Задание 13 Профильного ЕГЭ (Стереометрия) многие старшеклассники считают самой сложной задачей в варианте. И напрасно! Ничего особенного в ней нет. Просто начинать надо вовремя, лучше всего в десятом классе. И конечно, не с самых сложных задач. Действуем по порядку!
1. Подготовительный этап — решение задач по стереометрии из первой части ЕГЭ. Повторите формулы объемов и площадей поверхности многогранников и тел вращения. Посмотрите, как решаются типовые задачи.
2. Повторите необходимую теорию. Вот краткая Программа по стереометрии. Проверьте себя. Все ли вы знаете? В освоении стереометрии вам поможет наш ЕГЭ-Справочник.
3. Посмотрите, как правильно строить чертежи.
4. Выучили теорию? Применяем на практике — строим сечения.
5. Решаем простые задачи по стереометрии. И после этого — переходим к реальным задачам ЕГЭ.
6. Задачи 13 по стереометрии из Профильного ЕГЭ по математике обычно относятся к одному из типов. Смотрите нашу Классификацию задач по стереометрии и методы их решения.
Вот примеры простых подготовительных задач по стереометрии:
1. Высота правильной треугольной пирамиды равна 4, а угол между боковой гранью и плоскостью основания равен 60 градусов. Найдите расстояние от вершины основания до плоскости противолежащей ей боковой грани.
Посмотреть решение
2. В правильной шестиугольной призме , все ребра которой равны 1, точка G — середина ребра Найдите угол между прямой АG и плоскостью
Посмотреть решение
3. В правильной шестиугольной призме все рёбра равны 1. Найдите расстояние от точки В до плоскости
Посмотреть решение
4. В основании прямой призмы лежит ромб. Найти угол между прямыми и
Посмотреть решение
5. Точка E — середина ребра куба Найдите угол между прямыми и
Посмотреть решение
6. В правильной треугольной призме , все рёбра которой равны . Найдите расстояние между прямыми и
Посмотреть решение
7. Радиус основания конуса с вершиной P равен 6, а длина его образующей равна 9. На окружности основания конуса выбраны точки A и B, делящие окружность на две дуги, длины которых относятся как 1 : 5. Найдите площадь сечения конуса плоскостью ABP.
Посмотреть решение
А теперь — реальные задачи по стереометрии, встретившиеся выпускникам на Профильном ЕГЭ по математике.
8. Точки М и N — середины ребер соответственно АВ и СD треугольной пирамиды АВСD, О — точка пересечения медиан грани АВС.
а) Докажите, что прямая DO проходит через середину отрезка MN.
б) Найдите угол между прямыми MN и ВС, если АВСD — правильный тетраэдр.
Посмотреть решение
9. В цилиндре образующая перпендикулярна плоскости основания. На окружности одного из оснований цилиндра выбраны точки A, B и C, а на окружности другого основания — точка , причём — образующая цилиндра, а AC — диаметр основания. Известно, что
а) Докажите, что угол между прямыми и равен
б)Найдите объём цилиндра.
Посмотреть решение
10. В основании призмы лежит правильный треугольник, вершина проецируется в центр Q основания АВС.
а) Докажите, что плоскости и перпендикулярны.
б) Найдите угол между прямой и плоскостью если боковое ребро призмы равно стороне основания.
Посмотреть решение
11. Сечением прямоугольного параллелепипеда плоскостью , содержащей прямую и параллельной прямой АС, является ромб.
а) Докажите, что грань ABCD — квадрат.
б) Найдите угол между плоскостями и , если
Посмотреть решение
12. На ребрах АВ и ВС треугольной пирамиды АВСD отмечены точки М и N соответственно, причем
Точки P и Q — середины ребер DA и DC соответственно.
а) Докажите, что точки P, Q, M и N лежат в одной плоскости.
б) Найдите, в каком отношении эта плоскость делит объем пирамиды.
Посмотреть решение
Решаем задачи из сборника И. В. Ященко, 2020. Вариант 6, задача 14
7 лайфхаков для решения задач по стереометрии:
1. Задача по стереометрии не решается без хорошего чертежа! Чертеж строим по линейке, черной ручкой, на клетчатой бумаге, по правилам построения чертежей. На ЕГЭ можно и нужно пользоваться линейкой! А бланк будет в клеточку.
2. Все, что нужно, на чертеже должно быть хорошо видно! Если вам не понравился чертеж — не сидите над ним, бросьте и нарисуйте другой. Одного объемного чертежа будет недостаточно — понадобится один или несколько плоских.
3. Учимся записывать решение кратко. Вспомним основные обозначения
— точка M принадлежит плоскости АВС.
— прямые а и b пересекаются в точке О.
— прямые а и b параллельны.
— прямые а и b перпендикулярны.
4. Почти в каждой задаче по стереометрии встречаются «особенные треугольники»
Давайте вспомним:
— В прямоугольном равнобедренном треугольнике гипотенуза в раз больше катета.
— В треугольнике с углами 30, 60 и 90 градусов гипотенуза в 2 раза больше меньшего катета, а больший катет в раз больше меньшего.
5. Формула для площади прямоугольной проекции фигуры помогает найти угол между плоскостями. Здесь — угол между плоскостью фигуры и плоскостью проекции.
6. Метод объемов помогает найти расстояние от точки до плоскости. Надо выбрать треугольную пирамиду, записать ее объем двумя способами и найти из полученного уравнения нужное расстояние.
7. Сначала изучаем «классику». После этого, если время есть, можно браться и за координатный метод
Почему именно в таком порядке?
Конечно, координатный метод удобен. Однако большинство задач по стереометрии из вариантов ЕГЭ «заточены» под классику.
И если в решении задачи координатным методом вы сделаете арифметическую ошибку — можете потерять все баллы. Эксперт не будет разбираться, правильно ли вы посчитали определитель или смешанное произведение векторов. Потому что эти темы не входят в школьную программу, и составители «конструировали» задачи по стереометрии так, чтобы они решались обычными, «классическими» способами.
Спасибо за то, что пользуйтесь нашими материалами.
Информация на странице «Задание 13 Профильного ЕГЭ по математике. Стереометрия» подготовлена нашими авторами специально, чтобы помочь вам в освоении предмета и подготовке к экзаменам.
Чтобы успешно сдать нужные и поступить в высшее учебное заведение или техникум нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими статьями из разделов нашего сайта.
Публикация обновлена:
09.03.2023
«Различные способы решения заданий №13 ЕГЭ»
Заседание районного методического объединения
учителей математики «Профессиональная компетентность педагога как условие качественной подготовки обучающихся к ГИА»
Воробьева Ольга Александровна,
учитель математики СОШ №3
Анализируя результаты ЕГЭ по математике, нужно отметить, что многие учащиеся не приступают к выполнению заданий из группы С, а если выполняют, то часто допускают ошибки. Причин здесь много. Одна из них недостаточное количество самостоятельно прорешенных заданий, не анализируются допущенные ошибки, и как правило полученные знания поверхностные, так как в основном рассматриваются только однотипные задания, и методы решений только стандартные.
- Анализируя результаты ЕГЭ по математике, нужно отметить, что многие учащиеся не приступают к выполнению заданий из группы С, а если выполняют, то часто допускают ошибки. Причин здесь много. Одна из них недостаточное количество самостоятельно прорешенных заданий, не анализируются допущенные ошибки, и как правило полученные знания поверхностные, так как в основном рассматриваются только однотипные задания, и методы решений только стандартные.
В задании 13 ЕГЭ по математике профильного уровня требуется решить уравнение и осуществить отбор его корней, удовлетворяющих некоторому условию.
- В задании 13 ЕГЭ по математике профильного уровня требуется решить уравнение и осуществить отбор его корней, удовлетворяющих некоторому условию.
- Отбор корней является дополнительным пунктом условия задачи или логически вытекают из структуры самого уравнения. И опыт показывает, что данные ограничения как раз и представляют собой главную трудность для учащихся.
Решение тригонометрических уравнений
Для тригонометрических уравнений применимы общие методы решения (разложение на множители, замена переменной, функционально-графические) и равносильные преобразования общего характера.
1. Квадратные уравнения относительно тригонометрической функции
2. Однородные уравнения
3. Разложение на множители
4. Использование периодичности функций
Способы отбора корней
- Арифметический способ
- Алгебраический способ
- Геометрический способ
- Функционально-графический способ
1. Арифметический способ
- Непосредственная подстановка корней в уравнение и имеющиеся ограничения
- Перебор значений целочисленного параметра и вычисление корней
Подстановка корней в имеющиеся ограничения
Перебор значений целочисленного параметра и вычисление корней
2. Алгебраический способ
- Решение неравенства относительно неизвестного целочисленного параметра и вычисление корней
- Исследование уравнения с двумя целочисленными параметрами (применяется при решении системы уравнений)
Решение неравенства относительно параметра и вычисление корней
Исследование уравнения с двумя целочисленными параметрами
3. Геометрический способ
- Отбор корней тригонометрического уравнения на числовой окружности
- Отбор корней тригонометрического уравнения на числовой прямой
Отбор корней на числовой окружности
Отбор корней тригонометрического уравнения на числовой прямой
4. Функционально графический способ
Решить уравнение
«Мне приходится делить время между политикой и уравнениями. Однако, уравнения, по-моему, важнее. Политика только для данного момента, а уравнения будут существовать вечно.»
«Мне приходится делить время между политикой и уравнениями. Однако, уравнения, по-моему, важнее. Политика только для данного момента, а уравнения будут существовать вечно.»
Задание №13 ЕГЭ по математике профильного уровня
Уравнения
В 13 задании профильного уровня ЕГЭ по математике необходимо решить уравнение, но уже повышенного уровня сложности, так как с 13 задания начинаются задания бывшего уровня С, и данное задание можно назвать С1. Перейдем к рассмотрению примеров типовых заданий.
Разбор типовых вариантов заданий №13 ЕГЭ по математике профильного уровня
Первый вариант задания (демонстрационный вариант2018)
Алгоритм решения:
- При помощи тригонометрических формул приводим уравнение к виду, содержащему только одну тригонометрическую функцию.
- Заменяем эту функцию переменной t и решаем получившееся квадратное уравнение.
- Делаем обратную замену и решаем
Простейшие (Protozoa) — тип одноклеточных животных.
- Строим числовую ось.
- Наносим на нее корни.
- Отмечаем концы отрезка.
- Выбираем те значения, которые лежат внутри промежутка.
- Записываем ответ.
Решение:
сos2x = 1 – sin x.
Преобразуем левую часть уравнения, используя формулу косинуса двойного аргумента, с использованием синуса:
Получаем такое уравнение: 1−sin 2 x=1− sinx Теперь в уравнении присутствует только одна тригонометрическая функция sinx. 2. Вводим замену: t = sinx. Решаем получившееся квадратное уравнение:
3. Делаем обратную замену:
Решаем эти уравнения:
Следовательно, получаем два семейства решений. Пункт б):
1. В предыдущем пункте получено два семейства, в каждом из которых бесконечно много решений. Необходимо выяснить, какие из них, находятся в заданном промежутке. Для этого строим числовую прямую.
2. Наносим на нее корни обоих семейств, пометив их зеленым цветом (первого) и синим (второго).
3. Красным цветом помечаем концы промежутка. 4. В указанном промежутке расположены три
Корень — осевой, обычно подземный вегетативный орган высших сосудистых растений, обладающий неограниченным ростом в длину и положительным геотропизмом. Корень осуществляет закрепление растения в почве и обеспечивает поглощение и проведение воды с растворёнными минеральными веществами к стеблю и листьям.
Второй вариант задания (из Ященко, №1)
Алгоритм решения:
- Заменяем эту функцию переменной t и решаем получившееся квадратное уравнение.
- Делаем обратную замену и решаем простейшие показательные, потом тригонометрические уравнения.
- Строим координатную плоскость и окружность единичного радиуса на ней.
- Отмечаем точки, являющиеся концами отрезка.
- Выбираем те значения, которые лежат внутри отрезка.
- Записываем ответ.
Решение:
Вид — группа особей, сходных по морфолого-анатомическим, физиолого-экологическим, биохимическим и генетическим признакам, занимающих естественный ареал, способных свободно скрещиваться между собой и давать плодовитое потомство.
D=b 2 – c = 81 – 4∙4∙2 =49,
3. Возвращаемся к переменной х: Пункт б) 1. Строим координатную плоскость и окружность единичного радиуса на ней. 2. Отмечаем точки, являющиеся концами отрезка. 3. Выбираем те значения, которые лежат внутри отрезка.. Это корни . Их два. Ответ: а) б)
Третий вариант задания (из Ященко, № 6)
Алгоритм решения:
- При помощи тригонометрических формул приводим уравнение к виду, содержащему только одну тригонометрическую функцию.
- Заменяем эту функцию переменной t и решаем получившееся квадратное уравнение.
- Делаем обратную замену и решаем простейшие показательные, а затем тригонометрические уравнения.
- Решаем неравенства для каждого случая.
- Записываем ответ.
Уравнения, часть С
Теория к заданию 13 из ЕГЭ по математике (профильной)
Уравнения, часть $С$
Равенство, содержащее неизвестное число, обозначенное буквой, называется уравнением. Выражение, стоящее слева от знака равенства, называется левой частью уравнения, а выражение, стоящее справа, — правой частью уравнения.
Схема решения сложных уравнений:
- Перед решением уравнения надо для него записать область допустимых значений (ОДЗ).
- Решить уравнение.
- Выбрать из полученных корней уравнения то, которые удовлетворяют ОДЗ.
ОДЗ различных выражений (под выражением будем понимать буквенно — числовую запись):
1. Выражение, стоящее в знаменателе, не должно равняться нулю.
2. Подкоренное выражение, должно быть не отрицательным.
3. Подкоренное выражение, стоящее в знаменателе, должно быть положительным.
4. У логарифма: подлогарифмическое выражение должно быть положительным; основание должно быть положительным; основание не может равняться единице.
Логарифмические уравнения
Для решения логарифмических уравнений необходимо знать свойства логарифмов: все свойства логарифмов мы будем рассматривать для $a > 0, a≠ 1, b> 0, c> 0, m$ – любое действительное число.
1. Для любых действительных чисел $m$ и $n$ справедливы равенства:
2. Логарифм произведения равен сумме логарифмов по тому же основанию от каждого множителя.
3. Логарифм частного равен разности логарифмов от числителя и знаменателя по тему же основанию
4. При умножении двух логарифмов можно поменять местами их основания
6. Формула перехода к новому основанию
7. В частности, если необходимо поменять местами основание и подлогарифмическое выражение
Можно выделить несколько основных видов логарифмических уравнений:
Представим обе части уравнения в виде логарифма по основанию $2$
Если логарифмы по одинаковому основанию равны, то подлогарифмические выражения тоже равны.
Т.к. основания одинаковые, то приравниваем подлогарифмические выражения
Перенесем все слагаемые в левую часть уравнения и приводим подобные слагаемые
Проверим найденные корни по условиям $table< x^2-3x-5>0; 7-2x>0;$
При подстановке во второе неравенство корень $х=4$ не удовлетворяет условию, следовательно, он посторонний корень
- Метод замены переменной.
В данном методе надо:
Решите уравнение $log_<2>√x+2log_<√x>2-3=0$
1. Запишем ОДЗ уравнения:
$table< х>0,text»так как стоит под знаком корня и логарифма»; √х≠1→х≠1;$
2. Сделаем логарифмы по основанию $2$, для этого воспользуемся во втором слагаемом правилом перехода к новому основанию:
3. Далее сделаем замену переменной $log_<2>√x=t$
4. Получим дробно — рациональное уравнение относительно переменной t
Приведем все слагаемые к общему знаменателю $t$.
Дробь равна нулю, когда числитель равен нулю, а знаменатель не равен нулю.
5. Решим полученное квадратное уравнение по теореме Виета:
6. Вернемся в п.3, сделаем обратную замену и получим два простых логарифмических уравнения:
Прологарифмируем правые части уравнений
Приравняем подлогарифмические выражения
Чтобы избавиться от корня, возведем обе части уравнения в квадрат
7. Подставим корни логарифмического уравнения в п.1 и проверим условие ОДЗ.
Первый корень удовлетворяет ОДЗ.
$<table 16 >0; 16≠1;$ Второй корень тоже удовлетворяет ОДЗ.
- Уравнения вида $log_x+log_x+c=0$. Такие уравнения решаются способом введения новой переменной и переходом к обычному квадратному уравнению. После того, как корни уравнения будут найдены, надо отобрать их с учетом ОДЗ.
Дробно рациональные уравнения
- Если дробь равна нулю, то числитель равен нулю, а знаменатель не равен нулю.
- Если хотя бы в одной части рационального уравнения содержится дробь, то уравнение называется дробно-рациональным.
Чтобы решить дробно рациональное уравнение, необходимо:
- Найти значения переменной, при которых уравнение не имеет смысл (ОДЗ)
- Найти общий знаменатель дробей, входящих в уравнение;
- Умножить обе части уравнения на общий знаменатель;
- Решить получившееся целое уравнение;
- Исключить из его корней те, которые не удовлетворяют условию ОДЗ.
- Если в уравнении участвуют две дроби и числители их равные выражения, то знаменатели можно приравнять друг к другу и решить полученное уравнение, не обращая внимание на числители. НО учитывая ОДЗ всего первоначального уравнения.
Показательные уравнения
Показательными называют такие уравнения, в которых неизвестное содержится в показателе степени.
При решении показательных уравнений используются свойства степеней, вспомним некоторые из них:
1. При умножении степеней с одинаковыми основаниями основание остается прежним, а показатели складываются.
2. При делении степеней с одинаковыми основаниями основание остается прежним, а показатели вычитаются
3. При возведении степени в степень основание остается прежним, а показатели перемножаются
4. При возведении в степень произведения в эту степень возводится каждый множитель
5. При возведении в степень дроби в эту степень возводиться числитель и знаменатель
6. При возведении любого основания в нулевой показатель степени результат равен единице
7. Основание в любом отрицательном показателе степени можно представить в виде основания в таком же положительном показателе степени, изменив положение основания относительно черты дроби
8. Радикал (корень) можно представить в виде степени с дробным показателем
Виды показательных уравнений:
1. Простые показательные уравнения:
а) Вида $a^=a^$, где $а >0, a≠1, x$ — неизвестное. Для решения таких уравнений воспользуемся свойством степеней: степени с одинаковым основанием ($а >0, a≠1$) равны только тогда, когда равны их показатели.
b) Уравнение вида $a^=b, b>0$
Для решения таких уравнений надо обе части прологарифмировать по основанию $a$, получается
2. Метод уравнивания оснований.
3. Метод разложения на множители и замены переменной.
- Для данного метода во всем уравнении по свойству степеней надо преобразовать степени к одному виду $a^$.
- Сделать замену переменной $a^=t, t > 0$.
- Получаем рациональное уравнение, которое необходимо решить путем разложения на множители выражения.
- Делаем обратные замену с учетом того, что $t > 0$. Получаем простейшее показательное уравнение $a^=t$, решаем его и результат записываем в ответ.
По свойству степеней преобразуем выражение так, чтобы получилась степень 2^x.
Сделаем замену переменной $2^x=t; t>0$
Получаем кубическое уравнение вида
Умножим все уравнение на $2$, чтобы избавиться от знаменателей
Разложим левую часть уравнения методом группировки
Вынесем из первой скобки общий множитель $2$, из второй $7t$
Дополнительно в первой скобке видим формулу разность кубов
Далее скобку $(t-1)$ как общий множитель вынесем вперед
Произведение равно нулю, когда хотя бы один из множителей равен нулю
Решим первое уравнение
Решим второе уравнение через дискриминант
Получили три корня, далее делаем обратную замену и получаем три простых показательных уравнения
4. Метод преобразования в квадратное уравнение
- Имеем уравнение вида $А·a^<2f(x)>+В·a^+С=0$, где $А, В$ и $С$ — коэффициенты.
- Делаем замену $a^=t, t > 0$.
- Получается квадратное уравнение вида $A·t^2+B·t+С=0$. Решаем полученное уравнение.
- Делаем обратную замену с учетом того, что $t > 0$. Получаем простейшее показательное уравнение $a^=t$, решаем его и результат записываем в ответ.
Способы разложения на множители:
- Вынесение общего множителя за скобки.
Чтобы разложить многочлен на множители путем вынесения за скобки общего множителя надо:
- Определить общий множитель.
- Разделить на него данный многочлен.
- Записать произведение общего множителя и полученного частного (заключив это частное в скобки).
Разложить на множители многочлен: $10a^<3>b-8a^<2>b^2+2a$.
Общий множитель у данного многочлена $2а$, так как на $2$ и на «а» делятся все члены. Далее найдем частное от деления исходного многочлена на «2а», получаем:
Это и есть конечный результат разложения на множители.
Применение формул сокращенного умножения
1. Квадрат суммы раскладывается на квадрат первого числа плюс удвоенное произведение первого числа на второе число и плюс квадрат второго числа.
2. Квадрат разности раскладывается на квадрат первого числа минус удвоенное произведение первого числа на второе и плюс квадрат второго числа.
3. Разность квадратов раскладывается на произведение разности чисел и их сумму.
4. Куб суммы равен кубу первого числа плюс утроенное произведение квадрата первого на второе число плюс утроенное произведение первого на квадрат второго числа плюс куб второго числа.
5. Куб разности равен кубу первого числа минус утроенное произведение квадрата первого на второе число плюс утроенное произведение первого на квадрат второго числа и минус куб второго числа.
6. Сумма кубов равна произведению суммы чисел на неполный квадрат разности.
7. Разность кубов равна произведению разности чисел на неполный квадрат суммы.
Метод группировки
Методом группировки удобно пользоваться, когда на множители необходимо разложить многочлен с четным количеством слагаемых. В данном способе необходимо собрать слагаемые по группам и вынести из каждой группы общий множитель за скобку. У нескольких групп после вынесения в скобках должны получиться одинаковые выражения, далее эту скобку как общий множитель выносим вперед и умножаем на скобку полученного частного.
Разложить многочлен на множители $2a^3-a^2+4a-2$
Для разложения данного многочлена применим метод группировки слагаемых, для этого сгруппируем первые два и последние два слагаемых, при этом важно правильно поставить знак перед второй группировкой, мы поставим знак + и поэтому в скобках запишем слагаемые со своими знаками.
Далее из каждой группы вынесем общий множитель
После вынесения общих множителей получили пару одинаковых скобок. Теперь данную скобку выносим как общий множитель.
Произведение данных скобок — это конечный результат разложения на множители.
С помощью формулы квадратного трехчлена.
Если имеется квадратный трехчлен вида $ax^2+bx+c$, то его можно разложить по формуле
$ax^2+bx+c=a(x-x_1)(x-x_2)$, где $x_1$ и $x_2$ — корни квадратного трехчлена
Задание 13 ЕГЭ-2021. Решение уравнений
1. а) Решите уравнение
б) Найдите все его корни на отрезке
Решим второе уравнение;
б) Отберем корни на отрезке с помощью единичной окружности.
Отметим на единичной окружности отрезок и найдем серии решений;
Видим, что указанному отрезку принадлежат точки
2. а) Решите уравнение
б) Найдите все корни на отрезке
По формуле синуса двойного угла,
Вынесем за скобки
а так как получим:
Произведение двух множителей равно нулю тогда и только тогда, когда хотя бы один из множителей равен нулю.
б) Найдем корни на промежутке
1) Рассмотрим первую серию решений:
значит, из первой серии решений в указанный промежуток попадают 2 корня и
2) Рассмотрим вторую серию решений:
разделим все части неравенства на 2
Значит, из второй серии решений получаем ещё один корень
3) Рассмотрим третью серию решений:
из третьей серии получаем четвертый корень
3. а) Решить уравнение
б) Найти корни на
Применим формулы приведения:
Применим формулу синуса двойного угла:
уравнение примет вид:
б) Найдем корни на отрезке с помощью двойных неравенств.
1) Серия решений
k = 1, значит, на данном промежутке из этой серии находится только 1 корень
2) Серия решений
значит, из этой серии на данном промежутке корней нет.
3) Серия решений
значит, из этой серии на данном промежутке лежат 2 корня
Таким образом, на заданном промежутке мы нашли 3 корня:
4. (Резервный день)
а) Решите уравнение
б) Укажите корни этого уравнения, принадлежащие отрезку
По формуле приведения,
б) Найдем корни на отрезке с помощью единичной окружности. Видим, что указанному отрезку принадлежат точки
Это полезно
Узнаете, чем отличаются официально-деловой, публицистический, научный, художественный и разговорный стили.
Наш онлайн-курс по Физике
Все темы ЕГЭ с нуля
Можно не только читать, но и смотреть новые объяснения и разборы на нашем YouTube канале!
Пожалуйста, подпишитесь на канал и нажмите колокольчик, чтобы не пропустить новые видео
Задавайте свои вопросы в комментариях и оставляйте задачи, которые вы хотите, чтобы мы разобрали.
Мы обязательно ответим!
Мы заметили, что Вы регулярно пользуетесь нашими материалами для подготовки по физике.
Результат будет выше, если готовиться по отработанной методике.
У нас есть онлайн-курсы как для абитуриентов, так и для преподавателей.
источники:
http://examer.ru/ege_po_matematike/teoriya/logarifmicheskie_i_pokazatelnue_uravneniya
http://ege-study.ru/ru/ege/podgotovka/matematika/ege-2021-reshenie-zadachi-13/
«Использование метода координат в пространстве для решения задачи №13 Единого государственного экзамена»
Как всем известно, для учеников старших классов самой насущной проблемой является Единый государственный экзамен. Причём, тех учеников, которые с уверенностью могут сказать: «Я могу решить 13 или 16 задачу», всего единицы. Да и те, кто действительно могут решить их, об этом громко не заявляют.
Анализируя данную проблему, можно сказать, что большая часть выпускников ограничивается заданием 13 пункта а). А при решении пункта б) уже возникают проблемы.
Как вы знаете, в задании 13 чаще всего требуется найти:
1) угол между двумя скрещивающимися прямыми, между прямой и плоскостью, между двумя плоскостями;
2) расстояние между двумя скрещивающимися прямыми, расстояние от точки до прямой, от точки до плоскости.
В своей работе я предлагаю использовать один из универсальных приёмов решения геометрических задач – метод координат в пространстве. Мы уже хорошо знакомы с векторами, координатами и их свойствами. Цель моей работы: научиться применять знания для решения задач стереометрии.
Однако формальное применение координатно-векторного метода может значительно затруднить решение даже самой простой задачи. Поэтому я привожу несколько общих указаний, которые помогут сориентироваться и решить, можно ли в данной задаче использовать векторы и координаты.
Во-первых, естественно, нужно применять координатный или векторный метод, если в условиях задачи говорится о векторах или координатах;
Во-вторых, очень полезно применить координатный метод, если из условия задачи не понятно, как расположены те или иные точки;
В-третьих, что для нас особенно важно, полезно и удобно применять координаты и векторы для вычисления углов и расстояний;
В-четвертых, вообще, часто, когда не видно ни каких подходов к решению задачи, можно попробовать применить координатный метод. Он не обязательно даст решение, но поможет разобраться с условиями и даст толчок к поиску другого решения.
2.1. Кратко из теории4
Система координат — комплекс определений, реализующий метод координат, то есть способ определять положение точки или тела с помощью чисел или других символов. Совокупность чисел, определяющих положение конкретной точки, называется координатами этой точки. Координаты на плоскости и в пространстве можно вводить бесконечным числом разных способов. Решая ту или иную математическую или физическую задачу методом координат, можно использовать различные координатные системы, выбирая ту из них, в которой задача решается проще или удобнее в данном конкретном случае. Существует множество систем координат: аффинная, полярная, биполярная, коническая, параболическая, проективная, сферическая, цилиндрическая и др. Наиболее используемая из них — прямоугольная система координат (также известная как декартова система координат). Ею мы и будем пользоваться для решения задач.
Прямоугольная (декартова) система координат – совокупность точки О (называемой началом координат), единицы измерения и трёх попарно перпендикулярных прямых Ox, Oy и Oz (называемых осями координат: Ox – ось абсцисс, Oy – ось ординат, Oz – ось аппликат), на каждой из которых указано направление положительного отсчёта. Плоскости хОу, уОz и zOx называют координатными плоскостями. Каждой точке пространства ставится в соответствие тройка чисел, называемых её координатами.
Применение метода координат даёт нам множество возможностей для решения задач.
- Нахождение расстояния между двумя точками, заданными своими координатами.
где d=AB, A(x1; y1; z1), B(x2; y2; z2)
2. Нахождение координаты середины С(x; y; z) отрезка АВ, A(x1; y1; z1), B(x2; y2; z2). , ,
3. Нахождение косинуса, а, следовательно, и самого угла, между двумя векторами, заданными своими координатами.
где .
4. Нахождение угла между плоскостями путем составления уравнения каждой плоскости Ах+Ву+Сz+D=0 и определения угла между нормалями к плоскостям. Нормаль n при этом имеет координаты .
5.Нахождение расстояния от произвольной точки М0(х0, у0, z0) до плоскости Ах+Ву+Сz+D=0 равно.
6. Координаты x, y, z точки М, которая делит отрезок , ограниченный точками (, , ) и (, , ), в отношении , определяется по формулам
, , .
2.2. Нахождение угла между скрещивающимися прямыми
- Углом между скрещивающимися прямыми называется угол между двумя прямыми, параллельными им и проходящими через произвольную точку.
- 0˚<(a,α)<90˚.
При нахождении угла между прямыми используют:
формулу или в координатной форме
для нахождения угла φ между прямыми m и l, если векторы и параллельны соотвественно этим прямым; в частности, для того чтобы прямые m и l были перпендикулярны, необходимо и достаточно, чтобы или .
Пример 1.5 Сторона основания правильной четырехугольной призмы ABCDA1B1C1 D1 равна 2, высота — 4. Точка E — середина отрезка CD, точка F — середина отрезка AD. Найдите угол между прямыми CF и B1E.
х
у
z
B1
A1
C1
D1
B C
A E
F D
Решение.
Для начала сделаем чертёж и проанализируем задачу.
Прямые CF и B1E являются скрещивающимися, поэтому, чтобы найти угол между ними геометрическим способом, было бы необходимо параллельно перенести одну из прямых так, чтобы обе прямые лежали на одной плоскости. При этом было бы довольно сложно определить, в каком соотношении они будут пересекаться, и решить эту задачу поэтапно-вычислительным методом.
Я предлагаю поместить параллелепипед в прямоугольную систему координат, как показано на рисунке, и найти искомый угол как угол между векторами.
Выпишем координаты точек B1, E, C, F в этой системе координат:
B1 (0; 0; 4), E(1; 2; 0), C(0; 2; 0), F (2; 1; 0).
Тогда {2; -1; 0}, {1; 2; -4}. Найдём угол между этими векторами по формуле:
То есть искомый угол α=90˚.
Как видите, задачу, которую довольно-таки сложно решить геометрическим путём, можно быстро и красиво решить аналитически.
Ответ: 90˚.
Пример 2.2 Точка О лежит на ребре DD1 куба ABCDA1B1C1 D1, точка Р является точкой пересечения диагоналей грани ABCD. DO : DD1 = 1 : 5. Найдите косинус угла между прямой ОР и прямой, содержащей диагональ куба, выходящую из вершины С.
Решение.
Поместим куб в прямоугольную систему координат, как показано на рисунке. Условно обозначим грани куба за единицу. Если обозначить её какой-либо буквой, она всё равно сократится. Определим координаты точек Р, О, С и А1:
О
Р
Р(0,5; 0,5; 0), О(1; 1; 0,5), С(0; 1; 0), А1(1; 0; 1).
Отсюда .
Ответ: .
Пример 3.5 Основанием пирамиды SABC является равносторонний треугольник ABC, сторона которого равна . Боковое ребро SC перпендикулярно плоскости основания и равно 1. Найдите угол между скрещивающимися прямыми, одна из которых проходит через точку S и и середину ребра DC, а другая проходит через точку C и середину ребра AB.
Решение.
Поместим пирамиду в декартову систему координат. Найдём координаты точек S, L, C и M: S(0;0;1), L(0;;0), C(0;0;0). Чтобы найти координаты точки М, воспользуемся геометрией: в равностороннем треугольнике все углы равны 60˚, а т.М, которая делит сторону АВ пополам, является не только медианой, но и биссектрисой, поэтому .
Для равностороннего треугольника , х(СМ)=СМ·соs60˚=, у(СМ)=СМ·соs30˚=, {}, SL{0;;-1}
Решая аналогично предыдущим примерам, находим, что .
Ответ: 45˚.
2.3. Нахождение угла между прямой и плоскостью
- Углом между плоскостью и не перпендикулярной ей прямой называется угол между этой прямой и её проекцией на данную плоскость.
- 0˚<(a,α)<90˚.
Угол между прямой l и плоскостью α можно вычислить:
по формуле или в координатах , где
— вектор нормали к плоскости α,
— направляющий векор прямой l;
Пример 4.5 В прямоугольном параллелепипеде ABCDA1B1C1D1 рёбра АВ и АА1 равны 1, а ребро АD=2. Точка Е – середина ребра В1С1. Найдите угол между прямой ВЕ и плоскостью АВ1С.
Решение. Для решения этой задачи необходимо воспользоваться уравнением плоскости, имеющим общий вид
ах+bу+cz+d=0, где a, b и c – координаты нормали к плоскости.
Чтобы составить это уравнение, необходимо определить координаты трёх точек, лежащих в данной плоскости: А(1; 0; 0), В1(0;0;1), С(0;2;0).
Решая систему
находим коэффициенты а, b и с уравнения ах+bу+cz+d=0: а= -d, b=,
c=-d. Таким образом, уравнение примет вид или, после упрощения, 2х+у+2z-2=0. Значит нормаль n к этой плоскости имеет координаты .
Длину вектора легко найти геометрически: . Но его координаты нам всё равно необходимы. Из простых вычислений находим, что .
Найдем угол между вектором и нормалью к плоскости по формуле скалярного произведения векторов:
.
Ответ: 45˚
2.4. Нахождение угла между двумя плоскостями
- Двугранный угол, образованный полуплоскостями измеряется величиной его линейного угла, получаемого при пересечении двугранного угла плоскостью, перпендикулярной его ребру.
- Величина двугранного угла принадлежит промежутку(0˚; 180˚)
- Величина угла между пересекающимися плоскостями принадлежит промежутку (0˚; 90˚].
- Угол между двумя параллельными плоскостями считается равным 0˚.
Угол между двумя пересекающимися плоскостями можно вычислить:
как угол между нормалями по формуле или в координатной форме , где — вектор нормали плоскости А1х+В1у+С1z+D1=0, — вектор нормали плоскости A2x+B2y+C2z+D2=0.
Пример 5.1 В единичном кубе АВСDA1В1С1D1 найдите угол между плоскостями АD1 Е и D1FC, где точки Е и F-середины ребер А1В1 и В1С1 соответственно.
Решение.
Введём прямоугольную систему координат. Тогда А(0;0;0), С(1;1;0), D1(1;0;1), E(0;0,5;1), F(0,5;1;1).
1) Решая систему
, составляем уравнение плоскости (АD1E): x+2y-z=0.
2) плоскость CFD1:
отсюда находим уравнение 2x+y+z-3=0. Найдём искомый угол как угол между нормалями плоскостей.
, , откуда φ=60˚ Ответ: 60˚
2.5. Нахождение расстояния между двумя точками.
Расстояние между точками А и В можно вычислить:
по формуле ,
где A(x1; y1; z1), B(x2; y2; z2);
по формуле .
Пример 6.6 В основании пирамиды SABCD лежит ромб со стороной 2 и острым углом в 60˚. Боковое ребро SA перпендикулярно основанию пирамиды и равно 4. Найдите расстояние от середины Н ребра SD и серединой М ребра ВС.
Решение. Поместим пирамиду в прямоугольную систему координат, как показано на рисунке.
Найдём координаты точки Н как координаты середины отрезка SD: S(0; 0; 4), D(0; 2; 0).
Чтобы найти координаты точек В и С, найдём координаты их проекций на оси. АВх=ACx=2·cos30˚=, ABy=ACу–2=2·cos60˚=1.
Отсюда В(; 1; 0), С(; 3;0). Тогда координаты точки М равняются:
.
Теперь находим расстояние между точками, заданными своими координатами:
Ответ: .
Пример 7.1 В единичном кубе АВСDA1В1С1D1 точки Е и К – середины ребер АА1 и СD соответственно, а точка М расположена на диагонали В1D1 так, что В1М = 2МD1. Найдите расстояние между точками Q и L, где Q – середина отрезка ЕМ, а L – точка отрезка МК такая, что ML=2LK
Решение. Введём декартову систему координат. E(1;0;0,5), K(0,5;1,0), В1(0;0;1), D1(1;1;1). Чтобы вычислить координаты т.М, воспользуемся формулой для нахождения координат точки, которая делит отрезок B1D1 в отношении λ=2:1:
, , .
Аналогично находим координаты точки L:
.
Координаты точки Q находим по формуле координат середины отрезка:
, , .
Ответ: .
2.6. Нахождение расстояния от точки до плоскости.
Расстояние от точки до плоскости , не содержащей эту точку , есть длина отрезка перпендикуляра , опущенного из этой точки на плоскость .
Расстояние между прямой и параллельной ей плоскостью равно длине их общего перпендикуляра.
Расстояние между прямой и параллельной ей плоскостью равно расстоянию от любой точки этой прямой до плоскости.
Расстояние между двумя параллельными плоскостями равно длине их общего перпендикуляра.
Расстояние между двумя параллельными плоскостями равно расстоянию между точкой одной из этих плоскостей и другой плоскостью.
Расстояние от точки М до плоскости α
вычисляется по формуле , где М(х0;у0;z0), плоскость α задана уравнением ax+by+cz+d=0;
Пример 8.2 В кубе АВСDA1B1C1D1 проведена диагональ B1D. В каком отношении, считая от вершины B1, плоскость А1BC1 делит диагональ B1D?
Решение. Составим уравнение плоскости А1BC1 и найдём расстояние от этой плоскости до каждой из точек B1 и D. Пусть l – ребро куба.
В(0;0;0), А1(l;0;l), С1(0;l;l).
Решив систему определяем, что уравнение плоскости имеет вид: x+y–z=0 → а=1, b=1, c= –1. B1(0;0;1), D(1;1;0).
Теперь найдём расстояние от каждой точки до плоскости по формуле
:
Ответ: 2:1.
Пример 9.5 Основание прямой призмы АВСА1В1С1 – равнобедренный треугольник АВС, основание АС и высота ВD которого равны 4. Боковое ребро равно 2. Через середину К отрезка В1С проведена плоскость, перпендикулярная к этому отрезку. Найдите расстояние от вершины А до этой плоскости.
Решение. Выберем систему координат как показано на рисунке и выпишем координаты вершин данной призмы и точки К в этой системе координат: А(0;–2;0), В(0;0;0), С(0;2;0), В1(4;0;2), К(2;1;1). Тогда . Этот вектор перпендикулярен плоскости, значит, он является его нормалью. К тому же плоскость проходит через точку К. То есть уравнение плоскости имеет вид –2(x–2)+2(у–1)–2(z–1)=0 или, после упрощения, 2x–y+z-4=0.
Теперь находим расстояние от т.А(0;-2;0) до плоскости:
. Ответ: .
Заключение
Представляю вашему вниманию свою работу, которой я занималась в течение последних месяцев: я искала формулы, подбирала для каждого случая именно те задачи, геометрическое решение которых перегружено формулами, редко используемыми теоремами, сложными преобразованиями и вычислениями.
Конечно, эту работу нельзя считать авторитетным пособием по решению задания 13 ЕГЭ, так как в ней рассмотрено лишь небольшое количество задач, и ограниченное количество приёмов.
Конечно, я не настаиваю на том, что все задачи стереометрии надо решать методом координат, иногда это просто нецелесообразно. Но согласитесь, настолько простое и изящное решение не только освободит время для решения других заданий, но и будет высоко оцениваться проверяющим учителем.
Список использованной литературы
1. Самое полное издание типовых вариантов реальных заданий ЕГЭ 2010: Математика /авт.-сост . И.Р.Высоцкий, Д.Д.Гущин, П.И.Захаров и др.; под ред. А.Л.Семенова, И.В.Ященко. – М.: АСТ: Астрель , 2009. – (ФИПИ).
2. Математика. Подготовка к ЕГЭ-2011: учебно-методическое пособие/ под ред. Ф.Ф.Лысенко, С.Ю.Калабухова. – Ростов-на-Дону: Легион – М., 2010.
3. Единый государственный экзамен 2010. Математика. Универсальные материалы для подготовки учащихся / ФИПИ – М.: Интеллект -Центр, 2010.
4. Большая универсальная школьная энциклопедия/ гл. редактор М.Аксёнова – М.: Мир энциклопедий Аванта+, Астрель, 2008.
5. www.fmclass.ru – образовательный портал «Физ/мат класс»
6. www.mathege.ru – открытый банк заданий.
7. www.problems.ru – каталог задач.
- ЕГЭ по математике профиль
Вебинар: задание 13 по математике
Лектор: Кулабухов Сергей Юрьевич, кандидат физико-математических наук, заместитель генерального директора издательства «Легион» по научно-методической работе, автор пособий по математике.
Основные типы заданий, разбор возможных затруднений при их выполнении.
→ презентация к видео
Из спецификации:
Задание 13 — Уметь решать уравнения и неравенства
Уровень сложности — повышенный
Максимальный балл — 2
Коды проверяемых элементов содержания (по кодификатору) — 2.1, 2.2
Примерное время выполнения задания выпускником, изучавшим математику на профильном уровне, в минутах — 10
Примерное время выполнения задания выпускником, изучавшим математику на базовом уровне, в минутах — 20
Связанные страницы:
Уравнения
В 13 задании профильного уровня ЕГЭ по математике необходимо решить уравнение, но уже повышенного уровня сложности, так как с 13 задания начинаются задания бывшего уровня С, и данное задание можно назвать С1. Перейдем к рассмотрению примеров типовых заданий.
Разбор типовых вариантов заданий №13 ЕГЭ по математике профильного уровня
Первый вариант задания (демонстрационный вариант2018)
[su_note note_color=”#defae6″]
а) Решите уравнение cos2x = 1-cos(п/2-x)
б) Найдите все корни этого уравнения, принадлежащие промежутку [-5п/2;-п].
[/su_note]
Алгоритм решения:
Пункт а)
- При помощи тригонометрических формул приводим уравнение к виду, содержащему только одну тригонометрическую функцию.
- Заменяем эту функцию переменной t и решаем получившееся квадратное уравнение.
- Делаем обратную замену и решаем простейшие тригонометрические уравнения.
Пункт б)
- Строим числовую ось.
- Наносим на нее корни.
- Отмечаем концы отрезка.
- Выбираем те значения, которые лежат внутри промежутка.
- Записываем ответ.
Решение:
Пункт а)
1. Преобразуем правую часть равенства, используя формулу приведения cos(π/2−x)=sinx. Имеем:
сos2x = 1 – sin x.
Преобразуем левую часть уравнения, используя формулу косинуса двойного аргумента, с использованием синуса:
cos(2х)=1−2sin2 х
Получаем такое уравнение: 1−sin 2x=1− sinx
Теперь в уравнении присутствует только одна тригонометрическая функция sinx.
2. Вводим замену: t = sinx. Решаем получившееся квадратное уравнение:
1−2t2=1−t,
−2t2+t=0,
t (−2t+1)=0,
t = 0 или -2t + 1 = 0,
t1 = 0 t2 = 1/2.
3. Делаем обратную замену:
sin x = 0 или sin x = ½
Решаем эти уравнения:
sin x =0↔x=πn, nЄZ
sin(x)=1/2↔x= (-1)n∙(π/6)+ πn, nЄZ.
Следовательно, получаем два семейства решений.
Пункт б):
1. В предыдущем пункте получено два семейства, в каждом из которых бесконечно много решений. Необходимо выяснить, какие из них, находятся в заданном промежутке. Для этого строим числовую прямую.
2. Наносим на нее корни обоих семейств, пометив их зеленым цветом (первого) и синим (второго).
3. Красным цветом помечаем концы промежутка.
4. В указанном промежутке расположены три корня что три корня: −2π;−11π/6 и −7π/6.
Ответ:
а) πn, nЄZ; (-1)n∙(π/6)+ πn, nЄZ
б) −2π;−11π6;−7π6
Второй вариант задания (из Ященко, №1)
[su_note note_color=”#defae6″]
а) Решите уравнение .
б) Найдите все корни этого уравнения, принадлежащие отрезку .
[/su_note]
Алгоритм решения:
Пункт а)
- Заменяем эту функцию переменной t и решаем получившееся квадратное уравнение.
- Делаем обратную замену и решаем простейшие показательные, потом тригонометрические уравнения.
Пункт б)
- Строим координатную плоскость и окружность единичного радиуса на ней.
- Отмечаем точки, являющиеся концами отрезка.
- Выбираем те значения, которые лежат внутри отрезка.
- Записываем ответ.
Решение:
Пункт а)
1. Вводим замену t = 4cos х. тогда уравнение примет вид:
Решаем квадратное уравнение с помощью формул дискриминанта и корней:
D=b2 – c = 81 – 4∙4∙2 =49,
t1= (9 – 7)/8= ¼, t2 = (9+7)/8=2.
3. Возвращаемся к переменной х:
Пункт б)
1. Строим координатную плоскость и окружность единичного радиуса на ней.
2. Отмечаем точки, являющиеся концами отрезка.
3. Выбираем те значения, которые лежат внутри отрезка..
Это корни . Их два.
Ответ:
а)
б)
Третий вариант задания (из Ященко, № 6)
[su_note note_color=”#defae6″]
а) Решите уравнение .
б) Найдите все корни этого уравнения, принадлежащие отрезку .
[/su_note]
Алгоритм решения:
Пункт а)
- При помощи тригонометрических формул приводим уравнение к виду, содержащему только одну тригонометрическую функцию.
- Заменяем эту функцию переменной t и решаем получившееся квадратное уравнение.
- Делаем обратную замену и решаем простейшие показательные, а затем тригонометрические уравнения.
Пункт б)
- Решаем неравенства для каждого случая.
- Записываем ответ.
Решение:
а)
1. По формулам приведения .
2. Тогда данное уравнение примет вид:
3. Вводим замену . Получаем:
Решаем обычное квадратное уравнение с помощью формул дискриминанта и корней:
Оба корня положительны.
3. Возвращаемся к переменной х:
Получили четыре семейства корней. Их бесконечно много.
б)
4. С помощью неравенств находим те корни, которые принадлежащие отрезку :
Для корней
Получаем одно значение .
Для корней ни одного значения корней нет.
Для корней есть одно значение ;
Для корней есть одно значение .
Ответ:
а) ; ;
б) .
Даниил Романович | Просмотров: 16k