Сочинение про клетку

Как-то раз мой дядя, работающий ученным, изобрел ноу-хау! Оно позволяло уменьшиться до размеров нескольких нанометров после прохождения через специальную камеру. Мы долго думали, чем бы нам заняться в уменьшенном состоянии и, в конце концов, приняли решение предпринять путешествие в клетку растения. Быстренько надели защитные костюмы, взяли баллоны с кислородом и прочий необходимый инвентарь, уменьшились и нырнули в клетку!

В цитоплазме плыть было достаточно тяжело. Она куда гуще воды и не такая прозрачная. Хорошо, что у нас был с собой фонарь, способный бить на очень далекие расстояния, иначе мы бы практически ничего не увидели, кроме больших груд включений, состоящих их жировых капель, кристалликов соли и белковых включений.

Мы увидели буквально все, как в митохондриях происходит с грохотом и искрами процесс энергетического обмена, как рибосомы синтезируют белки, как вакуоли постепенно накапливают внутри себя питательный раствор, как огромные бензовозы заполняясь до самого верха! Даже посчастливилось застать начало клеточного деления.

Но в этот момент мы вынужденным были прервать наше путешествие, поскольку образовалась метафазная пластина и клетка постепенно начала разделяться на две дочерних. Ели ноги унесли! Во страху бы натерпелись, закрути нас в водовороте телофазы!



  • 0




  • 0


Жила-была растительная клетка. Она была очень нарядная: сверху-клеточная оболочка, внутри-цитоплазма, в которой плавают ядро и пластиды. Однажды клетке стало скучно, и она решила завести себе подружку. А для подруги чего не жалко? Поделила она пополам свою клеточную мембрану, поделилась с новой клеткой своей цитоплазмой, хлоропластами. Даже ядро с хромосомами разделила на две части, чтобы новая подружка во всём была похожа на неё. И стали две клетки жить  вместе: просыпаясь, здоровались каждое утро, общались, играли и снова засыпали.

Вот как то так

  • Комментариев (0)



  • 0


Жила-была клетка, но жила она не одна, а вместе с такими же клетками, похожими на нее саму и выполняющие одинаковую функцию. Жили они в одном месте, на одной базальной мембране и носили общее название — ткань. Внутри каждой клетки было ядро, расположенное, как правило, по центру, располагалось это ядро в студенистом веществе, называемом цитоплазмой. Также в ядре было множество митохондрий — энергетических станций клетки. Все клетки жили очень дружно, их было великое множество.

  • Комментариев (0)

Клетки всех организмов имеют единый план строения, в котором четко проявляется общность всех процессов жизнедеятельности. Каждая клетка включает в свой состав две неразрывно связанные части: цитоплазму и ядро. Как цитоплазма, так и ядро характеризуются сложностью и строгой упорядоченностью строения и, в свою очередь, в состав их входит множество разнообразных структурных единиц, выполняющих совершенно определенные функции.

Оболочка. Она осуществляет непосредственное взаимодействие с внешней средой и взаимодействие с соседними клетками (в многоклеточных организмах).

Оболочка — таможня клетки. Она зорко следит за тем, чтобы в клетку не проникли ненужные в данный момент вещества; наоборот, вещества, в которых клетка нуждается, могут рассчитывать на ее максимальное содействие.

Оболочка ядра двойная; состоит из внутренней и наружной ядерных мембран. Между этими мембранами располагается перинуклеарное пространство. Наружная ядерная мембрана обычно связана с каналами эндоплазматической сети.

Оболочка ядра содержит многочисленные поры. Они образуются смыканием наружной и внутренней мембран и имеют различный диаметр. В некоторых ядрах, например ядрах яйцеклеток, пор очень много и они с правильными интервалами расположены на поверхности ядра. Количество пор в ядерной оболочке варьирует в различных типах клеток. Поры расположены на равном расстоянии друг от друга. Так как диаметр поры может изменяться, и в ряде случаев ее стенки обладают довольно сложной структурой, создается впечатление, что поры сокращаются, или замыкаются, или, наоборот, расширяются. Благодаря порам кариоплазма входит в непосредственный контакт с цитоплазмой. Через поры легко проходят довольно крупные молекулы нуклеозидов, нуклеотидов, аминокислот и белков, и таким образом осуществляется активный обмен между цитоплазмой и ядром.

Сочинения на тему клетка

Все примеры сочинений по предмету клетка — поделись ими с одноклассниками! Образцы сочинений от команды сайта «Сочинения-Про». Здесь вы найдёте полезные материалы для написания сочинения или эссе самомстоятельно. А если нет — вы всегда можете заказать у нас помощь, по любому виду работ! Воспользуйтесь поиском, чтобы найти нужный вам материал.

Рак крови

Внутри опухоли клетки постоянно растут, размножаются и умирают. Когда раковые клетки умирают, они оставляют за собой подсказки, которые трансформируют учёных в понимание этой болезни. Умирающие раковые клетки распадаются на микроскопические пузырьки, которые могут содержать всевозможные молекулы, включая куски ДНК клеток. Когда раковые клетки умирают достаточно близко к кровоснабжению опухоли, эти наполненные ДНК пузырьки могут попасть




04.08.2020

Клеточный цикл и регуляторы, контролирующие процесс

Клеточный цикл – это процесс, в котором клетка проходит, приводя к дублированию ее ДНК и делению, чтобы произвести две дочерние клетки. Это серия событий, которые включают интерфазу и митоз. Интерфаза состоит из трех поднаборов, и именно там клетка дублирует свою ДНК и растет в процессе подготовки к митозу. Митоз – это процесс, в котором происходит




01.08.2020

Клетки и механическая сила

Это клетки в тканях, которые отвечают за механические силы. В настоящее время хорошо известно, что механические силы играют фундаментальную роль в регуляции функций клеток, включая индукцию генов, синтез белка, пролиферацию клеток, миграцию, гибель и дифференцировку, которые необходимы для поддержания гомеостаза и функций тканей, таких как в мышцах, кости, сухожилия, периодонт и сердечно-сосудистая система (REF). Типичным




29.07.2020

Клетка: ее работа и этапы жизни

(3) амниол: хорионическая мембрана. Семинар по биологии с отличием Профессор Скотт 11 января 2018 г. Документ о биологии с отличием Изучение жизни или биологии – это процесс, который продолжается уже тысячи лет. У людей возник интерес к тому, кто мы есть, и к миру вокруг нас, который дал нам оригинальных исследователей и информацию, которую мы




28.07.2020

Различные типы линий раковых клеток

Экзосомы представляют собой наноразмерные внеклеточные везикулы, секретируемые большинством клеток [1], и отличаются по размеру, форме и молекулярному составу от других везикул, высвобождаемых из клетки [2]. Экзосомы имеют морфологию от круглой до чашечной с липидной бислойной мембраной и высвобождаются во внеклеточные пространства, а размер экзосом варьируется от 30 до 150 нм [3,4]. Помимо их наноразмерной морфологии,




28.07.2020

Волоконно-аналитические схемы

Помимо производителей продуктов питания, эпидемиологи, ученые и диетологи нуждаются в данных о содержании клетчатки в пищевых продуктах (8). Тем не менее, попытки определить и стандартизировать методы измерения пищевых волокон остаются спорными. Пищевая клетчатка – это, по существу, непереваренные углеводы в рационе (9). Эти углеводы могут ферментироваться в толстой кишке, хотя некоторые устойчивые волокна, такие как




19.07.2020

Клеточный цикл и регуляторы, контролирующие этот процесс

« Клеточный цикл – это процесс, в котором клетка проходит, приводя к дублированию ее ДНК и делению, чтобы произвести две дочерние клетки. Это следует за циклической структурой, которая включает интерфазу и митоз. Интерфаза состоит из трех поднаборов, и именно там клетка дублирует свою ДНК и растет в процессе подготовки к митозу. Митоз – это процесс,




18.07.2020

Рак мочевого пузыря (БК): виды и стадии

Рак мочевого пузыря, который находится на ранней стадии роста, может не вызывать каких-либо заметных признаков или симптомов. Наиболее распространенным признаком БК является гематурия (кровавая моча; моча, которая выглядит ярко-красной или ржавой), обычно безболезненная и может появляться только время от времени в течение нескольких месяцев. Более 80% всех пациентов с БК в конечном итоге испытывают либо




17.07.2020

Вакцины на основе антигена для лечения рака

Я бы рекомендовал использовать вакцины на основе антигена для лечения рака. Вакцины на основе антигенов содержат очищенные опухолевые белки, которые известны как антигены. Эти антигены вводят, чтобы стимулировать антигенпрезентирующие клетки пациента поглощать антиген и представлять его Т-клеткам. Т-клетка – это тип лейкоцитов, который является ключом к иммунной системе. Т-клетка является частью системы, которая настраивает иммунный




16.07.2020

Типы нервных клеток

Нервные клетки также известны как нейроны, передающие и принимающие нервные импульсы. Они могут быть найдены по всему телу и связаны по всему телу, но в основном они могут быть найдены вблизи центральной нервной системы. Они связаны с другими нейронами или с клетками в мышцах и / или органах. Нервные импульсы движутся электрически вдоль нейрона и




15.07.2020

Сочинение: Понятие клетки

Реферат по биологии

«Понятие клетки»

Выполнила студентка группы №14

Технологического колледжа №14

Жестянкина Лена

Москва 2010

Содержание

Введение

Примерная история клетки

Строение клеток

Клеточная теория

История развития понятий о клетке

Заключение

Введение

Все живые существа состоят из клеток — маленьких, окруженных мембраной полостей, заполненных концентрированным водным раствором химических веществ. Клетка — элементарная единица строения и жизнедеятельности всех живых организмов (кроме вирусов, о которых нередко говорят как о неклеточных формах жизни), обладающая собственным обменом веществ, способная к самостоятельному существованию, самовоспроизведению и развитию. Все живые организмы либо, как многоклеточные животные, растения и грибы, состоят из множества клеток, либо, как многие простейшие и бактерии, являются одноклеточными организмами. Раздел биологии, занимающийся изучением строения и жизнедеятельности клеток, получил название цитологии. Считается, что все организмы и все составляющие их клетки произошли эволюционным путем от общей преДНКовой клетки. Два основных процесса эволюции — это:

случайные изменения генетической информации, передаваемой от организма к его потомкам;

отбор генетической информации, способствующей выживанию и размножению своих носителей.

Эволюционная теория является центральным принципом биологии, позволяющим нам осмыслить ошеломляющее разнообразие живого мира.

Естественно, в эволюционном подходе есть свои опасности: большие пробелы в наших знаниях мы заполняем рассуждениями, детали которых могут быть ошибочными.

Но, что еще более важно, каждый современный организм содержит информацию о признаках живых организмов в прошлом. В частности, существующие ныне биологические молекулы позволяют судить об эволюционном пути, демонстрируя фундаментальное сходство между наиболее далекими живыми организмами и выявляя некоторые различия между ними.

Примерная история клетки

Вначале под действием различных природных факторов (тепло, ультрафиолетовое излучение, электрические разряды) появились первые органические соединения, которые послужили материалом для построения живых клеток.

Ключевым моментом в истории развития жизни видимо стало появление первых молекул-репликаторов. Репликатор – это своеобразная молекула, которая является катализатором для синтеза своих собственных копий или матриц, что является примитивным аналогом размножения в животном мире. Из наиболее распространённых в настоящее время молекул, репликаторами являются ДНК и РНК. Например, молекула ДНК, помещённая в стакан с необходимыми компонентами, самопроизвольно начинает создавать свои собственные копии (хотя и значительно медленнее, чем в клетке под действием специальных ферментов).

Появление молекул-репликаторов запустило механизм химической (добиологической) эволюции. Первым субъектом эволюции были скорее всего примитивные, состоящие всего из нескольких нуклеотидов, молекулы РНК. Для этой стадии характерны (хотя и в очень примитивизированном виде) все основные черты биологической эволюции: размножение, мутации, смерть, борьба за выживание и естественный отбор.

Химической эволюции способствовал тот факт, что РНК является универсальной молекулой. Кроме того, что она является репликатором (т.е. носителем наследственной информации), она может выполнять функции ферментов (например, ферментов, ускоряющих репликацию, или ферментов, разлагающих конкурирующие молекулы).

В какой-то момент эволюции возникли РНК-ферменты, катализирующие синтез молекул липидов (т.е. жиров). Молекулы липидов обладают одним замечательным свойством: они полярные и имеют линейную структуру, причём толщина одного из концов молекулы больше, чем у другого. Поэтому молекулы липидов во взвеси самопроизвольно собираются в оболочки, близкие по форме к сферическим. Так что РНК, синтезирующие липиды, получили возможность окружать себя липидной оболочкой, значительно улучшившую устойчивость РНК к внешним факторам.

Постепенное увеличение длины РНК приводило к появлению многофункциональных РНК, отдельные фрагменты которых выполняли различные функции.

Первые деления клеток происходили, видимо, под действием внешних факторов. Синтез липидов внутри клетки приводил к увеличению её размеров и к потере прочности, так что большая аморфная оболочка разделялась на части под действием механических воздействий. В дальнейшем возник фермент, регулирующий этот процесс.

Строение клеток

Все клеточные формы жизни на земле можно разделить на два надцарства на основании строения составляющих их клеток — прокариоты (доядерные) и эукариоты (ядерные). Прокариотические клетки — более простые по строению, по-видимому, они возникли в процессе эволюции раньше. Эукариотические клетки — более сложные, возникли позже. Клетки, составляющие тело человека, являются эукариотическими.

Несмотря на многообразие форм, организация клеток всех живых организмов подчинена единым структурным принципам.

Живое содержимое клетки — протопласт — отделено от окружающей среды плазматической мембраной, или плазмалеммой. Внутри клетка заполнена цитоплазмой, в которой расположены различные органоиды и клеточные включения, а также генетический материал в виде молекулы ДНК. Каждый из органоидов клетки выполняет свою особую функцию, а в совокупности все они определяют жизнедеятельность клетки в целом.

Прокариотическая клетка

/>

Строение типичной клетки прокариот: капсула, клеточная стенка, плазмалемма, цитоплазма, рибосомы, плазмида, пили, жгутик, нуклеоид.

Прокариоты(от лат. pro — перед, до и греч. κάρῠον — ядро, орех) — организмы, не обладающие, в отличие от эукариот, оформленным клеточным ядром и другими внутренними мембранными органоидами (за исключением плоских цистерн у фотосинтезирующих видов, например, у цианобактерий). Единственная крупная кольцевая (у некоторых видов — линейная) двухцепочечная молекула ДНК, в которой содержится основная часть генетического материала клетки (так называемый нуклеоид) не образует комплекса с белками-гистонами (так называемого хроматина). К прокариотам относятся бактерии, в том числе цианобактерии (сине-зелёные водоросли), и археи. Потомками прокариотических клеток являются органеллы эукариотических клеток — митохондрии и пластиды.

Эукариотическая клетка

Эукариоты(эвкариоты) (от греч. ευ — хорошо, полностью и κάρῠον — ядро, орех) — организмы, обладающие, в отличие от прокариот, оформленным клеточным ядром, отграниченным от цитоплазмы ядерной оболочкой. Генетический материал заключён в нескольких линейных двухцепочных молекулах ДНК (в зависимости от вида организмов их число на ядро может колебаться от двух до нескольких сотен), прикреплённых изнутри к мембране клеточного ядра и образующих у подавляющего большинства (кроме динофлагеллят) комплекс с белками-гистонами, называемый хроматином. В клетках эукариот имеется система внутренних мембран, образующих, помимо ядра, ряд других органоидов (эндоплазматическая сеть, аппарат Гольджи и др.). Кроме того, у подавляющего большинства имеются постоянные внутриклеточные симбионты — прокариоты — митохондрии, а у водорослей и растений — также и пластиды.

Животная клетка

/>

Клеточная теория

/>

Клетки эпителия.

Клеточная теория— одно из общепризнанных биологических обобщений, утверждающих единство принципа строения и развития мира растений, животных и остальных живых организмов с клеточным строением, в котором клетка рассматривается в качестве общего структурного элемента живых организмов.

Общие сведения

Клеточная теория — основополагающая для общей биологии теория, сформулированная в середине XIX века, предоставившая базу для понимания закономерностей живого мира и для развития эволюционного учения. Матиас Шлейден и Теодор Шванн сформулировали клеточную теорию, основываясь на множестве исследований о клетке (1838). Рудольф Вирхов позднее (1858) дополнил её важнейшим положением (всякая клетка из клетки).

Шлейден и Шванн, обобщив имеющиеся знания о клетке, доказали, что клетка является основной единицей любого организма. Клетки животных, растений и бактерии имеют схожее строение. Позднее эти заключения стали основой для доказательства единства организмов. Т. Шванн и М. Шлейден ввели в науку основополагающее представление о клетке: вне клеток нет жизни.

Основные положения клеточной теории:

1) Клетка — элементарная единица живого, основная единица строения, функционирования, размножения и развития всех живых организмов.

1.1) О вирусах (1898г.): вне клетки жизни нет.

2) Клетки всех одноклеточных и многоклеточных организмов имеют общее происхождение и сходны по своему строению и химическому составу, основным проявлениям жизнедеятельности и обмену веществ.

—PAGE_BREAK—

3) Размножение клеток происходит путём их деления. Новые клетки всегда возникают из предшествующих клеток.

4) Клетка — это единица развития живого организма.

Дополнительные положения клеточной теории

Для приведения клеточной теории в более полное соответствие с данными современной клеточной биологии список её положений часто дополняют и расширяют. Во многих источниках эти дополнительные положения различаются, их набор достаточно произволен.

Клетки прокариот и эукариот являются системами разного уровня сложности и не полностью гомологичны друг другу.

В основе деления клетки и размножения организмов лежит копирование наследственной информации — молекул нуклеиновых кислот («каждая молекула из молекулы»). Положения о генетической непрерывности относится не только к клетке в целом, но и к некоторым из её более мелких компонентов — к митохондриям, хлоропластам, генам и хромосомам.

Многоклеточный организм представляет собой новую систему, сложный ансамбль из множества клеток, объединённых и интегрированных в системе тканей и органов, связанных друг с другом с помощью химических факторов, гуморальных и нервных (молекулярная регуляция).

Клетки многоклеточных обладают генетическими потенциями всех клеток данного организма, равнозначны по генетической информации, но отличаются друг от друга разной работой различных генов, что приводит к их морфологическому и функциональному разнообразию — к дифференцировке.

История развития понятий о клетке

XVII век

1665 год — английский физик Р. Гук в работе «Микрография» описывает строение пробки, на тонких срезах которой он нашёл правильно расположенные пустоты. Эти пустоты Гук назвал «порами, или клетками». Наличие подобной структуры было известно ему и в некоторых других частях растений.

1670-е годы — итальянский медик и натуралист М. Мальпиги и английский натуралист Н. Грю описали разные органы растений «мешочки, или пузырьки» и показали широкое распространение у растений клеточного строения. Клетки изображал на своих рисунках голландский микроскопист А. Левенгук. Он же первым открыл мир одноклеточных организмов — описал бактерии и инфузории.

Исследователи XVII века, показавшие распространённость «клеточного строения» растений, не оценили значение открытия клетки. Они представляли клетки в качестве пустот в непрерывной массе растительных тканей. Грю рассматривал стенки клеток как волокна, поэтому он ввёл термин «ткань», по аналогии с текстильной тканью. Исследования микроскопического строения органов животных носили случайный характер и не дали каких-либо знаний об их клеточном строении.

XVIII век

В XVIII веке совершаются первые попытки сопоставления микроструктуры клеток растений и животных. К.Ф. Вольф в работе «Теории зарождения» (1759) пытается сравнить развитие микроскопического строения растений и животных. По Вольфу, зародыш, как у растений, так и у животных развивается из бесструктурного вещества, в котором движения создают каналы (сосуды) и пустоты (клетки). Фактические данные, приводившиеся Вольфом, были им ошибочно истолкованы и не прибавили новых знаний к тому, что было известно микроскопистам XVII века. Однако его теоретические представления в значительной мере предвосхитили идеи будущей клеточной теории.

XIX век

В первую четверть XIX века происходит значительное углубление представлений о клеточном строении растений, что связано с существенными улучшениями в конструкции микроскопа (в частности, созданием ахроматических линз).

Линк и Молднхоуэр устанавливают наличие у растительных клеток самостоятельных стенок. Выясняется, что клетка есть некая морфологически обособленная структура. В 1831 году Моль доказывает, что даже такие, казалось бы, неклеточные структуры растений, как водоносные трубки, развиваются из клеток.

Мейен в «Фитотомии» (1830) описывает растительные клетки, которые «бывают или одиночными, так что каждая клетка представляет собой особый индивид, как это встречается у водорослей и грибов, или же, образуя более высокоорганизованные растения, они соединяются в более и менее значительные массы». Мейен подчёркивает самостоятельность обмена веществ каждой клетки.

В 1831 году Роберт Броун описывает ядро и высказывает предположение, что оно является постоянной составной частью растительной клетки.

Школа Пуркинье

В 1801 году Вигиа ввёл понятие о тканях животных, однако он выделял ткани на основании анатомического препарирования и не применял микроскопа. Развитие представлений о микроскопическом строении тканей животных связано прежде всего с исследованиями Пуркинье, основавшего в Бреславле свою школу. Пуркинье и его ученики (особенно следует выделить Г. Валентина) выявили в первом и самом общем виде микроскопическое строение тканей и органов млекопитающих (в том числе и человека). Пуркинье и Валентин сравнивали отдельные клетки растений с частными микроскопическими тканевыми структурами животных, которые Пуркинье чаще всего называл «зёрнышками» (для некоторых животных структур в его школе применялся термин «клетка»). В 1837 г. Пуркинье выступил в Праге с серией докладов. В них он сообщил о своих наблюдениях над строением желудочных желёз, нервной системы и т. д. В таблице, приложенной к его докладу, были даны ясные изображения некоторых клеток животных тканей. Тем не менее, установить гомологию клеток растений и клеток животных Пуркинье не смог. Сопоставление клеток растений и «зёрнышек» животных Пуркинье вёл в плане аналогии, а не гомологии этих структур (понимая термины «аналогия» и «гомология» в современном смысле).

Школа Мюллера и работа Шванна

Второй школой, где изучали микроскопическое строение животных тканей, была лаборатория Иоганнеса Мюллера в Берлине. Мюллер изучал микроскопическое строение спинной струны (хорды); его ученик Генле опубликовал исследование о кишечном эпителии, в котором дал описание различных его видов и их клеточного строения.

Здесь были выполнены классические исследования Теодора Шванна, заложившие основание клеточной теории. На работу Шванна оказала сильное влияние школа Пуркинье и Генле. Шванн нашёл правильный принцип сравнения клеток растений и элементарных микроскопических структур животных. Шванн смог установить гомологию и доказать соответствие в строении и росте элементарных микроскопических структур растений и животных.

На значение ядра в клетке Шванна натолкнули исследования Матиаса Шлейдена, у которого в 1838 году вышла работа «Материалы по филогенезу». Поэтому Шлейдена часто называют соавтором клеточной теории. Основная идея клеточной теории — соответствие клеток растений и элементарных структур животных — была чужда Шлейдену. Он сформулировал теорию новообразования клеток из бесструктурного вещества, согласно которой сначала из мельчайшей зернистости конденсируется ядрышко, вокруг него образуется ядро, являющееся образователем клетки (цитобластом). Однако эта теория опиралась на неверные факты. В 1838 году Шванн публикует 3 предварительных сообщения, а в 1839 году появляется его классическое сочинение «Микроскопические исследования о соответствии в структуре и росте животных и растений», в самом заглавии которого выражена основная мысль клеточной теории:

Развитие клеточной теории во второй половине XIX века

С 1840-х века учение о клетке оказывается в центре внимания всей биологии и бурно развивается, превратившись в самостоятельную отрасль науки — цитологию. Для дальнейшего развития клеточной теории существенное значение имело её распространение на простейших, которые были признаны свободно живущими клетками (Сибольд, 1848). В это время изменяется представление о составе клетки. Выясняется второстепенное значение клеточной оболочки, которая ранее признавалась самой существенной частью клетки, и выдвигается на первый план значение протоплазмы (цитоплазмы) и ядра клеток, что нашло своё выражение в определении клетки, данном М. Шульце в 1861 г.:

Клетка — это комочек протоплазмы с содержащимся внутри ядром.

В 1861 году Брюкко выдвигает теорию о сложном строении клетки, которую он определяет как «элементарный организм», выясняет далее развитую Шлейденом и Шванном теорию клеткообразования из бесструктурного вещества (цитобластемы). Обнаружено, что способом образования новых клеток является клеточное деление, которое впервые было изучено Молем на нитчатых водорослях. В опровержении теории цитобластемы на ботаническом материале большую роль сыграли исследования Негели и Н. И. Желе.

Деление тканевых клеток у животных было открыто в 1841 г. Ремарком. Выяснилось, что дробление бластомеров есть серия последовательных делений. Идея о всеобщем распространении клеточного деления как способа образования новых клеток закрепляется Р. Вирховом в виде афоризма: Каждая клетка из клетки.

В развитии клеточной теории в XIX веке остро встают противоречия, отражающие двойственный характер клеточного учения, развивавшегося в рамках механистического представления о природе. Уже у Шванна встречается попытка рассматривать организм как сумму клеток. Эта тенденция получает особое развитие в «Целлюлярной патологии» Вирхова (1858). Работы Вирхова оказали неоднозначное влияние на развитие клеточного учения:

XX век

Клеточная теория со второй половины XIX века приобретала всё более метафизический характер, усиленный «Целлюлярной физиологией» Ферворна, рассматривавшего любой физиологический процесс, протекающий в организме, как простую сумму физиологических проявлений отдельных клеток. В завершении этой линии развития клеточной теории появилась механистическая теория «клеточного государства», в качестве сторонника которой выступал, в том числе и Геккель. Согласно данной теории организм сравнивается с государством, а его клетки — с гражданами. Подобная теория противоречила принципу целостности организма.

В 1950-е советский биолог О. Б. Лепешинская, основываясь на данных своих исследований, выдвинула «новую клеточную теорию» в противовес «вирховианству». В её основу было положено представление, что в онтогенезе клетки могут развиваться из некоего неклеточного живого вещества. Критическая проверка фактов, положенных О. Б. Лепешинской и её приверженцами в основу выдвигаемой ею теории, не подтвердила данных о развитии клеточных ядер из безъядерного «живого вещества».

Современная клеточная теория

Современная клеточная теория исходит из того, что клеточная структура является главнейшей формой существования жизни, присущей всем живым организмам, кроме вирусов. Совершенствование клеточной структуры явилось главным направлением эволюционного развития как у растений, так и у животных, и клеточное строение прочно удержалось у большинства современных организмов.

Заключение

Целостность организма есть результат естественных, материальных взаимосвязей, вполне доступных исследованию и раскрытию. Клетки многоклеточного организма не являются индивидуумами, способными существовать самостоятельно (так называемые культуры клеток вне организма представляют собой искусственно создаваемые биологические системы). К самостоятельному существованию способны, как правило, лишь те клетки многоклеточных, которые дают начало новым особям (гаметы, зиготы или споры) и могут рассматриваться как отдельные организмы. Клетка не может быть оторвана от окружающей среды (как, впрочем, и любые живые системы). Сосредоточение всего внимания на отдельных клетках неизбежно приводит к унификации и механистическому пониманию организма как суммы частей.

Очищенная от механицизма и дополненная новыми данными клеточная теория остается одним из важнейших биологических обобщений.

Понравилась статья? Поделить с друзьями:
  • Сочинение про костяное кружево
  • Сочинение про кленовый лист
  • Сочинение про клен
  • Сочинение про кострому на русском
  • Сочинение про классную руководительницу