100 ОВР, котрые помогут учащимся при сдаче ЕГЭ по химии.
1) 2KMnO4 + 3MnSO4 + 2H2O = 5MnO2 + K2SO4 + 2H2SO4
2) 2KMnO4 + 16HCl = 2MnCl2 + 5Cl2 + 8H2O + 2KCl
3) 5NaNO2 + 2KMnO4 + 3H2SO4 = 2MnSO4 + 5NaNO3 + K2SO4 + 3H2O
4) 10FeSO4 + 2KMnO4 + 8H2SO4 = 5Fe2(SO4)3 + 2MnSO4 + K2SO4 + 8H2O
5) 2KMnO4 + 5H2S + 3H2SO4 = 5S + 2MnSO4 + K2SO4 + 8H2O
6) 2KMnO4 + 5Na2SO3 + 3H2SO4 = MnSO4 + K2SO4 + 5Na2SO4 + 3H2O
7)SO2 + 2KMnO4 + 4KOH = K2SO4 + 2K2MnO4 + 2H2O
K2Cr2O7 + 3H2S + 4H2SO4 = Cr2(SO4)3 + 3S + K2SO4 + 7H2O
9) K2Cr2O7 + 3NaNO2 + 4H2SO4 = 3NaNO3 + Cr2(SO4)3 + K2SO4 + 4H2O
10) K2Cr2O7 + 6KI + 7H2SO4 = 3I2 + Cr2(SO4)3 + 4K2SO4 + 7H2O
11) 4Mg + 10HNO3(оч.разб.) = 4Mg(NO3)2 + NH4NO3 + 3H2O
12) Cr2(SO4)3 + 3Br2 + 16NaOH = 6NaBr + 2Na2CrO4 + 3Na2SO4 + 8H2O
13)Al2S3 + 30HNO3(конц.) = 2Al(NO3)3 + 3H2SO4 + 24NO2 + 12H2O
14) 6FeSO4 + 2HNO3 + 3H2SO4 = 3Fe2(SO4)3 + 2NO + 4H2O
15) FeCl2 + 4HNO3(конц.) = Fe(NO3)3 + 2HCl + NO2 + H2O
16) AlP + 11HNO3(конц.) = H3PO4 + 8NO2 + Al(NO3)3 + 4H2O
17) 6FeSO4 + KClO3 + 3H2SO4 = 3Fe2(SO4)3 + KCl + 3H2O
18) 3MnSO4 + 2KClO3 + 12KOH = 3K2MnO4 + 2KCl + 3K2SO4 + 6H2O
19) 2Al + K2Cr2O7 + 7H2SO4 = Al2(SO4)3 + Cr2(SO4)3 + K2SO4 + 7H2O
20) 3P2O3 + 2HClO3 + 9H2O = 6H3PO4 + 2HCl
21) Cr2(SO4)3 + 6KMnO4 + 16KOH = 2K2CrO4 + 6K2MnO4 + 3K2SO4 + 8H2O
22) Cr2O3 + 3KNO3 + 4KOH = 2K2CrO4 + 3KNO2 + 2H2O
23) 2NaNO2 + 2NaI + 2H2SO4 = 2NO + I2 + 2Na2SO4 + 2H2O
24) 8KI + 9H2SO4(конц.) = 4I2 + H2S + 8KHSO4 + 4H2O
25) Cu + 2FeCl3 = CuCl2 + 2FeCl2
26) 3PH3 + 4HClO3 = 3H3PO4 + 4HCl
27) 3NO2 + H2O = NO + 2HNO3
28) I2 + K2SO3 + 2KOH = 2KI + K2SO4 + H2O
29) 2NH3 + 3KClO = N2 + 3KCl + 3H2O
30) 6P + 5HClO3 + 9H2O = 5HCl + 6H3PO4
31) 3P + 5HNO3 + 2H2O = 3H3PO4 + 5NO
32) Ca(ClO)2 + 4HCl = CaCl2 + 2Cl2 + 2H2O
33) 3H2S + HClO3 = 3S + HCl + 3H2O
34) Fe2(SO4)3 + 2KI = 2FeSO4 + I2 + K2SO4
35) 2KMnO4 + KI + H2O = 2MnO2 + KIO3 + 2KOH
36) I2 + 10HNO3(конц.) = 2HIO3 + 10NO2 + 4H2O
37) 3As2S3 + 28HNO3 + 4H2O = 6H3AsO4 + 28NO + 9H2SO4
38) 4Mg + 5H2SO4(конц.) = 4MgSO4 + H2S + 4H2O
39) MnO2 + 2KBr + 2H2SO4 = MnSO4 + Br2 + K2SO4 + 2H2O
40) 5HCOH + 4KMnO4 + 6H2SO4 = 5CO2 + 2K2SO4 + 4MnSO4 + 11H2O
41) 3KNO2 + 2KMnO4 + H2O = 3KNO3 + 2MnO2 + 2KOH
42) NaClO + 2KI + H2SO4 = I2 + NaCl + K2SO4 + H2O
43) 2KNO3 + 6KI + 4H2SO4 = 2NO + 3I2 + 4K2SO4 + 4H2O
44) 14HCl + K2Cr2O7 = 3Cl2 + 2CrCl3 + 2KCl + 7H2O
45) 2Cr(OH)3 + 3Cl2 + 10KOH = 2K2CrO4 + 6KCl + 8H2O
46) K2MnO4 + 8HCl = MnCl2 + 2Cl2 + 2KCl + 4H2O
47) K2Cr2O7 + 3Na2SO3 + 4H2O = 2Cr(OH)3 + 3Na2SO4 + 2KOH
48) 2KMnO4 + 10KBr + 8H2SO4 = 2MnSO4 + 5Br2 + 6K2SO4 + 8H2O
49) 4Zn + KNO3 + 7KOH = NH3 + 4K2ZnO2 + 2H2O
50) 2Fe(OH)3 + 3Br2 + 10KOH = 2K2FeO4 + 6KBr + 8H2O
51) P2O3 + 6KOH + 2NO2 = 2NO + 2K3PO4 + 3H2O
52) 2KMnO4 + 2NH3 = 2MnO2 + N2 + 2KOH + 2H2O
53) 3Na2SO3 + 2KMnO4 + H2O = 3Na2SO4 + 2MnO2 + 2KOH
54) 3NaNO2 + Na2Cr2O7 + 8HNO3 = 5NaNO3 + 2Cr(NO3)3 + 4H2O
55) B + HNO3(конц.) + 4HF = NO + HBF4 + 2H2O
56) 2CuCl2 + SO2 + 2H2O = 2CuCl + 2HCl + H2SO4
57) PH3 + 8AgNO3 + 4H2O = 8Ag + H3PO4 + 8HNO3
58) 2NH3 + 6KMnO4 + 6KOH = N2 + 6K2MnO4 + 6H2O
59) 5Zn + 2KMnO4 + 8H2SO4 = 5ZnSO4 + 2MnSO4 + K2SO4 + 8H2O
60) 3KNO2 + K2Cr2O7 + 8HNO3 = 5KNO3 + 2Cr(NO3)3 + 4H2O
61) FeS + 12HNO3(конц.) = Fe(NO3)3 + H2SO4 + 9NO2 + 5H2O
62) KIO3 + 5KI + 3H2SO4 = 3I2 + 3K2SO4 + 3H2O
63) 2NaCrO2 + 3Br2 + 8NaOH = 2Na2CrO4 + 6NaBr + 4H2O
64) Fe2(SO4)3 + Na2SO3 + H2O = 2FeSO4 + Na2SO4 + H2SO4
65) 3P2O3+ 2H2Cr2O7 + H2O = 2H3PO4 + 4CrPO4
66) 3Si + 4HNO3 + 18HF = 3H2SiF6 + 4NO + 8H2O
67) 5Na2SO3(нед.) + 2KIO3 + H2SO4 = I2 + K2SO4 + 5Na2SO4 + H2O
68) 2CrBr3 + 3H2O2 + 10NaOH = 2Na2CrO4 + 6NaBr + 8H2O
69) 8 KMnO4 + 5 PH3 + 12H2SO4 = 5H3PO4 + 8MnSO4 + 4K2SO4 + 12H2O
70) 3SO2 + K2Cr2O7 + H2SO4 = K2SO4 + Cr2(SO4)3 + H2O
71) 3P2O3 + 4HNO3 + 7H2O = 6H3PO4 + 4NO
72) 2NO + 3KClO + 2KOH = 2KNO3 + 3KCl + H2O
73) 5PH3 + 8KMnO4 + 12H2SO4 = 5H3PO4 + 4K2SO4 + 8MnSO4 + 12H2O
74) 5AsH3 + 8KMnO4 + 12H2SO4 = 5H3AsO4 + 4K2SO4 + 8MnSO4 + 12H2O
75) 2CuI + 4H2SO4(конц.) = 2CuSO4 + I2 + 4H2O + 2SO2
76) Si + 2KOH + H2O = K2SiO3 + 2H2 (to)
77) B + 3HNO3 = H3BO3 + 3NO2
78) 8NH3 + 3Br2 = N2 + 6NH4Br
79) P4 + 3KOH + 3H2O = PH3 + 3KH2PO2
80) Al2O3 + 3C + 3Cl2 = 2AlCl3 + 3CO(to)
81) H2S + HClO = S + HCl + H2O
82) 5KNO3(расплав) + 2P = 5KNO2 + P2O5
83) I2 + 5Cl2 + 6H2O = 2HIO3 + 10HCl
84) H2S + 4Cl2 + 4H2O = H2SO4 + 8HCl
85) 8Zn + 5H2S2O7 = 8ZnSO4 + 2H2S + 3H2O
86) 2FeCl3 + 3Na2S = 2FeS + S + 6NaCl
87) Na2S + 8NaNO3 + 9H2SO4 = 10NaHSO4 + 8NO2 + 4H2O
88) Cr2O3 + 3NaNO3 + 2Na2CO3 = 2Na2CrO4 + 3NaNO2 + 2CO2
89) 5C + Ca3(PO4)2 + 3SiO2 = 2P + 5CO + 3CaSiO3 (to)
90) 2NaI + H2O2 + H2SO4 = Na2SO4 + I2 + 2H2O
91) 14HBr + K2Cr2O7 = 2CrBr3 + 3Br2 + 7H2O + 2KBr
92) 2NH3 + 2KMnO4(тв.) = N2 + 2MnO2 + 2KOH + 2H2O (to)
93) 2FeCl3 + SO2 + 2H2O = 2FeCl2 + H2SO4 + 2HCl
94) 2HMnO4 + 5H2S + 2H2SO4 = 5S + 2MnSO4 + 8H2O
95) 3KNO3 + 8Al + 5KOH + 18H2O = 3NH3 + 8K[Al(OH)4]
96) 5H2O2 + 2KMnO4 + 3H2SO4 = 5O2 + 2MnSO4 + K2SO4 + 8H2O
97) P4 + 20HNO3 = 4H3PO4 + 20NO2 + 4H2O
98) 3NaClO + 4NaOH + Cr2O3 = 2Na2CrO4 + 3NaCl + 2H2O
99) Na2SO3 + 2KMnO4 + 2KOH = 2K2MnO4 + Na2SO4 + H2O
100) Cr2(SO4)3 + 3H2O2 + 10NaOH = 2Na2CrO4 + 3Na2SO4 +8H2O
1. Окислители и восстановители
2. Классификация окислительно–восстановительных реакций
3. Основные правила составления ОВР
4. Общие закономерности протекания ОВР
5. Основные схемы ОВР
5.1. Схема восстановления перманганатов
5.2. Схема восстановления хроматов/бихроматов
5.3. Разложение нитратов
5.4. Окислительные свойства азотной кислоты
5.5. Взаимодействие металлов с серной кислотой
5.6. Пероксид водорода
Окислительно-восстановительные реакции — это химические реакции, сопровождающиеся изменением степени окисления у атомов реагирующих веществ. При этом некоторые частицы отдают электроны, а некоторые получают.
Окислители и восстановители
Окислители — это частицы (атомы, молекулы или ионы), которые принимают электроны в ходе химической реакции. При этом степень окисления окислителя понижается. Окислители при этом восстанавливаются.
Восстановители — это частицы (атомы, молекулы или ионы), которые отдают электроны в ходе химической реакции. При этом степень окисления восстановителя повышается. Восстановители при этом окисляются.
Химические вещества можно разделить на типичные окислители, типичные восстановители, и вещества, которые могут проявлять и окислительные, и восстановительные свойства. Некоторые вещества практически не проявляют окислительно-восстановительную активность.
К типичным окислителям относят:
- простые вещества-неметаллы с наиболее сильными окислительными свойствами (фтор F2, кислород O2, хлор Cl2);
- сложные вещества, в составе которых есть ионы металлов или неметаллов с высокими положительными (как правило, высшими) степенями окисления: кислоты (HN+5O3, HCl+7O4), соли (KN+5O3, KMn+7O4), оксиды (S+6O3, Cr+6O3)
- соединения, содержащие некоторые катионы металлов, имеющих высокие степени окисления: Pb4+, Fe3+, Au3+ и др.
Типичные восстановители – это, как правило:
- простые вещества-металлы (восстановительные способности металлов определяются рядом электрохимической активности);
- сложные вещества, в составе которых есть атомы или ионы неметаллов с отрицательной (как правило, низшей) степенью окисления: бинарные водородные соединения (H2S, HBr), соли бескислородных кислот (K2S, NaI);
- некоторые соединения, содержащие катионы с минимальной положительной степенью окисления (Sn2+, Fe2+, Cr2+), которые, отдавая электроны, могут повышать свою степень окисления;
- соединения, содержащие сложные ионы, состоящие из неметаллов с промежуточной положительной степенью окисления (S+4O3)2–, (НР+3O3)2–, в которых элементы могут, отдавая электроны, повышать свою положительную степень окисления.
Большинство остальных веществ может проявлять как окислительные, так и восстановительные свойства.
Типичные окислители и восстановители приведены в таблице.
В лабораторной практике наиболее часто используются следующие окислители:
-
перманганат калия (KMnO4);
-
дихромат калия (K2Cr2O7);
-
азотная кислота (HNO3);
-
концентрированная серная кислота (H2SO4);
-
пероксид водорода (H2O2);
-
оксиды марганца (IV) и свинца (IV) (MnO2, PbO2);
-
расплавленный нитрат калия (KNO3) и расплавы некоторых других нитратов .
К восстановителям, которые применяются в лабораторной практике относятся:
- магний (Mg), алюминий (Al), цинк (Zn) и другие активные металлы;
- водород (Н2) и углерод (С);
- иодид калия (KI);
- сульфид натрия (Na2S) и сероводород (H2S);
- сульфит натрия (Na2SO3);
- хлорид олова (SnCl2).
Классификация окислительно-восстановительных реакций
Окислительно-восстановительные реакции обычно разделяют на четыре типа: межмолекулярные, внутримолекулярные, реакции диспропорционирования (самоокисления-самовосстановления), и реакции контрдиспропорционирования.
Межмолекулярные реакции протекают с изменением степени окисления разных элементов из разных реагентов. При этом образуются разные продукты окисления и восстановления.
2Al0 + Fe+32O3 → Al+32O3 + 2Fe0,
C0 + 4HN+5O3(конц) = C+4O2 ↑ + 4N+4O2 ↑+ 2H2O.
Внутримолекулярные реакции – это такие реакции, в которых разные элементы из одного реагента переходят в разные продукты, например:
(N-3H4)2Cr+62O7 → N20 ↑+ Cr+32O3 + 4 H2O,
2 NaN+5O-23 → 2 NaN+3O2 + O02↑.
Реакции диспропорционирования (самоокисления-самовосстановления) – это такие реакции, в которых окислитель и восстановитель – один и тот же элемент одного реагента, который при этом переходит в разные продукты:
3Br2 + 6 KOH → 5KBr + KBrO3 + 3 H2O,
Репропорционирование (конпропорционирование, контрдиспропорционирование) – это реакции, в которых окислитель и восстановитель – это один и тот же элемент, который из разных реагентов переходит в один продукт. Реакция, обратная диспропорционированию.
2H2S-2 + S+4O2 = 3S + 2H2O
Основные правила составления окислительно-восстановительных реакций
Окислительно-восстановительные реакции сопровождаются процессами окисления и восстановления:
Окисление — это процесс отдачи электронов восстановителем.
Восстановление — это процесс присоединения электронов окислителем.
Окислитель восстанавливается, а восстановитель окисляется.
В окислительно-восстановительных реакциях соблюдается электронный баланс: количество электронов, которые отдает восстановитель, равно количеству электронов, которые получает окислитель. Если баланс составлен неверно, составить сложные ОВР у вас не получится.
Используется несколько методов составления окислительно-восстановительных реакций (ОВР): метод электронного баланса, метод электронно-ионного баланса (метод полуреакций) и другие.
Рассмотрим подробно метод электронного баланса.
«Опознать» ОВР довольно легко — достаточно расставить степени окисления во всех соединениях и определить, что атомы меняют степень окисления:
K+2S-2 + 2K+Mn+7O-24 = 2K+2Mn+6O-24 + S0
Выписываем отдельно атомы элементов, меняющих степень окисления, в состоянии ДО реакции и ПОСЛЕ реакции.
Степень окисления меняют атомы марганца и серы:
S-2 -2e = S0
Mn+7 + 1e = Mn+6
Марганец поглощает 1 электрон, сера отдает 2 электрона. При этом необходимо, чтобы соблюдался электронный баланс. Следовательно, необходимо удвоить число атомов марганца, а число атомов серы оставить без изменения. Балансовые коэффициенты указываем и перед реагентами, и перед продуктами!
Схема составления уравнений ОВР методом электронного баланса:
Внимание! В реакции может быть несколько окислителей или восстановителей. Баланс необходимо составить так, чтобы ОБЩЕЕ число отданных и полученных электронов было одинаковым.
Общие закономерности протекания окислительно-восстановительных реакций
Продукты окислительно-восстановительных реакций зачастую зависят от условий проведения процесса. Рассмотрим основные факторы, влияющие на протекание окислительно-восстановительных реакций.
Самый очевидный фактор, определяющий — среда раствора реакции — кислая, нейтральная или щелочная. Как правило (но не обязательно), вещество, определяющее среду, указано среди реагентов. Возможны такие варианты:
- окислительная активность усиливается в более кислой среде и окислитель восстанавливается глубже (например, перманганат калия, KMnO4, где Mn+7 в кислой среде восстанавливается до Mn+2, а в щелочной — до Mn+6);
- окислительная активность усиливается в более щелочной среде, и окислитель восстанавливается глубже (например, нитрат калия KNO3, где N+5 при взаимодействии с восстановителем в щелочной среде восстанавливается до N-3);
- либо окислитель практически не подвержен изменениям среды.
Среда протекания реакции позволяет определить состав и форму существования остальных продуктов ОВР. Основной принцип — продукты образуются такие, которые не взаимодействуют с реагентами!
Обратите внимание! Если среда раствора кислая, то среди продуктов реакции не могут присутствовать основания и основные оксиды, т.к. они взаимодействуют с кислотой. И, наоборот, в щелочной среде исключено образование кислоты и кислотного оксида. Это одна из наиболее частых, и наиболее грубых ошибок.
Также на направление протекания ОВР влияет природа реагирующих веществ. Например, при взаимодействии азотной кислоты HNO3 с восстановителями наблюдается закономерность — чем больше активность восстановителя, тем больше восстанавливается азот N+5.
При увеличении температуры большинство ОВР, как правило, проходят более интенсивно и более глубоко.
В гетерогенных реакциях на состав продуктов зачастую влияет степень измельчения твердого вещества. Например, порошковый цинк с азотной кислотой образует одни продукты, а гранулированный — совершенно другие. Чем больше степень измельчения реагента, тем больше его активность, как правило.
Рассмотрим наиболее типичные лабораторные окислители.
Основные схемы окислительно-восстановительных реакций
Схема восстановления перманганатов
В составе перманганатов есть мощный окислитель — марганец в степени окисления +7. Соли марганца +7 окрашивают раствор в фиолетовый цвет.
Перманганаты, в зависимости от среды реакционного раствора, восстанавливаются по-разному.
В кислой среде восстановление происходит более глубоко, до Mn2+. Оксид марганца в степени окисления +2 проявляет основные свойства, поэтому в кислой среде образуется соль. Соли марганца +2 бесцветны. В нейтральном растворе марганец восстанавливается до степени окисления +4, с образованием амфотерного оксида MnO2 — коричневого осадка, нерастворимого в кислотах и щелочах. В щелочной среде марганец восстанавливается минимально — до ближайшей степени окисления +6. Соединения марганца +6 проявляют кислотные свойства, в щелочной среде образуют соли — манганаты. Манганаты придают раствору зеленую окраску.
Рассмотрим взаимодействие перманганата калия KMnO4 с сульфидом калия в кислой, нейтральной и щелочной средах. В этих реакциях продуктом окисления сульфид-иона является S0.
5 K2S + 2 KMnO4 + 8 H2SO4 = 5 S + 2 MnSO4 + 6 K2SO4 + 8 H2O,
3 K2S + 2 KMnO4 + 4 H2O = 2 MnO2↓ + 3 S↓ + 8 KOH,
Распространенной ошибкой в этой реакции является указание на взаимодействие серы и щелочи в продуктах реакции. Однако, сера взаимодействует с щелочью в довольно жестких условиях (повышенная температура), что не соответствует условиям этой реакции. При обычных условиях правильно будет указывать именно молекулярную серу и щелочь отдельно, а не продукты их взаимодействия.
K2S + 2 KMnO4 –(KOH)= 2 K2MnO4 + S↓
При составлении этой реакции также возникают трудности. Дело в том, что в данном случае написание молекулы среды (КОН или другая щелочь) в реагентах не требуется для уравнивания реакции. Щелочь принимает участие в реакции, и определяет продукт восстановления перманганата калия, но реагенты и продукты уравниваются и без ее участия. Этот, казалось бы, парадокс легко разрешим, если вспомнить, что химическая реакция — это всего лишь условная запись, которая не указывает на каждый происходящий процесс, а всего лишь является отображением суммы всех процессов. Как определить это самостоятельно? Если действовать по классической схеме — баланс-балансовые коэффициенты-уравнивание металла, то вы увидите, что металлы уравниваются балансовыми коэффициентами, и наличие щелочи в левой части уравнения реакции будет лишним.
Перманганаты окисляют:
- неметаллы с отрицательной степенью окисления до простых веществ (со степенью окисления 0), исключения — фосфор, мышьяк — до +5;
- неметаллы с промежуточной степенью окисления до высшей степени окисления;
- активные металлы из простых веществ (ст.окисления 0) до соединений со стабильной положительной степенью окисления металла.
KMnO4 + неМе (низшая с.о.) = неМе0 + другие продукты
KMnO4 + неМе (промежуточная с.о.) = неМе(высшая с.о.) + др. продукты
KMnO4 + Ме0 = Ме (стабильная с.о.) + др. продукты
KMnO4 + P-3, As-3= P+5, As+5 + др. продукты
Схема восстановления хроматов/бихроматов
Особенностью хрома с валентностью VI является то, что он образует 2 типа солей в водных растворах: хроматы и бихроматы, в зависимости от среды раствора. Хроматы активных металлов (например, K2CrO4) — это соли, которые устойчивы в щелочной среде. Дихроматы (бихроматы) активных металлов (например, K2Cr2O7) — соли, устойчивые в кислой среде.
Восстанавливаются соединения хрома (VI) до соединений хрома (III). Соединения хрома Cr+3 — амфотерные, и в зависимости от среды раствора они существуют в растворе в различных формах: в кислой среде в виде солей (амфотерные соединения при взаимодействии с кислотами образуют соли), в нейтральной среде — нерастворимый амфотерный гидроксид хрома (III) Cr(OH)3, и в щелочной среде соединения хрома (III) образуют комплексную соль, например, гексагидроксохромат (III) калия K3[Cr(OH)6].
Соединения хрома VI окисляют:
- неметаллы в отрицательной степени окисления до простых веществ (со степенью окисления 0), исключения — фосфор, мышьяк – до +5;
- неметаллы в промежуточной степени окисления до высшей степени окисления;
- активные металлы из простых веществ (ст.окисления 0) до соединений со стабильной положительной степенью окисления металла.
Хромат/бихромат + неМе (отрицательная с.о.) = неМе0 + другие продукты
Хромат/бихромат + неМе (промежуточная положительная с.о.) = неМе(высшая с.о.) + др. продукты
Хромат/бихромат + Ме0 = Ме (стабильная с.о.) + др. продукты
Хромат/бихромат + P, As (отрицательная с.о.) = P, As+5 + другие продукты
Разложение нитратов
Соли-нитраты содержат азот в степени окисления +5 — сильный окислитель. Такой азот может окислять кислород (О-2). Это происходит при нагревании нитратов. При этом в большинстве случаев кислород окисляется до степени окисления 0, т.е. до молекулярного кислорода O2.
В зависимости от типа металла, образующего соль, при термическом (температурном) разложении нитратов образуются различные продукты: если металл активный (в ряду электрохимической активности находятся до магния), то азот восстанавливается до степени окисления +3, и при разложении образуется соли-нитриты и молекулярный кислород.
Например:
2NaNO3 → 2NaNO2 + O2.
Активные металлы в природе встречаются в виде солей (KCl, NaCl).
Если металл в ряду электрохимической активности находится правее магния и левее меди (включая магний и медь), то при разложении образуется оксид металла в устойчивой степени окисления, оксид азота (IV) (бурый газ) и кислород. Оксид металла образует также при разложении нитрат лития.
Например, разложение нитрата цинка:
2Zn(NO3)2 → 2ZnО + 4NO2 + O2.
Металлы средней активности чаще всего в природе встречаются в виде оксидов (Fe2O3, Al2O3 и др.).
Ионы металлов, расположенных в ряду электрохимической активности правее меди являются сильными окислителями. При разложении нитратов они, как и N+5, участвуют в окислении кислорода, и восстанавливаются до простых веществ, т.е. образуется металл и выделяются газы — оксид азота (IV) и кислород.
Например, разложение нитрата серебра:
2AgNO3 → 2Ag + 2NO2 + O2.
Неактивные металлы в природе встречаются в виде простых веществ.
Некоторые исключения!
Разложение нитрата аммония:
В молекуле нитрата аммония есть и окислитель, и восстановитель: азот в степени окисления -3 проявляет только восстановительные свойства, азот в степени окисления +5 — только окислительные.
При нагревании нитрат аммония разлагается. При температуре до 270 оС образуется оксид азота (I) («веселящий газ») и вода:
NH4NO3 → N2O + 2H2O
Это пример реакции контрдиспропорционирования.
Результирующая степень окиcления азота — среднее арифметическое степени окисления атомов азота в исходной молекуле.
При более высокой температуре оксид азота (I) разлагается на простые вещества — азот и кислород:
2NH4NO3 → 2N2 + O2 + 4H2O
При разложении нитрита аммония NH4NO2 также происходит контрдиспропорционирование.
Результирующая степень окисления азота также равна среднему арифметическому степеней окисления исходных атомов азота — окислителя N+3 и восстановителя N-3
NH4NO2 → N2 + 2H2O
Термическое разложение нитрата марганца (II) сопровождается окислением металла:
Mn(NO3)2 = MnO2 + 2NO2
Нитрат железа (II) при низких температурах разлагается до оксида железа (II), при нагревании железо окисляется до степени окисления +3:
2Fe(NO3)2 → 2FeO + 4NO2 + O2 при 60°C
4Fe(NO3)2 → 2Fe2O3 + 8NO2 + O2 при >60°C
Нитрат никеля (II) разлагается до нитрита при нагревании до 150оС под вакуумом и до оксида никеля при более высоких температурах (разложения нитрата никеля в ЕГЭ по химии не должно быть, но это не точно)).
Окислительные свойства азотной кислоты
Азотная кислота HNO3 при взаимодействии с металлами практически никогда не образует водород, в отличие от большинства минеральных кислот.
Это связано с тем, что в составе кислоты есть очень сильный окислитель — азот в степени окисления +5. При взаимодействии с восстановителями — металлами образуются различные продукты восстановления азота.
Азотная кислота + металл = соль металла + продукт восстановления азота + H2O
Азотная кислота при восстановлении может переходить в оксид азота (IV) NO2 (N+4); оксид азота (II) NO (N+2); оксид азота (I) N2O («веселящий газ»); молекулярный азот N2; нитрат аммония NH4NO3. Как правило, образуется смесь продуктов с преобладанием одного из них. Азот восстанавливается при этом до степеней окисления от +4 до −3. Глубина восстановления зависит в первую очередь от природы восстановителя и от концентрации азотной кислоты. При этом работает правило: чем меньше концентрация кислоты и выше активность металла, тем больше электронов получает азот, и тем более восстановленные продукты образуются.
Некоторые закономерности позволят верно определять основной продукт восстановления металлами азотной кислоты в реакции:
- при действии очень разбавленной азотной кислоты на металлы образуется, как правило, нитрат аммония NH4NO3;
Например, взаимодействие цинка с очень разбавленной азотной кислотой:
4Zn + 10HNO3 = 4Zn(NO3)2 + NH4NO3 + 3H2O
- концентрированная азотная кислота на холоде пассивирует некоторые металлы — хром Cr, алюминий Al и железо Fe. При нагревании или разбавлении раствора реакция идет;
пассивация металлов — это перевод поверхности металла в неактивное состояние за счет образования на поверхности металла тонких слоев инертных соединений, в данном случае преимущественно оксидов металлов, которые не реагируют с концентрированной азотной кислотой
- азотная кислота не реагирует с металлами платиновой подгруппы — золотом Au, платиной Pt, и палладием Pd;
- при взаимодействии концентрированной кислоты с неактивными металлами и металлами средней активности азотная кислота восстанавливается до оксида азота (IV) NO2;
Например, окисление меди концентрированной азотной кислотой:
Cu+ 4HNO3 = Cu(NO3)2 + 2NO2 + 2H2O
- при взаимодействии концентрированной азотной кислоты с активными металлами образуется оксид азота (I) N2O;
Например, окисление натрия концентрированной азотной кислотой:
8Na+ 10HNO3 = 8NaNO3 + N2O + 5H2O
- при взаимодействии разбавленной азотной кислоты с неактивными металлами (в ряду активности правее водорода) кислота восстанавливается до оксида азота (II) NO;
- при взаимодействии разбавленной азотной кислоты с металлами средней активности образуется либо оксид азота (II) NO, либо оксид азота N2O, либо молекулярный азот N2 — в зависимости от дополнительных факторов (активность металла, степень измельчения металла, степень разбавления кислоты, температура).
- при взаимодействии разбавленной азотной кислоты с активными металлами образуется молекулярный азот N2.
Для приближенного определения продуктов восстановления азотной кислоты при взаимодействии с разными металлами я предлагаю воспользоваться принципом маятника. Основные факторы, смещающие положение маятника: концентрация кислоты и активность металла. Для упрощения используем 3 типа концентраций кислоты: концентрированная (больше 30%), разбавленная (30% или меньше), очень разбавленная (меньше 5%). Металлы по активности разделим на активные (до алюминия), средней активности (от алюминия до водорода) и неактивные (после водорода). Продукты восстановления азотной кислоты располагаем в порядке убывания степени окисления:
NO2; NO; N2O; N2; NH4NO3
Чем активнее металл, тем больше мы смещаемся вправо. Чем больше концентрация или меньше степень разбавления кислоты, тем больше мы смещаемся влево.
Например, взаимодействуют концентрированная кислота и неактивный металл медь Cu. Следовательно, смещаемся в крайнее левое положение, образуется оксид азота (IV), нитрат меди и вода.
Взаимодействие металлов с серной кислотой
Разбавленная серная кислота взаимодействует с металлами, как обычная минеральная кислота. Т.е. взаимодействует с металлами, которые расположены в ряду электрохимических напряжений до водорода. Окислителем здесь выступают ионы H+, которые восстанавливаются до молекулярного водорода H2. При этом металлы окисляются, как правило, до минимальной степени окисления.
Например:
Fe + H2SO4(разб) = FeSO4 + H2
Концентрированная серная кислота взаимодействует с металлами, стоящими в ряду напряжений как до, так и после водорода.
H2SO4 (конц) + металл = соль металла + продукт восстановления серы (SO2, S, H2S) + вода
При взаимодействии концентрированной серной кислоты с металлами образуются соль металла (в устойчивой степени окисления), вода и продукт восстановления серы — сернистый газ S+4O2, молекулярная сера S либо сероводород H2S-2, в зависимости от степени концентрации, активности металла, степени его измельчение, температуры и т.д. При взаимодействии концентрированной серной кислоты с металлами молекулярный водород не образуется!
Основные принципы взаимодействия концентрированной серной кислоты с металлами:
1. Концентрированная серная кислота пассивирует алюминий, хром, железо при комнатной температуре, либо на холоду;
2. Концентрированная серная кислота не взаимодействует с золотом, платиной и палладием;
3. С неактивными металлами концентрированная серная кислота восстанавливается до оксида серы (IV).
Например, медь окисляется концентрированной серной кислотой:
Cu0 + 2H2S+6O4(конц) = Cu+2SO4 + S+4O2 + 2H2O
4. При взаимодействии с активными металлами и цинком концентрированная серная кислота образует серу S либо сероводород H2S2- (в зависимости от температуры, степени измельчения и активности металла).
Например, взаимодействие концентрированной серной кислоты с цинком:
8Na0 + 5H2S+6O4(конц) → 4Na2+SO4 + H2S—2 + 4H2O
Пероксид водорода
Пероксид водорода H2O2 содержит кислород в степени окисления -1. Такой кислород может и повышать, и понижать степень окисления. Таким образом, пероксид водорода проявляет и окислительные, и восстановительные свойства.
При взаимодействии с восстановителями пероксид водорода проявляет свойства окислителя, и восстанавливается до степени окисления -2. Как правило, продуктом восстановления пероксида водорода является вода или гидроксид-ион, в зависимости от условий проведения реакции. Например:
S+4O2 + H2O2-1 → H2S+6O4-2
При взаимодействии с окислителями перекись окисляется до молекулярного кислорода (степень окисления 0): O2. Например:
2KMn+7O4 + 5H2O2-1 + 3H2SO4 → 5O20 + 2Mn+2SO4 + K2SO4 + 8H2O
Подготовка к ЕГЭ. Окислительно-восстановительные реакции
Подготовка к ЕГЭ. Окислительно—восстановительные реакции
Цель: помощь учителям и учащимся при подготовке к ЕГЭ по
химии.
При выполнении задания 30 (уравнение ОВР ) в тестах ЕГЭ важно уметь находить среди
реагирующих веществ окислитель и восстановитель.
Восстановители в окислительно—восстановительной реакции отдают электроны, при этом
степень окисления повышается. К ним относятся:
1.Простые вещества, атомы которых обладают низкой электроотрицательностью – активные
металлы, некоторые неметаллы, например, водород и углерод, кремний.
2. Некоторые соединения металлов, содержащие катионы (Sn2+, Fe2+, Cr2+), которые, отдавая
электроны, могут повышать свою степень окисления.
3. Вещества, которые , так же , содержат элемент в низшей степени окисления , например:
H2S, CO, NH3, PH3, HCl, HBr, HI и их соли.
4. Вещества, которые содержат элементы в промежуточной степени окисления,
могут проявлять, в зависимости от природы реагента – партнёра, как окислительные,
так и восстановительные свойства. Это – все неметаллы (кроме фтора), N2, NO,
HNO2, KNO2, H2O2, S, SO2, K2SO3 и другие.
Cильные восстановители
Щелочные и щелочно—земельные металлы
Mg, Al, H2
HI и йодиды
HBr и бромиды
H2S и сульфиды
NH3, PH3, H3PO3
C, CO
Соединения Fe2+, Cr2+, SnCl2
Слабые восстановители
Малоактивные металлы (Pb, Cu, Ag, Hg)
HCl
SO2
HNO2
Альдегиды, спирты, муравьиная кислота,
щавелевая кислота, глюкоза
Окислители – это вещества, которые содержат элемент в максимальной степени окисления. В
окислительно – восстановительной реакции окислитель принимает электроны, при этом
степень окисления понижается. Это:
1. Простые вещества, атомы которых обладают большой электроотрицательностью — элементы
главных подгрупп VI и VII групп периодической системы: кислород, галогены. Из простых
веществ самый сильный окислитель – фтор.
2. Соединения, содержащие некоторые катионы металлов в высоких степенях окисления: Pb4+,
Fe3+, Au3+ и др.
3. Соединения, содержащие некоторые сложные анионы, элементы в которых находятся в
высоких положительных степенях окисления.Элемент в высшей степени окисления уже отдал
все электроны, и может только их принимать, т.е. может быть только окислителем.
Типичные окислители: H2SO4, HNO3, KMnO4, K2CrO4, K2Cr2O7, SO3, O2, F2, O3, Cl2, CrO3
Сильные окислители
F2, O2, O3, H2O2, Cl2
HClO, HClO3, H2SO4, HNO3
Царская водка
NO2
KMnO4, MnO2
K2Cr2O7, CrO3
PbO2
Слабые окислители
I2, Br2,
SO2
HNO2
Соединения Fe3+
1. Окислительно—восстановительные реакции с участием перманганата калия.
Кислая среда
2 КМnО4 +10 КВг + 8 Н2SO4 = 2 МпSO4 + 6 К2SO4 + 5 Вr2 + 8 Н2О
K2MnO4 +8 НСl = 2 КСl + 2МnСl2 + 2 Cl2 + 4 Н2О
2 КМnО4 +5Н2 S+3Н2SО4 = 5S + К2SO4 + 2MnSO4+ 8Н2 O
2 КМnО4 +5Н2О2 +3Н2SО4 = 5О2 + К2SO4 + 2MnSO4+ 8Н2 O
Мn
2+
Бесцв.
р—р
Образуются соли
той кислоты,
которая участвует в
реакции.
Нейтральная среда
2 КМnО4 + 3 МnSO4 + 2 Н2О = 5 МnО2 + К2SО4 + 2 Н2SО4
КМnО4 + С6Н5СН3 = КОН + МnО2 + С6Н5СООК (нейтр.среда)
2 КМnО4 + 5SO2 + 2 Н2О = 2MnSO4 + 2 К2SO4 +2 Н2 SO4
3Н2 S +2 КМnО4 = 3S + 2 MnO2+2Н2 O + 2 КОН
Щелочная среда
2 КМnО4 + К2SO3 + 2 КОН = К2SO4 + 2 К2МnO4 + Н2О
8КМnО4 + NН3 + 9 КОН = КNО3 + 8 К2МnO4 +8 Н2О
Мn
2+,
+4
оксиды,
гидроксид,
соли
(в—ль)
Щелочная среда + очень сильные окислители :
КNО3, КClО4,КClО3, КClО2, КClО (в расплаве)
МnО2 + КNО3 + 2 КОН = К2МпО4 + КNО2 + Н2О ( или аммиак выделяется)
3 MnO2 +К ClО3 + 6KOH =3K2MnO4 + KCl + 3H2O.
Mn(OH)2 + 2NaOCl + 2NaOН= Na2MnO4 + 2NaCl +2 H2O.
МnSO4 + 2NaOCl + 4 NaОН = Na2SO4 + Na2MnO4 + 2NaCl + 2H2O
МnO
4
2-
зелен.
Образуются
соли
Нейтральная среда
Мn(ОH)2 + Н2O2 = МnО2 +2 Н2О
Возможны в растворах р—ции
Mn(OH)2 + Cl2 +2KOH = MnO2 + 2KCl + 2H2O
Mn(OH)2 + NaOCl = MnO2 + NaCl + H2O.
Кислая среда + очень сильные окислители (КВгО3, оксид свинца+ 4 и др.)
2МnSO4 + 10NaOCl + 6НNО3 = 2Na2SO4 +2 НMnO4 + 5Cl2 + 2H2O+6
NaNO3
2MnSO4 + 5PbO2 + 6HNO3 → 2HMnO4 + 2PbSO4 + 3Pb(NO3)2 + 2H2O
2.Окислительно—восстановительные реакции с участием соединений хрома.
Кислая среда
К2Сr2О7 +3Н2S +4Н2SО4 = 3S + Сr2(SО4)3 + K2SO4+ 7Н2О
6 FeSO4 +K2Cr2O7 +7 H2SO4 = 3 Fe2(SO4)3 +Cr2(SO4)3
+K2SO4 +7 H2O
6KI + K2Cr2O7 + 7 H2SO4 = 3 I2 + Cr2(SO4)3 + 4 K2SO4 + 7
H2O.
K2Cr2O7 + 4H2SO4 + 3H2O2 = 3O2 + Cr2(SO4)3 + K2SO4
+7H2O
2K2Cr2O7 + 8H2SO4 + 3HCOH = 3CO2 + 2Cr2(SO4)3 + 2K2SO4
+ 11H2O.
Cr+3
Р—р сине—
фиолет.
Образуются соли
той кислоты,
которая
участвует в
реакции.
Нейтральная среда
K
2
Cr
2
O
7
+ 3К
2
SO
3
+4H
2
O→ 3К
2
SO
4
+2Cr(OH)
3
+2KOH
Cr(OH)3
Серо—зелен.
осадок
Щелочная среда
2K2CrO4 + 2KOH + 3K2SO3 + 5H2O = 2K3[Cr(OH)6] + 3K2SO4
2K
2
CrO
4
+ 3К
2
SO
3
+ 2KOH + 5H
2
O = 3К
2
SO
4
+ 2K
3
[Cr(OH)
6
]
K
2
CrO
4
+ 8H
2
O + 6KI → 2Cr(OH)
3
+3I
2
+ 10KOH
В р—ре
K3[Cr(OH)6];
В расплаве
K3CrO3;
KCrO2;
Р—р зелен.
Cr2O3,
Cr(OH)3
K3[Cr(OH)6],
Щелочная среда + очень сильные окислители :
КNО3, КClО4,КClО3, КClО2, КClО
CrCl
3
+ 16NaOH + 3Br
2
→ 6NaBr + 6NaCl + 8H
2
O + 2Na
2
CrO
4
Cr
2
(SO
4
)
3
+ 3Br
2
+ 16NaOH → 2Na
2
CrO
4
+ 6NaBr + 3Na
2
SO
4
+
8H
2
O
2K3[Cr(OH)6] +4 KOH + 2Br2 = 6KBr + 2K2CrO4 + 8H2О
2KCrO2 + 8KOH + 3Br2 = 6KBr +2 K2CrO4 + 4H2О
Кислая среда + очень сильные окислители (КВгО3, оксид
свинца+ 4 и др.
CrCl
3
+ HClO
3
+ 4H
2
O → H
2
Cr
2
O
7
+ 7HCl
K2Cr2O7
Или
Н2Cr2O7
Оранжевый
р—р
3 .Окислительно—восстановительные реакции с участием кислот.
Серная кислота концентрированная и азотная кислота в любом виде окисляют почти все
металлы и такие неметаллы, как углерод, фосфор, серу, и многие сложные вещества.
Возможные продукты восстановления этих кислот:
H2SO4 → SO2 → S → H2S
HNO3 → NO2 → NO → N2O → N2 → NH3(NH4NO3)
При взаимодействии с металлами получаются три вещества: соль, вода и продукт
восстановления кислоты, который зависит от концентрации кислоты, активности металла и
температуры.Чем меньше концентрация кислоты, а металл более активен, тем больше степень
восстановления кислоты.
Серная кислота
H2SO4 разбавленная реагирует с металлами до водорода с выделением водорода
не реагирует
с Au, Pt и
некоторыми
металлами
не
реагирует
на холоде
с Fe, Al, Cr
восстанавливается
до SO2
с неактивными
металлами
(правее железа) и
неметаллами
Восстанавливается
до S со
щелочно—
земельными
металлами
Восстанавливается
H2S
со щелочными
металлами и
цинком
С неметаллами образует SO2, кислоту или оксид неметалла
Cu + H2SO4 концентр. = CuSO4 + SO2 + 2H2O
Zn + 2H2SO4 концентр.= ZnSO4 +SO2 + 2H2O
3Zn + 4H2SO4 концентр. = 3ZnSO4 + S↓ + 4H2O
4Zn + 5H2SO4 концентр. = 4ZnSO4 + H2S + 4H2O
C + 2H2SO4 концентр. = CO2 + 2H2O + 2SO2
2P + 5H2SO4 концентр. = 2H3PO4 + 5SO2 + 2H2O
S +2H2SO4 концентр. = 3SO2 +2H2O
Азотная кислота.
HNO3 концентрированная —не реагирует с металлами правее серебра — Au, Pt; не
реагирует на холоде с Fe, Al, Cr
Конц . HNO3
С металлами после
водорода (до Au, Pt)
Образует NO2, соль, воду
Конц . HNO3
С металлами
правее цинка и до водорода
не реагирует
Конц . HNO3
С металлами цинк и
левее(активные)
Образует NO, соль, воду
разб . HNO3 С металлами
после водорода до Au, Pt
Образует NO, соль, воду
разб . HNO3 С металлами
правее цинка и до водорода
образует NО2, NO, N2O,
разб . HNO3
С металлами цинк и
левее(активные)
Образует N2O, N2 ; очень
разбавленная — NH3. NH4NO3
Концентрированная HNO3 в любом виде окисляет неметаллы — восстановители — углерод,
фосфор, серу — до соответствующих кислот.
Cu + 4HNO3 к. = Cu (NO3)2 + 2NO2 + 2H2O
3Cu + 8HNO3 р.. = 3Cu (NO3)2 + 2NO + 4H2O
Al + 4HNO3 р. = Al (NO3)3 + NO + 2H2O
8Al + 30HNO3 р. = 8Al (NO3)3 + 3N2O + 15H2O
10Al + 36HNO3 р. = 10Al (NO3)3 + 3N2 + 18H2O
C + 4HNO3 к. = CO2 + 2H2O + 4NO2
3C + 4HNO3 р. = 3CO2 + 2H2O + 4NO
P + 5HNO3 к. = H3PO4 + 5NO2 + H2O
3P + 5HNO3 р. + 2H2O = 3H3PO4 + 5NO
S +6HNO3 к. = H2SO4 + 6NO3 + 2H2O
S + 2HNO3 р. = H2SO4 + 2NO
Концентрированные H2SO4 и HNO3 реагируют с Fe, Al, Cr только при нагревании:
2Fe + 6H2SO4 концентр. = Fe2 (SO4)3 + 3SO2 + 3H2O
Fe + 6HNO3 концентр. = Fe (NO3)3 + 3NO2 + 3H2O
Концентрированная азотная кислота окисляет йод до йодноватой кислоты:
I2 + 10HNO3 = 2HIO3 + 10NO2 + 4H2O
4. Особые случаи ОВР.
Сложные вещества, которые проявляют сильные восстановительные и окислительные
свойства, при взаимодействии друг с другом дают только ОВР, а не реакции обмена.
1. Окислители – соединения железа (III), восстановители – сульфиды, йодиды. При
этом ион Fe3+восстанавливается до иона Fe2+, а сульфид ион окисляется до серы S,
а йодид ион окисляется до йода I2.
В зависимости от количественного соотношения реагирующих веществ могут
получиться различные соединения железа (II):
2FeCl3 + H2S = S↓ + 2FeCl2 + 2HCl
2FeCl3 + Na2S = S↓ + 2FeCl2 + 2NaCl
или 2FeCl3 + 3Na2S = S↓ + FeS + 6NaCl
Fe2(SO4)3 + H2S = S↓ + 2FeSO4 +H2SO4
Fe(OH)3 + 6HI = 2FeI2 + I2↓ + 6H2O
Fe2O3 + 6HI = 2FeI2 + I2↓ + 3H2O
2FeCl3 +2HI = 2FeCl2 + I2↓ + 2HCl
2FeCl3 + 2KI = 2FeCl2 + I2↓ + 2KCl
или 2FeCl3 + 6KI = 2FeI2 + I2↓ + 6KCl
Fe2(SO4)3 + 2KI = 2FeSO4 + I2↓ + K2SO4
Fe2(SO4)3 + BaI2 = 2FeSO4 + I2↓ +
BaSO4↓
2. Окислители – соединения меди (II), восстановители — йодиды. При этом ион
Cu2+ восстанавливается до иона Cu+, а иодид – ион окисляется до йода I2 :
2CuSO4 + 4KI = 2CuI↓ + I2↓ + 2K2SO4
2CuCl2 + 4KI = 2CuI↓ + I2↓ + 4KCl
2CuCl2 + 4HI = 2CuI↓ + I2↓ + 4HCl
3. Окислитель – азотная кислота, восстановитель – сульфиды, йодиды, сульфиты.
При этом азотная кислота, в зависимости от концентрации, восстанавливается до
NO2 (концентрированная), до NO (разбавленная); сульфид ион S2— окисляется до серы S
или сульфат иона SO4 2—, йодид ион – до йода I2, a сульфит ион SO3 2— до
сульфат иона SO4 2-:
8HNO3 к. + CuS = CuSO4 + 8NO2 + 4H2O
или 4HNO3 к.+ CuS = S↓ + 2NO2 + Cu(NO3)2 + 2H2O
8HNO3 р.+ 3CuS = 3S↓ + 2NO + 3Cu(NO3)2 + 4H2O
4HNO3 к.+ Na2S = S↓ + 2NO2 + 2NaNO3 + 2H2O
24HNO3 к.+ Al2S3 = Al2(SO4)3 + 24NO2 + 12H2O
2HNO3 р.+ H2S = 3S↓ + 2NO + 4H2O
8HNO3 к.+ H2S = H2SO4 + 8NO2 + 4H2O
или 2HNO3 к.+ H2S = S↓ + 2NO2 + 2H2O
2HNO3 р.+ 3K2SO3 = 3K2SO4 + 2NO + H2O
6HNO3 к.+ HI = HIO3 + 6NO2 + 3H2O
2HNO3 к.+ 2KI = I2 + 2NO2 + H2O
4. Окислитель – азотная кислота или серная концентрированная кислота, восстановитель –
соединения железа (II). При этом азотная кислота восстанавливается до NO2 или NO,
серная – до SO2, а ион Fe2+ окисляется до иона Fe3+:
Fe(OH)2 + 4HNO3 к. = Fe(NO3)3 + NO2 + 3H2O
FeO + 4HNO3 к. = Fe(NO3)3 + NO2 + 2H2O
3Fe(NO3)2 + 4НNO3 р. = 3Fe(NO3)2 + NO + 2H2O
2Fe(OH)2 + 4H2SO4 к. = Fe2(SO4)3 + SO2 + 6H2O
5. Окислитель – серная кислота концентрированная, восстановитель – сульфиды,
йодиды и бромиды. При этом серная кислота восстанавливается до SO2, S или
H2S; сульфид ион S2—окисляется до серы S, SO2 или H2SO4; йодид ион до
йода I2, бромид ион до брома Br2 :
CuS + 4H2SO4 к. = CuSO4 + 4SO2 + 4H2O
H2S + H2SO4 к. = S↓ + SO2+ 2H2O
или H2S + H2SO4 к. = 4SO2 + 4H2O
8HI + H2SO4 к. = 4I2↓ + H2S + 4H2O
или 6HI + H2SO4 к.= 3I2↓ + S↓ + 4H2O
2HI + H2SO4 к. = I2↓ + SO2 + 2H2O
8KI + 9H2SO4 к. = I2↓ + H2S + 8KHSO4 + 4H2O
6KI + 2H2SO4 к. = 3I2↓ + H2S + 3K2SO4 +
4H2O
2HBr + H2SO4 к. = Br2 + SO2 + 2H2O
2KBr + 2H2SO4 к. = Br2 + SO2 + K2SO4 +
2H2O
6KBr + 2H2SO4 к. = 3Br2 + S↓ + 3K2SO4 +
2H2O
6. Железная окалина – Fe3O4, это смесь двух оксидов — FeO и Fe2O3. Поэтому при
взаимодействии с сильными окислителями она окисляется до соединения железа
(III) за счёт ионов Fe2+— восстановителей, а при взаимодействии с сильными
восстановителями восстанавливается до соединения железа (II) за счёт ионов
Fe3+- окислителей:
Fe3O4 + 10HNO3 концентр. = 3Fe(NO3)3 + NO2 + 5H2O
3Fе3O4 + 28HNO3 разбавл. = 9Fe(NO3)3 + NO + 14H2O
Fe3O4 + 8HI = 3FeI2 + I2↓ + 4H2O
При взаимодействии с большинством кислот происходит реакция обмена, получаются
две соли:
Fe3O4 + 8HCl = FeCl2 + 2FeCl3 + 4H2O
Fe3O4 + 4H2SO4 разбавл. = FeSO4 + Fe2(SO4)3 + 4H2O
5. Реакции диспропорционирования неметаллов— серы, фосфора, галогенов ( кроме
фтора.)
Сера +щелочь
(при кипячении)
3S + 6KOH = K2SO3 + 2K2S+ 3H2O.
S + K2SO3= K2S2O3
Фосфор + щелочь
(при кипячении)
4P + 3NaOH + 3H2O = PH3 + 3NaH2PO2
4H3PO3 = 3H3PO4+ PH3
Cl2 + KOH = KClO + KCl (на холоде);
3Cl2 + 6KOH = KClO3 + 5KCl + 3Н2О (при нагревании).
Гипобромид—ион существует только при температуре ниже 0 °С,
гипоиодит—ион в растворах не существует.
Хлор, бром, иод +
вода (н.у)
бром, иод + вода
(при нагревании)
2NO2 + H2O = HNO3 + HNO2,
При температуре выше 0 °С реакция протекает так:
3NO2 + H2O = 2HNO3 + NO.
4NO2 + 2H2O + О2 = 4HNO3.
2NO2 + 2КOН = КNO3 + КNO2+ H2O
4NO2 + 4КOН + О2 = 4КNO3 + 2 H2O
3KClO3 = KCl+ 2KClO3 (при нагревании)
KClO3 (при
нагревании с
катализатором —
оксид марганца 4
4KClO3 = KCl+ 3KClO4 (при нагревании с катализатором —оксид
марганца 4)
NH
4
NO
3
= N
2
O + 2H
2
O (около 200
o
С)
NH
4
NO
2
= N
2
+ 2H
2
O (60 – 70
o
С)
7. Вещества с двойственной природой.
1. Перекись водорода.
H
2
O
2
+ 2OH
–
–2e = O
2
+ 2H
2
O
2KMnO
4
+ 3H
2
O
2
= 2MnO
2
+ 3O
2
+ 2KOH + 2H
2
O.
2KMnO4 + 5H2O2 + 3H2SO4 = 2MnSO4+K2SO4+5O2 + 8H2O
2AgNO3 + H2O2 = 2Ag+O2+8H2O
Na2SO3 + H2O2 = Na2SO4 + H2O
Mn(OH)2 + H2O2 = MnO2 + 2H2O
Н2O2 + 2NaOH = Na2O2 + 2H2O
H
2
O
2
+ Ag
2
O = 2Ag + O
2
+ H
2
O
2. Нитриты щелочных металлов .
Нитриты могут выступать как окислителями, так и восстановителями:
KNО2 — восстановитель: KNО2 + Н2О2 = KNО3 + Н2O
3KNО2 + 2КМпO4 + Н2O = 3KNО3 + 2MnО2↓ + 2КОН
2KMnO
4
+ 5KNO
2
+ 3H
2
SO
4
= 2MnSO
4
+ 5KNO
3
+ K
2
SO
4
+ 3H
2
O,
KNО
2
— окислитель: 2KNО
2
+ 2KI + 2H
2
SO
4
= 2NO + I
2
+ 2K
2
SO
4
+ 2Н
2
O
8.Некоторые важнейшие восстановители и продукты их окисления
Преимущественно образующиеся продукты восстановления
S, SO
2
, SO
4
2-
(в зависимости от силы окислителя и условий реакции)
N
2
, NO (в зависимости от условий реакции)
Fe
3+
, Fe
2
O
3
(в зависимости от условий реакции)
Cu
2+
, CuO (в зависимости от условий реакции)
По теме: методические разработки, презентации и конспекты
Программа краткосрочного элективного курса предпрофильной подготовки учащихся (9 класс) «Окислительно-восстановительные реакции»
Рабочая программа для занятий по химии на уроках предпрофильной подготовки в 9 классе….
Окислительно-восстановительные реакции — электронная презентация для подготовки учащихся к выполнению задания С1 на ЕГЭ по химии
Данный материал может быть использован для подготовки учащихся к сдаче ЕГЭ по химии, а также может быть полезен для работы с детьми интересующимися предметом химия….
Методическая разработка урока химии в 11 классе в контексте подготовки к ЕГЭ по теме «ОКИСЛИТЕЛЬНО-ВОССТАНОВИТЕЛЬНЫЕ РЕАКЦИИ»
Урок построен на основе разбора заданий ЕГЭ по теме «Окислительно-восстановительные реакции», подобранных из контрольно-измерительных материалов ЕГЭ 2014 года и предыдущих лет, открытого банка з…
Окислительно-восстановительные реакции на примере перекиси водорода. Подготовка к ЕГЭ.
Теория и короткие научно-исследовательские работы с использованием перекиси водорода. Для опытов отобраны реакции, имеющие важное значение в химии, экологии, которые можно проводить для подготовки …
Окислительно-восстановительные реакции на примере перекиси водорода. Подготовка к ЕГЭ.
Теория и короткие научно-исследовательские работы с использованием перекиси водорода. Для опытов отобраны реакции, имеющие важное значение в химии, экологии, которые можно проводить для по…
Доклад «Подготовка к ЕГЭ. Окислительно-восстановительные реакции»
Окислительно-восстановительные реакции (ОВР) – химические реакции, в которых происходит изменение степеней окисления атомов, входящих в состав реагирующих веществ….
Тестовый материал для подготовки к ЕГЭ по теме «Степень окисления. Окислительно-восстановительные реакции»
В данном документе собрано большое количество тестовых заданий для проверки знаний обучающихся по теме «Степень окисления. Окислительно-восстановительные реакции» и подготовке к ЕГ…