическом круге отрезок и найденные серии решений.

Видим, что указанному отрезку принадлежат точки и из серии

Точки серии не входят в указанный отрезок.

А из серии в указанный отрезок входит точка

Ответ в пункте (б):

3. а) Решите уравнение

б) Найдите все корни этого уравнения, принадлежащие отрезку

Применим формулу косинуса двойного угла:

Перенесем всё в левую часть уравнения и разложим по формуле разности квадратов.

Обратите внимание: мы отметили серии решений на тригонометрическом круге. Это помогло нам увидеть, как их записать одной формулой.

б) Для разнообразия отберем корни на отрезке с помощью двойного неравенства.

Какой способ отбора корней лучше — с помощью тригонометрического круга или с помощью двойного неравенства? У каждого из них есть «плюсы» и «минусы».

Пользуясь тригонометрическим кругом, вы не ошибетесь. Вы видите и интервал, и сами серии решений. Это наглядный способ.

Зато, если интервал больше, чем один круг, удобнее отбирать корни с помощью двойного неравенства. Например, надо найти корни из серии на отрезке Это больше 10 кругов! Конечно, в таком случае лучше решить двойное неравенство.

4. а) Решите уравнение

б) Найдите все корни этого уравнения, принадлежащие отрезку

Самое сложное здесь — область допустимых значений (ОДЗ). Условие заметно сразу. А условие появляется, поскольку в уравнении есть

Уравнение равносильно системе:

Отберем решения с помощью тригонометрического круга. Нам нужны те серии решений, для которых , то есть те, что соответствуют точкам справа от оси .

Ответ в пункте а)

б) Отметим на тригонометрическом круге найденные серии решений и отрезок

Как обычно, ориентируемся на начало круга. Видим, что указанному промежутку принадлежат точки

5. а) Решите уравнение

б) Найдите корни, принадлежащие отрезку

Выражение под корнем должно быть неотрицательно, а произведение двух множителей равно нулю тогда и только тогда, когда хотя бы один из них равен нулю.

Это значит, что уравнение равносильно системе:

Решим эту систему с помощью тригонометрического круга. Отметим на нем углы, для которых или . Заметим, что среди них находятся и углы, для которых

Числа серии не могут быть корнями исходного уравнения, т.к. для этих чисел не выполнено условие . Остальные серии решений нас устраивают.

Тогда в ответ в пункте (а) войдут серии решений:

б) Отберем корни, принадлежащие отрезку любым способом — с помощью тригонометрического круга или с помощью двойного неравенства.

Показательные уравнения

Показательными называют такие уравнения, в которых неизвестное содержится в показателе степени.

При решении показательных уравнений используются свойства степеней, вспомним некоторые из них:

1. При умножении степеней с одинаковыми основаниями основание остается прежним, а показатели складываются.

2. При делении степеней с одинаковыми основаниями основание остается прежним, а показатели вычитаются

3. При возведении степени в степень основание остается прежним, а показатели перемножаются

4. При возведении в степень произведения в эту степень возводится каждый множитель

5. При возведении в степень дроби в эту степень возводиться числитель и знаменатель

6. При возведении любого основания в нулевой показатель степени результат равен единице

7. Основание в любом отрицательном показателе степени можно представить в виде основания в таком же положительном показателе степени, изменив положение основания относительно черты дроби

8. Радикал (корень) можно представить в виде степени с дробным показателем

Показательные уравнения часто сводятся к решению уравнения $a^x=a^m$, где, $а >0, a≠1, x$ — неизвестное. Для решения таких уравнений воспользуемся свойством степеней: степени с одинаковым основанием $(а >0, a≠1)$ равны только тогда, когда равны их показатели.

Решить уравнение $25·5^х=1$

В левой части уравнения необходимо сделать одну степень с основанием $5$ и в правой части уравнения представить число $1$ в виде степени с основанием $5$

При умножении степеней с одинаковыми основаниями основание остается прежним, а показатели складываются

Далее проговариваем: степени с одинаковым основанием $(а >0, a≠1)$ равны только тогда, когда равны их показатели

Чтобы решить данное уравнение, вынесем степень с наименьшим показателем как общий множитель

Как решать
показательные уравнения?

Решение уравнений – навык, который необходим каждому нацеленному на успешную сдачу ЕГЭ и ОГЭ школьнику. Это поможет решить задания №5, 13 и 15 из профильного уровня математики.

Одна из их разновидностей – степенные уравнения, которые иногда также называют показательными. Основная отличительная особенность – наличие переменной (х) не в основании степени, а в самом показателе. Как это выглядит:

Не бойтесь – это самый общий вид показательных уравнений. Реальные примеры выглядят как-то так:

Внимательно посмотрите на приведенные уравнения. В каждом из них присутствует, так называемая, показательная (степенная) функция. При решении необходимо помнить об основных свойствах степени, а также использовать особые правила, помогающие вычислить значение (х). Познакомиться с понятием степени и ее свойствами можно тут и тут.

И вам понадобится умение решать обыкновенные линейные и квадратные уравнения, те, что вы проходили в 7-8 классе. Вот такие:

И так, любое уравнение, в котором вы увидите показательную (степенную) функцию, называется показательным уравнением. Кроме самой показательной функции в уравнении могут быть любые другие математические конструкции – тригонометрические функции, логарифмы, корни, дроби и т.д. Если вы видите степень, значит перед вам показательное уравнение.

Ура! Теперь знаем, как выглядят показательные уравнения, но толку от этого не очень много. Было бы неплохо научиться их решать. Отличная новость – на наш взгляд показательные уравнения одни из самых простых типов уравнений, по сравнению с логарифмическими, тригонометрическими или иррациональными.

Простейшие показательные уравнения

Давайте начнем с самых простых типов уравнений и разберем сразу несколько примеров:

Что такое решить уравнение? Это значит, что нужно найти такое число, которое при подстановке в исходное уравнение вместо (х) даст верное равенство. В нашем примере нужно найти такое число, в которое нужно возвести двойку, чтобы получить восемь. Ну это просто:

Значит, если (х=3), то мы получим верное равенство, а значит мы решили уравнение.

Решим что-нибудь посложнее.

Такое уравнение выглядит сложнее. Попробуем преобразовать правую часть уравнения:

Мы применили свойство отрицательной степени по формуле:

Теперь наше уравнение будет выглядеть так:

Заметим, что слева и справа у нас стоят показательные функции, и там, и там основания одинаковые и равны (3), только вот степени разные – слева степень ((4х-1)), а справа ((-2)). Логично предположить, что если степени у такой конструкции будут равны, при условии, что основания одинаковые, то мы получим верное равенство. Так и поступим:

Такое мы решать умеем, ведь это обыкновенное линейное уравнение.

Поздравляю, мы нашли корень нашего показательного уравнения.

Попробуем поступить так, как в предыдущем примере – преобразуем левую и правую часть, чтобы слева и справа была показательная функция с одинаковым основанием. Как это сделать? Обращаем внимание, что (125=5*5*5=5^3), а (25=5*5=5^2), подставим:

Воспользуемся одним из свойств степеней ((a^n)^m=a^):

И опять мы получили две показательные функции, у которых одинаковые основания и для того, чтобы равенство выполнялось, необходимо приравнять из степени:

И еще один пример:

Те, кто хорошо знает свойства степеней, знают, что показательная функция не может быть отрицательной. Действительно, попробуйте возводить (2) в различную степень, вы никогда не сможете получить отрицательное число.

Внимание! Показательная функция не может быть отрицательной, поэтому, когда вы встречаете примеры на подобии примера 4, то знайте, что такого быть не может. Здесь корней нет, потому что показательная функция всегда положительна.

Теперь давайте разработаем общий метод решения показательных уравнений. И научимся решать более сложные примеры.

Общий метод решения показательных уравнений

Пусть у нас есть вот такой пример:

Где (a,b) какие-то положительные числа. ((a>0, ; b>0).

Согласно разобранным выше примерам, логично предположить, что для того, чтобы решить данное уравнение, нужно его преобразовать к виду, где слева и справа стоят показательные функции с одинаковым основанием. Так и поступим.

Слева у нас уже стоит (a^x), с этим ничего делать не будем, а вот справа у нас стоит загадочное число (b), которое нужно попытаться представить в виде (b=a^m). Тогда уравнение принимает вид:

Раз основания одинаковые, то мы можем просто приравнять степени:

Вот и весь алгоритм решения. Просто нужно преобразовать исходное уравнение таким образом, чтобы слева и справа стояли показательные функции с одинаковыми основаниями, тогда приравниваем степени и вуаля – сложное показательное уравнение решено. Осталось только разобраться, как так преобразовывать. Опять разберем на примерах:

Замечаем, что (16=2*2*2*2=2^4) это степень двойки:

Основания одинаковые, значит можно приравнять степени:

$$x=4.$$
Пример 6 $$5^<-x>=125 Rightarrow 5^<-x>=5*5*5 Rightarrow 5^<-x>=5^3 Rightarrow –x=3 Rightarrow x=-3.$$
Пример 7 $$9^<4x>=81 Rightarrow (3*3)^<4x>=3*3*3*3 Rightarrow(3^2)^<4x>=3^4 Rightarrow 3^<8x>=3^4 Rightarrow 8x=4 Rightarrow x=frac<1><2>.$$

Здесь мы заметили, что (9=3^2) и (81=3^4) являются степенями (3).

Все здорово, но проблема в том, что такая схема решения показательных уравнений работает не всегда. Что делать, если привести к одинаковому основанию не получается. Например:

(3) и (2) привести к одинаковому основанию затруднительно. Но тем не менее мы должны это сделать. Воспользуемся следующей схемой преобразований: пусть есть некоторое положительное число (b>0), тогда его можно представить в виде степени любого, нужного вам, положительного числа не равного единице (a>0, ; a neq 1):

Эта очень важная формула, рекомендуем ее выучить. Вернемся к нашему примеру и по формуле представим (2) в виде (3) в какой-то степени, где (a=3), а (b=2):

Подставим данное преобразование в наш пример:

Получили равенство двух показательных функций с одинаковым основанием, значит можем приравнять их степени:

Так в ответ и запишем. Никакой ошибки здесь нет, дело в том, что такие логарифмы можно посчитать только на калькуляторе, поэтому на ЕГЭ или в контрольной работе вы просто оставляете ответ в таком виде.

Кто забыл, что такое логарифм, можно посмотреть здесь.

Рассмотрим еще несколько аналогичных примеров.

Те, кто хорошо знает свойства логарифмов, могут поиграться с последней формулой и получить ответ в разном виде:

Все эти варианты ответа верные, их можно смело писать в ответ.

И так, мы с вами научились решать любые показательные уравнения вот такого вида: (a^x=b), где (a>0; ; b>0).

Но это еще далеко не все. Часто вы будете встречать показательные уравнения гораздо более сложного типа. В ЕГЭ по профильной математике это номер 15 из 2й части. Но бояться тут не нужно, все на первый взгляд сложные уравнения при помощи обычно не самых сложных преобразований сводятся к уравнениям типа (a^x=b), где (a>0; ; b>0). Рассмотрим типы сложных уравнений, которые могут попасться:

Решение показательных уравнений при помощи замены

Самое первое, что вы должны всегда делать, это пытаться привести все имеющиеся показательные функции к одинаковому основанию.

Здесь это сделать легко, замечаем, что (9=3^2), тогда (9^x=(3^2)^x=3^<2x>=(3^x)^2). Здесь мы воспользовались свойством степеней: ((a^n)^m=a^). Подставим:

Обратим внимание, что во всем уравнении все (х) «входят» в одинаковую функцию — (3^x). Сделаем замену (t=3^x, ; t>0), так как показательная функция всегда положительна.

Квадратное уравнение, которое решается через дискриминант:

Оба корня больше нуля, значит оба нам подходят. Сделаем обратную замену и уравнение сводится к решению двух простых показательных уравнений:

И второй корень:

И еще один пример на замену:

Воспользуемся нашим правилом, что все нужно приводить к одинаковому основанию – а стоп, тут и так у всех показательных функций основание (3). Давайте еще внимательно посмотрим на наш пример, очень похоже на то, что он тоже делается через замену. Но у нас тут нет одинаковых показательных функций, основания то одинаковые, а вот степени отличаются. Но если быть внимательным, то можно заметить, что в первой степени можно разбить свободный член (3=2+1) и вынести общий множитель (2):

Подставим в исходное уравнение:

Теперь показательные функции одинаковы и можно сделать замену:

Обратная замена, и наше уравнение сводится к простейшему:

И второе значение (t):

Тут у нас две показательные функции с основаниями (7) и (3), и как сделать из них одинаковые основания непонятно. Этот пример решается при помощи деления. Давайте поделим все наша уравнение на (3^x):

Здесь нам придется воспользоваться свойствами степеней:

Разберем каждое слагаемое:

Теперь подставим получившееся преобразования в исходное уравнение:

Теперь видно, что в нашем уравнении есть одинаковая функция, которую можно убрать в замену (t=(frac<7><3>)^x):

Сделаем обратную замену:

И последний пример на замену:

Первым делом нужно сделать так, чтобы все показательные функции были с одинаковым основанием и в идеале с одинаковой степенью. Для этого нам понадобятся формулы для степеней:

Разберем каждое слагаемое нашего уравнения:

Все десятичные дроби всегда разумно представить в виде обыкновенных дробей. И будьте внимательны — отрицательная степень не имеет никакого отношения к знаку показательной функции!

И последнее слагаемое со степенью:

Подставим все наши преобразования в исходное уравнение:

Теперь можно сделать замену (t=2^x) или можно обойтись без замены, просто приведя подобные слагаемые (вынести общий множитель (2^x)):

Особенно стоит подчеркнуть прием, который мы использовали при решении 13-го примера. Всегда старайтесь избавляться от десятичных дробей. Переводите их в обыкновенные дроби.

И другой тип степенных уравнений, где обычно не нужно делать замену, а необходимо отлично знать все свойства степеней, некоторые из них мы уже обсудили выше. Все про свойства степеней можно посмотреть тут

Вот такое уравнение, в котором у нас, во-первых, показательных функции перемножаются, а еще хуже то, что у них у всех разные основания. Катастрофа, а не пример. Но ничего, все не так страшно, как кажется. Внимательно посмотрите на основания: у нас есть в основании (2), (5) и (10). Очевидно, что (10=2*5). Воспользуемся этим и подставим в наше уравнение:

Воспользуемся формулой ((a*b)^n=a^n*b^n):

И перекинем все показательные функции с основанием (2) влево, а с основанием (5) вправо:

Сокращаем и воспользуемся формулами (a^n*a^m=a^) и (frac=a^):

Самая главная идея при решении показательных уравнений – это любыми доступными способами свести все имеющиеся степенные функции к одинаковому основанию. А еще лучше и к одинаковой степени. Вот почему необходимо знать все свойства степеней, без этого решить уравнения будет проблематично.

Как же понять, где какие преобразования использовать? Не бойтесь, это придет с опытом, чем больше примеров решите, тем увереннее будете себя чувствовать на контрольных в школе или на ЕГЭ по профильной математике. Сначала потренируйтесь на простых примерах и постепенно повышайте уровень сложности. Успехов в изучении математики!

источники:

http://examer.ru/ege_po_matematike/teoriya/pokazatelnye_uravneniya

http://sigma-center.ru/exponential_equations

Задание 12 Профильного ЕГЭ по математике – это решение уравнений. Чаще всего, конечно, это тригонометрические уравнения. Но встречаются и другие типы – показательные, логарифмические, комбинированные.

Сейчас задание 12 Профильного ЕГЭ на решение уравнения состоят из двух пунктов: собственно решения и отбора корней на определенном отрезке.

Что нужно знать, чтобы справиться с этой задачей на ЕГЭ? Вот необходимые темы для повторения.

Задачи из сборников Ященко, 2021 год

Квадратные уравнения

Показательные уравнения

Логарифмические уравнения

Модуль числа

Уравнения с модулем

Тригонометрический круг

Формулы тригонометрии

Формулы приведения

Простейшие тригонометрические уравнения 1

Простейшие тригонометрические уравнения 2

Тригонометрические уравнения

Что необходимо помнить при решении уравнений?

1) Помним про область допустимых значений уравнения! Если в уравнении есть дроби, корни, логарифмы или арксинусы с арккосинусами — сразу записываем ОДЗ. А найдя корни, проверяем, входят они в эту область или нет. Есть в уравнении есть tg x — помним, что он существует, только если {cos xne 0}.

2) Стараемся записывать решение в виде цепочки равносильных переходов.

3) Если есть возможность сделать замену переменной — делаем замену переменной! Уравнение сразу станет проще.

4) Если еще не выучили формулы тригонометрии — пора это сделать! Много формул не нужно. Самое главное — тригонометрический круг, формулы синусов и косинусов двойных углов, синусов и косинусов суммы (разности), понижения степени. Формулы приведения не надо зубрить наизусть! Надо знать, как они получаются.

5) Как отбирать решения с помощью тригонометрического круга? Вспомним, что крайняя правая точка тригонометрического круга соответствует числам -4 pi , -2 pi , 0, 2 pi , 4 pi dots Дальше всё просто. Смотрим, какая из точек этого типа попадает в указанный в условии промежуток. И к ней прибавляем (или вычитаем) нужные значения.

Например, вы нашли серию решений x=frac{pi}{3}+2pi n , где n — целое, а найти надо корни на отрезке left [frac{5 pi}{2};frac{9 pi}{2} right ]. На указанном промежутке лежит точка 4 pi. От нее и будем отсчитывать. Получим: x=4 pi +frac{pi}{3}=frac{13 pi}{3}.

6) Получив ответ, проверьте его правильность. Просто подставьте найденные решения в исходное уравнение!

Давайте потренируемся.

а) Решите уравнение 2{{sin}^2 left(frac{pi }{2}+xright)}=-sqrt{3}{cos x}

б) Найдите все корни этого уравнения, принадлежащие промежутку left[-3pi right.;left.-frac{3pi }{2}right]

2{{sin}^2 left(frac{pi }{2}+xright)}=-sqrt{3}{cos x}

Упростим левую часть по формуле приведения.

2{{cos}^2 x+sqrt{3}{cos x}=0}

Вынесем {cos x} за скобки. Произведение двух (или нескольких) множителей равно нулю тогда и только тогда, когда хотя бы один из них равен нулю.

б) Отметим на тригонометрическом круге найденные серии решений и отрезок left[-3pi right.;left.-frac{3pi }{2}right].

Видим, что указанному отрезку принадлежат решения -frac{17pi }{6};-frac{5pi }{2};-frac{3pi }{2}.

Ответ: -frac{17pi }{6};-frac{5pi }{2};-frac{3pi }{2}.

Как отбирать решения с помощью тригонометрического круга? Вспомним, что крайняя правая точка тригонометрического круга соответствует числам -4 pi , -2 pi , 0, 2 pi , 4 pi dots Дальше всё просто. Смотрим, какая из точек этого типа попадает в указанный в условии промежуток. И к ней прибавляем (или вычитаем) нужные значения.

Например, вы нашли серию решений x=frac{pi }{3}+2pi n, где n — целое, а найти надо корни на отрезке [frac{5pi }{2};frac{9pi }{2}]. На указанном промежутке лежит точка 4 pi. От нее и отсчитываем.

Получим: x=4pi +frac{pi }{3}=frac{13pi }{3}.

2. а) Решите уравнение {({27}^{{cos x}})}^{{sin x}}=3^{frac{3{cos x}}{2}}

б) Найдите все корни этого уравнения, принадлежащие отрезку left[-pi ;frac{pi }{2}right].

Это уравнение — комбинированное. Кроме тригонометрии, применяем свойства степеней.

а) 3^{3{cos x{sin x}}}=3^{frac{3{cos x}}{2}}

Степени равны, их основания равны. Значит, равны и показатели.

3{cos x{sin x}}=frac{3{cos x}}{2}

2{cos x{sin x-{cos x=0}}}

{cos x({sin x-frac{1}{2})=0}}

Это ответ в пункте (а).

б) Отберем корни, принадлежащие отрезку left[-pi ;frac{pi }{2}right].

Отметим на тригонометрическом круге отрезок left[-pi ;frac{pi }{2}right] и найденные серии решений.

Видим, что указанному отрезку принадлежат точки x=-frac{pi }{2} и x=frac{pi }{2} из серии x=frac{pi }{2}+pi n,nin z.

Точки серии x=frac{5pi }{6}+2pi n,nin z не входят в указанный отрезок.

А из серии x=frac{pi }{6}+2pi n,nin z в указанный отрезок входит точка x=frac{pi }{6}.

Ответ в пункте (б): -frac{pi }{2},frac{pi }{6} , frac{pi }{2}.

3. а) Решите уравнение {cos 2x}+{{sin}^2 x=0,5}

б) Найдите все корни этого уравнения, принадлежащие отрезку left[-frac{7pi }{2}right.;left.-2pi right].

а)
{cos 2x}+{{sin}^2 x=0,5}

Применим формулу косинуса двойного угла: boldsymbol{cos2alpha =1-{2sin}^2alpha }

1-2{{sin}^2 x}+{{sin}^2 x}=0,5

{{-sin}^2 x=-0,5}

{{sin}^2 x=0,5}

Перенесем всё в левую часть уравнения и разложим по формуле разности квадратов.

Обратите внимание: мы отметили серии решений на тригонометрическом круге. Это помогло нам увидеть, как их записать одной формулой.

б) Для разнообразия отберем корни на отрезке left[-frac{7pi }{2}right.;left.-2pi right] с помощью двойного неравенства.

Сначала серия x=frac{pi }{4}+pi n,nin Z.

-frac{7pi }{2}le frac{pi }{4}+pi nle -2pi

-frac{7}{2}le frac{1}{4}+nle -2

-3,75le nle -2,25

n=-3, x_1=frac{pi }{4}-3pi =-frac{11pi }{4}

Теперь серия x=-frac{pi }{4}+pi n,nin Z

-frac{7pi }{2}le -frac{pi }{4}+pi nle -2pi

-frac{7}{2}le -frac{1}{4}+nle -2

-3,25le nle -1,75

n=-3, x_2=-frac{pi }{4}-3pi =-frac{13pi }{4}

n=-2, x_3=-frac{pi }{4}-2pi =-frac{9pi }{4}

Ответ: -frac{13pi }{4};-frac{11pi }{4};-frac{9pi }{4} .

Какой способ отбора корней лучше — с помощью тригонометрического круга или с помощью двойного неравенства? У каждого из них есть «плюсы» и «минусы».

Пользуясь тригонометрическим кругом, вы не ошибетесь. Вы видите и интервал, и сами серии решений. Это наглядный способ.

Зато, если интервал больше, чем один круг, удобнее отбирать корни с помощью двойного неравенства. Например, надо найти корни из серии x=-frac{pi }{4}+2pi n,nin Z на отрезке left[-frac{pi }{2}right.;left.20pi right]. Это больше 10 кругов! Конечно, в таком случае лучше решить двойное неравенство.

4. а) Решите уравнение left({tg}^2x-3right)sqrt{11{cos x}}=0.

б) Найдите все корни этого уравнения, принадлежащие отрезку left[-frac{5pi }{2};-pi right].

Самое сложное здесь — область допустимых значений (ОДЗ). Условие {11cos x}ge 0 заметно сразу. А условие {cos x}ne 0 появляется, поскольку в уравнении есть {tg x=frac{{sin x}}{{cos x}}}.

ОДЗ:

Уравнение равносильно системе:

Отберем решения с помощью тригонометрического круга. Нам нужны те серии решений, для которых , то есть те, что соответствуют точкам справа от оси Y.

Ответ в пункте а) x=pm frac{pi }{3}+2pi n, nin z

б) Отметим на тригонометрическом круге найденные серии решений и отрезок left[-frac{5pi }{2};-pi right].

Как обычно, ориентируемся на начало круга. Видим, что указанному промежутку принадлежат точки

x=frac{pi }{3}-2pi =-frac{5pi }{3} и x=-frac{pi }{3}-2pi =-frac{7pi }{3}.

5. а) Решите уравнение sqrt{{cos x+{sin x}}}({{cos}^2 x-frac{1}{2})=0}

б) Найдите корни, принадлежащие отрезку [-pi ;4pi ].

Выражение под корнем должно быть неотрицательно, а произведение двух множителей равно нулю тогда и только тогда, когда хотя бы один из них равен нулю.

Это значит, что уравнение равносильно системе:

Решим эту систему с помощью тригонометрического круга. Отметим на нем углы, для которых {cos x}=frac{sqrt{2}}{2} или {cos x}=-frac{sqrt{2}}{2}. Заметим, что среди них находятся и углы, для которых tgx=-1.

Числа серии x=-frac{3pi }{4}+2pi n не могут быть корнями исходного уравнения, т.к. для этих чисел не выполнено условие {cos x+{sin x}}ge 0. Остальные серии решений нас устраивают.

Тогда в ответ в пункте (а) войдут серии решений:

б) Отберем корни, принадлежащие отрезку [-pi ;4pi ] любым способом — с помощью тригонометрического круга или с помощью двойного неравенства.

На отрезке left[-pi ;0right] нам подходит корень x =-frac{pi }{4}.

На отрезке left[0;2pi right] нам подходят корни x=frac{pi }{4};frac{3pi }{4};frac{7pi }{4}.

На отрезке left[2pi ;4pi right] — корни x= frac{9pi }{4} ; frac{11pi }{4};frac{15pi }{4}.

Ответ в пункте б): -frac{pi }{4};frac{3pi }{4};frac{7pi }{4};frac{pi }{4};frac{9pi }{4} ; frac{11pi }{4};frac{15pi }{4}.

Благодарим за то, что пользуйтесь нашими материалами.
Информация на странице «Задание №12. Уравнения u0026#8212; профильный ЕГЭ по математике» подготовлена нашими авторами специально, чтобы помочь вам в освоении предмета и подготовке к экзаменам.
Чтобы успешно сдать необходимые и поступить в ВУЗ или колледж нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими материалами из данного раздела.

Публикация обновлена:
09.03.2023

Задачи ЕГЭ профиль

а) Решите уравнение (6^{x^2 — 4x} + 6^{x^2 — 4x -1} = 42).

б) Найдите все корни этого уравнения, принадлежащие отрезку ([-2; 4]).

а) Решите уравнение (24cdot4^{x-0{,}5}-11cdot2^{x+1}+6=0)

б) Найдите все корни этого уравнения, принадлежащие промежутку [-1; 1].

а) Решите уравнение (4cdot25^{x+0{,}5}-60cdot5^{x-1}+1=0)

б) Найдите все корни этого уравнения, принадлежащие промежутку [-3; -1].

а) Решите уравнение (25^x-6cdot 5^{x+2}+3125=0)
б) Найдите все корни этого уравнения, принадлежащие отрезку (left[ log_{sqrt7}sqrt{17}; log_{sqrt2}sqrt7 right])

В ответ запишите корни без пробелов через точку с запятой в порядке возрастания. Сначала на пункт А, затем на пункт Б. Например, «8;13;8»

а) Решите уравнение (2log^2_{2}{(2cos{x})}-9log_{2}{(2cos{x})}+4=0)

б) Найдите все корни этого уравнения, принадлежащие отрезку (left[-2pi;-dfrac{pi}{2}right])

Выберите все верные ответы на пункты а) и б). Запишите их номера по возрастанию, через запятую, без пробелов.

а)

1. 2πn, n∈Z 2. π/6+2πn, n∈Z 3. π/4+2πn, n∈Z 4. π/3+2πn, n∈Z
5. π/2+2πn, n∈Z 6. 2π/3+2πn, n∈Z 7. 3π/4+2πn, n∈Z 8. 5π/6+2πn, n∈Z
9. π+2πn, n∈Z 10. -π/6+2πn, n∈Z 11. -π/4+2πn, n∈Z 12. -π/3+2πn, n∈Z
13. -π/2+2πn, n∈Z 14. -2π/3+2πn, n∈Z 15. -3π/4+2πn, n∈Z 16. -5π/6+2πn, n∈Z

б)

17. -2π 18. -11π/6 19. -7π/4 20. -5π/3
21. -3π/2 22. -4π/3 23. -5π/4 24. -7π/6
25. -π 26. -5π/6 27. -3π/4 28. -2π/3
29. -π/2      

а) Решите уравнение (16^{x^2+3x-frac12}+4^{2x^2+6x+1}=1088)
б) Найдите все корни этого уравнения, принадлежащие отрезку ([-3{,}5;0{,}6])

а) Решите уравнение (log_5{(x+3)}=log_{25}(x^4))
б) Найдите все корни, принадлежащие отрезку (left[ log_6{dfrac13}; log_4{32}right])

а) Решите уравнение (9^{x-frac12}-7cdot 3^{x-1}+4=0)
б) Найдите все корни этого уравнения, принадлежащие отрезку (left[ log_{2,5}2;log_{sqrt[3]7}2right])

а) Решите уравнение (27^x-5cdot 9^x-3^{x+4}+405=0)
б) Найдите все корни этого уравнения, принадлежащие отрезку (left[ log_{frac1{sqrt3}}{sqrt{sqrt3-sqrt2}};sqrt{2+sqrt3}right])

а) Решите уравнение (log_5(2-x)=log_{25}{x^4})
​б) Найдите все корни этого уравнения, принадлежащие отрезку (left[log_9{dfrac1{80}};log_{sqrt[3]7}2right])

В ответ запишите корни без пробелов через точку с запятой в порядке возрастания. Сначала на пункт А, затем на пункт Б. Например, «8;13;8»

Skip to content

ЕГЭ Профиль №13. Показательные уравнения

ЕГЭ Профиль №13. Показательные уравненияadmin2018-09-29T19:55:18+03:00

Используйте LaTeX для набора формулы

В
данной
работе
предлагаются
решения
сложных
заданий
(№13

№19)
ЕГЭ-2021
по
математике.
Представленный
здесь
материал
предназначен
для
подготовки
к
ЕГЭ
учащихся,
имеющих
навыки
в
решении
заданий
подобного
уровня
сложности.

Задания
№13,
№15,
№17
могут
быть
предложены
сильным
учащимся
обычных
классов,
а
вот
задания
№14,
№16,
№18,
№19
целесообразно
решать
с
учащимися
физико-
математических
классов,
причем
задание
№19
под
буквой
«в»
под
силу
только
тем,
кто
имеет
определенную
подготовку
в
решении
олимпиадных
задач.

Для
оформления
всех
решений
использована
мультимедиа
презентация,
где
материал
представлен
наглядно
в
ярком,
интересном
и
доступном
виде,
что
для
учителя
и
учащихся
будет
ценно
и
полезно.
Эту
презентацию
можно
применять
как
на
уроке,
так
и
для
индивидуальной
работы.


Условия
заданий
и
методические
рекомендации
по
их
решению.


№13.

а)
Решите
уравнение
Решите
уравнение

б)
Укажите
корни
этого
уравнения,
принадлежащие
отрезку

Это
задание
считается
одним
из
самых
решаемых
среди
заданий
второй
части
ЕГЭ.
Применяя
основное
тригонометрическое
тождество,
получаем
в
левой
части
данного
уравнения
тригонометрическое
выражение
относительно,
которое
можно
способом
группировки
разложить
на
множители.

Решить
получившиеся
простейшие
тригонометрические
уравнения
предлагается
с
помощью
числовой
окружности.
Важно,
чтобы
учащиеся
имели
хорошие
навыки
в
работе
с
этой
математической
моделью.
Тогда
и
отбор
корней
лучше
всего
сделать
на
числовой
окружности.


№14.

В
правильной
четырёхугольной
пирамиде
SABCD
сторона
основания
AD
равна
14,
высота

равна
6.
Точка
К

середина
бокового
ребра
SD.
Плоскость
AKB
пересекает
боковое
ребро
SC
в
точке
P.

а)
Докажите,
что
площадь
четырёхугольника
CDKP
составляет
¾
площади
треугольника
SCD.

б)
Найдите
объем
пирамиды
ACDKP.

Стереометрическая
задача
является
для
учащихся
одной
из
сложных.
В
лучшем
случае
учащимися
выполняется
только
первая
часть
на
доказательство,
тогда,
как
вторая
часть
задачи
под
силу
лишь
не
многим.

Решение
второй
части
задачи
предлагается
тремя
способами:

  • применением
    классического
    определения
    расстояния
    от
    точки
    до
    плоскости;
  • методом
    координат;
  • методом
    объёмов.


№15.

Решите
неравенство

Данное
неравенство
достаточно
хорошего
уровня
сложности.
Его
решение
возможно:

  • методом
    замены
    переменной,
    причем
    эту
    замену
    приходится
    выполнять
    дважды,
    что
    в
    целом
    усложняет
    решение;
  • методом
    замены
    множителей,
    которому
    желательно
    обучать
    учащихся,
    так
    как
    в
    некоторых
    случаях,
    а
    именно
    в
    этом
    неравенстве
    он
    приводит
    к
    более
    простому
    решению.


№16.

Точки
A,
B,
C,
D
и
Е
лежат
на
окружности
в
указанном
порядке,
причем
AE
=
ED
=
CD,
а
прямые
AC
и
BE
перпендикулярны.
Отрезки
AC
и
BD
пересекаются
в
точке
T.

а)
Докажите,
что
прямая
EC
пересекает
отрезок
TD
в
его
середине.

б)
Найдите
площадь
треугольника
ABT,
если
BD
=
6,
AE
=

.

Данная
планиметрическая
задача
решается
здесь
двумя
разными
способами.
Здесь
важно
увидеть
свойства
различных
геометрических
фигур,
которые
позволяют
выбрать
то
или
иное
решение
задачи.


№17
.

В
июле
2025
года
планируется
взять
кредит
в
банке
на
сумму
600
тысяч
рублей
на
6
лет.
Условия
его
возврата
таковы:


в
январе
2026,
2027,
2028
годов
долг
возрастает
на
20%
по
сравнению
с
концом
предыдущего
года;


в
январе
2029,
2030,
2031
годов
долг
возрастает
на
r%
по
сравнению
с
концом
предыдущего
года;


с
февраля
по
июнь
каждого
года
необходимо
выплатить
часть
долга;


в
июле
каждого
года
долг
должен
быть
на
одну
и
ту
же
величину
меньше
долга
на
июль
предыдущего
года;

Известно,
что
общая
сумма
выплат
после
полного
погашения
кредита
составит
984
тысячи
рублей.
Найдите
r.

Эта
задача
на
дифференцированный
платеж.
В
работе
предлагается
табличный
способ
решения
задачи.
Все
величины
и
данные,
и
искомые
обозначаются
переменными,
устанавливается
между
ними
связь,
а
числовые
значения
подставляются
в
самом
конце,
чтобы
получить
уравнение
с
одной
переменной
и
решить
его.


№18

Найдите
все
значения

а
,
при
каждом
из
которых
имеет
ровно
два
различных
корня
уравнение

.

Это
самое
сложное
задание
данной
работы.
Его
решение
предлагается
двумя
способами:

  • аналитическим,
    где
    находятся
    корни
    данного
    уравнения,
    содержащие
    параметр,
    и
    проверяются
    условия
    их
    принадлежности
    ОДЗ
    и
    совпадения;
  • координатно-параметрическим
    в
    системе

    xOa
    .


№19.

Отношение
трёхзначного
натурального
числа
к
сумме
его
цифр

целое
число.

а)
Может
ли
это
отношение
быть
равным
55?

б)
Может
ли
это
отношение
быть
равным
87?

в)
Какое
наименьшее
значение
может
принимать
это
отношение,
если
первая
цифра
трёхзначного
числа
равна
7?

В
этой
задаче
вполне
можно
решить
первые
два
пункта.

В
пункте
а)
достаточно
привести
пример,
то
есть
можно
просто
подобрать
числа,
удовлетворяющие
условию
задачи.

В
пункте
б)
необходимо
обоснованное
доказательство
того,
что
такого
отношения
не
может
быть.

Решение
в
пункте
в)
сложное,
здесь
применяется
метод:
оценка
плюс
пример.

Like this post? Please share to your friends:
  • Сложные ударения для егэ по русскому языку
  • Сложные тригонометрические неравенства егэ
  • Сложные тесты по обществознанию егэ
  • Сложные темы сочинения егэ по русскому
  • Сложные темы по физике в егэ