- Треугольник
- Четырехугольники
- Окружность и круг
- Призма
- Пирамида
- Усеченная пирамида
- Цилиндр
- Конус
- Усеченный конус
- Сфера и шар
1. Формулы сокращённого умножения
Наверх
2. Модуль числа
Определение:
Основные свойства модуля:
Наверх
3. Степень с действительным показателем
Свойства степени с действительным показателем
Пусть Тогда верны следующие соотношения:
Наверх
4. Корень n-ой степени из числа
Корнем n-ой степени из числа a называется число, n-ая степень которого равна a.
Арифметическим корнем четной степени n из неотрицательного числа a называется неотрицательное число, n-ая степень которого равна a.
Основные свойства арифметического корня:
Наверх
5. Логарифмы
Определение логарифма:
Основное логарифмическое тождество:
Основные свойства логарифмов
Пусть Тогда верны следующие соотношения:
Наверх
6. Арифметическая прогрессия
Формула n-го члена арифметической прогрессии:
Характеристическое свойство арифметической прогрессии:
Сумма n первых членов арифметической прогрессии:
При решении задач, связанных с арифметической прогрессией, могут оказаться полезными также следующие формулы:
Наверх
7. Геометрическая прогрессия
Формула n-го члена геометрической прогрессии:
Характеристическое свойство геометрической прогрессии:
Сумма n первых членов геометрической прогрессии:
При решении задач, связанных с геометрической прогрессией, могут оказаться полезными также следующие формулы:
Наверх
8. Бесконечно убывающая геометрическая прогрессия
Сумма бесконечно убывающей геометрической прогрессии:
Наверх
9. Основные формулы тригонометрии
Зависимость между тригонометрическими функциями одного аргумента:
Формулы сложения:
Формулы тригонометрических функций двойного аргумента:
Формулы понижения степени:
Формулы приведения
Все формулы приведения получаются из соответствующих формул сложения. Например:
Применение формул приведения укладывается в следующую схему:
— определяется координатная четверть, в которой лежит аргумент приводимой функции, считая, что ;
— определяется знак приводимой функции;
— определяется название приведенной функции по следующему правилу: если аргумент приводимой функции имеет вид или , то функция меняется на сходственную функцию, если аргумент приводимой функции имеет вид , то функция названия не меняет.
Например, получим формулу :
— — IV четверть;
— в IV четверти тангенс отрицательный;
— аргумент приводимой функции имеет вид , следовательно, название функции меняется. Таким образом,
Формулы преобразования суммы тригонометрических функций в произведение:
Формулы преобразования произведения тригонометрических функций в сумму:
Наверх
10. Производная и интеграл
Таблица производных некоторых элементарных функций
Правила дифференцирования:
1.
2.
3.
4.
5.
Уравнение касательной к графику функции в его точке :
Таблица первообразных для некоторых элементарных функций
Правила нахождения первообразных
Пусть ― первообразные для функций и соответственно, a, b, k ― постоянные, Тогда:
— ― первообразная для функции
— ― первообразная для функции
— ― первообразная для функции
— Формула Ньютона-Лейбница:
1. Треугольник
Пусть ― длины сторон BC, AC, AB треугольника ABC соответственно; ― полупериметр треугольника ABC; A, B, C ― величины углов BAC, ABC, ACB треугольника ABC соответственно; ― длины высот AA2, BB2, CC2 треугольника ABC соответственно; R ― радиус окружности, описанной около треугольника ABC; r — радиус окружности, вписанной в треугольник ABC; ― площадь треугольника ABC. Тогда имеют место следующие соотношения:
(теорема синусов);
(теорема косинусов);
Наверх
2. Четырёхугольники
Параллелограмм
Параллелограммом называется четырехугольник, противоположные стороны которого попарно параллельны.
Прямоугольником называется параллелограмм, у которого все углы прямые.
Ромбом называется параллелограмм, все стороны которого равны.
Квадратом называется прямоугольник, все стороны которого равны. Из определения следует, что квадрат является ромбом, следовательно, он обладает всеми свойствами прямоугольника и ромба.
Трапецией называется четырехугольник, две стороны которого параллельны, а две другие не параллельны.
Площадь четырехугольника
Площадь параллелограмма равна произведению его основания на высоту.
Площадь параллелограмма равна произведению двух его смежных сторон на синус угла между ними.
Площадь трапеции равна произведению полусуммы ее оснований на высоту.
Площадь четырехугольника равна половине произведения его диагоналей на синус угла между ними.
Наверх
3. Окружность и круг
Соотношения между элементами окружности и круга
Пусть r — радиус окружности, d — ее диаметр, C — длина окружности, S — площадь круга, — длина дуги в градусов, — длина дуги в радиан, — площадь сектора, ограниченного дугой в n градусов, — площадь сектора, ограниченного дугой в радиан. Тогда имеют место следующие соотношения:
Вписанный угол
Вписанный угол измеряется половиной дуги, на которую он опирается.
Вписанные углы, опирающиеся на одну и ту же дугу, равны.
Вписанный угол, опирающийся на полуокружность, — прямой.
Вписанная окружность
Центр окружности, вписанной в многоугольник, есть точка равноудаленная от всех сторон этого многоугольника, ― точка пересечения биссектрис углов этого многоугольника. Таким образом, в многоугольник можно вписать окружность, и притом только одну, тогда и только тогда, когда биссектрисы его углов пересекаются в одной точке.
В четырехугольник можно вписать окружность тогда и только тогда, когда суммы его противоположных сторон равны.
Описанная окружность
Центр окружности, вписанной в многоугольник, есть точка равноудаленная от всех вершин этого многоугольника, ― точка пересечения серединных перпендикуляров к сторонам этого многоугольника. Таким образом, около многоугольника можно описать окружность, и притом только одну, тогда и только тогда, когда серединные перпендикуляры к сторонам этого многоугольника пересекаются в одной точке.
Около четырехугольника можно описать окружность тогда и только тогда, когда суммы его противоположных углов равны
Наверх
4. Призма
Пусть H ― высота призмы, AA1 ― боковое ребро призмы, ― периметр основания призмы, ― площадь основания призмы, ― площадь боковой поверхности призмы, ― площадь полной поверхности призмы, V ― объем призмы, ― периметр перпендикулярного сечения призмы, ― площадь перпендикулярного сечения призмы. Тогда имеют место следующие соотношения:
Свойства параллелепипеда:
— противоположные грани параллелепипеда равны и параллельны;
— диагонали параллелепипеда пересекаются в одной точке и делятся этой точкой пополам;
— квадрат диагонали прямоугольного параллелепипеда равен сумме квадратов трех его измерений.
Наверх
5. Пирамида
Пусть H ― высота пирамиды, ― периметр основания пирамиды, ― площадь основания пирамиды, ― площадь боковой поверхности пирамиды, ― площадь полной поверхности пирамиды, V ― объем пирамиды. Тогда имеют место следующие соотношения:
;
.
Замечание. Если все двугранные углы при основании пирамиды равны , а высоты всех боковых граней пирамиды, проведенные из вершины пирамиды, равны , то
Наверх
6. Усечённая пирамида
Пусть H ― высота усеченной пирамиды, и ― периметры оснований усеченной пирамиды, и ― площади оснований усеченной пирамиды, ― площадь боковой поверхности усеченной пирамиды, ― площадь полной поверхности усеченной пирамиды, V ― объем усеченной пирамиды.
Тогда имеют место следующие соотношения:
Замечание. Если все двугранные углы при основании пирамиды равны , а высоты всех боковых граней пирамиды, проведенные из вершины пирамиды, равны , то:
Наверх
7. Цилиндр
Пусть h ― высота цилиндра, r ― радиус цилиндра, ― площадь боковой поверхности цилиндра, ― площадь полной поверхности цилиндра, V ― объем цилиндра.
Тогда имеют место следующие соотношения:
Наверх
8. Конус
Пусть h ― высота конуса, r ― радиус основания конуса, l ― образующая конуса, ― площадь боковой поверхности конуса, ― площадь полной поверхности конуса, V ― объем конуса.
Тогда имеют место следующие соотношения:
Наверх
9. Усечённый конус
Пусть h ― высота усеченного конуса, r и ― радиусы основания усеченного конуса, l ― образующая усеченного конуса, ― площадь боковой поверхности усеченного конуса, V ― объем усеченного конуса. Тогда имеют место следующие соотношения:
Наверх
10. Сфера и шар
Пусть R ― радиус шара, D ― его диаметр, S ― площадь ограничивающей шар сферы, ― площадь сферической поверхности шарового сегмента (шарового слоя), высота которого равна h, V ― объем шара, ― объем сегмента, высота которого равна h, ― объем сектора, ограниченного сегментом, высота которого равна h. Тогда имеют место следующие соотношения:
Наверх
-
Главная
-
Теория ЕГЭ
-
Математика — теория ЕГЭ
-
Справочные материалы к ЕГЭ по математике (профиль)
Справочные материалы к ЕГЭ по математике (профиль)
- 03.10.2017
Мы подготовили для вас сборник всех необходимых справочных материалов — теоремы, свойства, признаки, формулы и т.д. — для ЕГЭ по математике профильного уровня.
Материал подготовлен Школой Пифагор.
Смотреть в PDF:
Или прямо сейчас: cкачать в pdf файле.
Сохранить ссылку:
Комментарии (0)
Добавить комментарий
Добавить комментарий
Комментарии без регистрации. Несодержательные сообщения удаляются.
Имя (обязательное)
E-Mail
Подписаться на уведомления о новых комментариях
Отправить
- ЕГЭ по математике профиль
ФИПИ в демоверсии ЕГЭ по математике базового уровня добавил справочные материалы, которые будут выданы вместе с текстом экзаменационной работы.
→ скачать справочные материалы
Справка содержит:
Алгебра
Таблица квадратов целых чисел от 0 до 99
Свойства арифметического квадратного корня
Корни квадратного уравнения ax 2+ bx + c = 0 , a ≠ 0
Формулы сокращённого умножения
Степень и логарифм
Геометрия
Средняя линия треугольника и трапеции
Теорема Пифагора
Длина окружности
Площадь круга
Правильный треугольник
Площади фигур (Параллелограмм, Треугольник, Трапеция ,Ромб)
Площади поверхностей и объёмы тел (Прямоугольный параллелепипед, Прямая призма, Пирамида, Конус, Цилиндр, Шар)
Связанные страницы:
ФИПИ добавил в демоверсию по математике справочные материалы к базовому уровню.
В спецификации к демоверсии сказано, что необходимые справочные материалы будут выданы вместе с текстом экзаменационной работы.
Демоверсию можно скачать здесь.
spravochnye_materialy_dlya_bazovogo_ege.pdf
Да, только крайне скудные. Как правило, это формулы тригонометрии, которые профильники и так знают автор вопроса выбрал этот ответ лучшим MariMish 6 лет назад Школьный курс математики будет представлен для проверки знаний в вопросах ЕГЭ. Математика — наука точная и постоянная на протяжении столетий. Формулы и аксиомы не меняются. Поэтому искать математический справочник за определенный год нет смысла. Справочник за 2003 или за 2015 будет содержать такие же формулы и таблицы, что и за 1995 или за 1983 годы. Если есть знания по математике, то год выпуска справочника не имеет значения. На экзамене следует внимательно выслушать объяснение по заполнению утвержденных форм ответов, которые могут меняться год от года учитывая неудобство проверки прошлых годов. Zaikazai111 6 лет назад сдавала ЕГЭ в прошлом году.И там были только 4 формулы, так что особо на них положиться нельзя. ВладиславСМ 6 лет назад Справочники на ЕГЭ по математике на 2015 год, то есть на этот год просто обязаны быть. Их можно преобрести я думаю в городском магазине или в школьной библиотеке. Но лучше купить в магазине, только хороший и подороже, а то за небольшую цену будет бесполезный материал только и смысла преобритать никакого нет. Novasagova 6 лет назад Да, справочники конечно будут, но только за оптимальную цену вы сможете получить действительно городской кладезь знаний по математике, а так те, которые предлагают за копейки просто нет смысла покупать, потому что в их просто недостаточно знаний и нужной информации. Alyanser 4 года назад Справочные материалы как на профильном так и на базовом ЕГЭ по математике будут. Но помочь они Вам по сути ничем не смогут. Ведь справочные материалы по математике представляют собой некий сгусток информации, очень сложной для запоминания. Начитанный Даг 6 лет назад Справочные материалы будут ,однако нужно знать у кого брать и по какой цене. Так как во первых содержание этих сп. Материалов очень важно.в принципе можно взять старый справочник годов 2000ых и пользоваться им. Формулы одни и теже Знаете ответ? |
Для подготовки к ЕГЭ по математике базового и профильного уровней ФИПИ добавил в демоверсию справочные материалы. Ниже рассмотрим:
- справочные материалы к базовому уровню;
- справочные материалы к профильному уровню.
Справочные материалы к базовому уровню
Алгебра
Таблица квадратов целых чисел от 0 до 99
Свойства арифметического квадратного корня
sqrt{ab}=sqrt{a} cdot sqrt{b} при a ge0, b ge 0
sqrtfrac{a}{b}=frac {sqrt{a}}{sqrt{b}} при a ge0, b > 0
Корни квадратного уравнения
ax^2+bx+c=0, a not = 0
x_1= frac{-b-sqrt{b^2-4ac}}{2a}, x_2= frac{-b+sqrt{b^2-4ac}}{2a} при b^2-4ac > 0
x=- frac{b}{2a} при b^2-4ac = 0
Формулы сокращённого умножения
- (a + b)^2= a^2 + 2ab + b^2
- (a — b)^2= a^2 — 2ab + b^2
- a^2 — b^2 = (a + b)(a — b)
Степень и логарифм
Свойства степени | Свойства логарифма |
при a>0, b>0
|
при a>0, a not =1, b>0, x>0, y>0
|
Геометрия
Площади фигур
Площади поверхностей и объёмы тел
Тригонометрические функции
Основное тригонометрическое тождество:
sin2a + cos2a = 1
Функции
Справочные материалы к профильному уровню
- sin2 α + cos2 α = 1
- sin 2α = 2sinα * cosα
- cos2α = cos2α — sin2α
- sin (α + β) = sinα *cosβ + cosα *sinβ
- cos (α + β) = cosα * cosβ — sinα * sinβ
Смотри также:
- Демоверсия ЕГЭ по математике база 2021
- Демоверсия ЕГЭ по математике профиль 2021
Решай:
- задания и варианты по математике базового уровня
- задания и варианты по математике профильного уровня
Формулы для профильного ЕГЭ-2022 по математике
Формулы сокращённого умножения
Арифметическая и геометрическая прогрессии
Вероятность
Свойства степеней
Свойства логарифмов
Тригонометрия
Производные
Первообразные
Геометрия
Формулы сокращённого умножения
`(a + b)^2=a^2 + 2ab + b^2` | |
`(a − b)^2=a^2 − 2ab + b^2` | |
`a^2 − b^2=(a + b)(a − b)` | |
`a^3 + b^3=(a + b)(a^2 − ab + b^2)` | |
`a^3 − b^3=(a − b)(a^2 + ab + b^2)` | |
`(a + b)^3=a^3 + 3a^2b + 3ab^2 + b^3` | |
`(a − b)^3=a^3 − 3a^2b + 3ab^2 − b^3` |
Прогрессии
Арифметическая прогрессия:
`a_n=a_(n-1)+d` |
`a_n=a_1+(n-1)*d` |
`S_n=((a_1+a_n)*n)/2` |
Геометрическая прогрессия:
`b_n=b_(n-1)*q` |
`b_n=b_1*q^(n-1)` |
`S_n=((q^n-1)*b_1)/(q-1)` |
Бесконечно убывающая: `S=b_1/(1-q)` |
Вероятность
Вероятность события A: | `P(A)=m/n` | |
События происходят A и B происходят одновременно | `A*B` | |
Независимые события: | `P(A*B)=P(A)*P(B)` | |
Зависимые события: | `P(A*B)=P(A)*P(B|A)` | |
Происходит или событие A, или B | `A+B` | |
Несовместные события: | `P(A+B)=P(A)+P(B)` | |
Совместные события: | `P(A+B)=P(A)+P(B)-P(A*B)` |
Свойства степеней
`a^0=1` | `a^1=a` |
`a^(-1)=1/a` | `a^(-n)=1/a^n` |
`a^(1/2)=sqrt(a)` | `a^(1/n)=root(n)(a)` |
`a^m*a^n=a^(m+n)` | `a^m/a^n=a^(m-n)` |
`(a*b)^n=a^n*b^n` | `(a/b)^n=a^n/b^n` |
`(a^m)^n=a^(m*n)` | `a^(m/n)=root(n)(a^m)` |
Свойства логарифмов
`log_ab=c``a^c=b` | |
`log_a1=0` | |
`log_aa=1` | |
`log_a(b*c)=log_ab+log_ac` | |
`log_a(b/c)=log_ab-log_ac` | |
`log_ab^n=n*log_ab` | |
`log_(a^m)b=1/m*log_ab` | |
`log_ab=1/(log_ba)` | |
`log_ab=(log_cb)/(log_ca)` | |
`a^(log_cb)=b^(log_ca)` | |
`a^(log_ab)=b` |
Тригонометрия
`alpha` | `0` | `pi/6` | `pi/4` | `pi/3` | `pi/2` | `pi` | `(3pi)/2` | `2pi` |
---|---|---|---|---|---|---|---|---|
`0^circ` | `30^circ` | `45^circ` | `60^circ` | `90^circ` | `180^circ` | `270^circ` | `360^circ` | |
`sinalpha` | `0` | `1/2` | `sqrt(2)/2` | `sqrt(3)/2` | `1` | `0` | `-1` | `0` |
`cosalpha` | `1` | `sqrt(3)/2` | `sqrt(2)/2` | `1/2` | `0` | `-1` | `0` | `1` |
`text(tg)alpha` | `0` | `sqrt(3)/3` | `1` | `sqrt(3)` | `infty` | `0` | `infty` | `0` |
`text(ctg)alpha` | `infty` | `sqrt(3)` | `1` | `sqrt(3)/3` | `0` | `infty` | `0` | `infty` |
Основные соотношения
`sin^2alpha+cos^2alpha=1` | |
`text(tg)alpha=sinalpha/cosalpha=1/(text(ctg)alpha)` |
Формулы двойного угла
`cos2alpha={(cos^2alpha-sin^2alpha),(1-2sin^2alpha),(2cos^2alpha-1):}` | |
`sin2alpha=2sinalphacosalpha` | |
`text(tg)2alpha=(2text(tg)alpha)/(1-text(tg)^2alpha)` |
Формулы суммы и разности аргументов
`sin(alpha+-beta)=sinalphacosbeta+-cosalphasinbeta` |
`cos(alpha+-beta)=cosalphacosbeta∓sinalphasinbeta` |
`text(tg)(alpha+-beta)=(text(tg)alpha+-text(tg)beta)/(1∓text(tg)alpha*text(tg)beta)` |
Преобразование суммы и разности в произведение
`sinalpha+-sinbeta=2sin((alpha+-beta)/2)cos((alpha∓beta)/2)` |
`cosalpha+cosbeta=2cos((alpha+beta)/2)cos((alpha-beta)/2)` |
`cosalpha-cosbeta=-2sin((alpha+beta)/2)sin((alpha-beta)/2)` |
Формулы половинного аргумента
`sin(alpha/2)=+-sqrt((1-cosalpha)/2)` | |
`cos(alpha/2)=+-sqrt((1+cosalpha)/2)` | |
`text(tg)(alpha/2)=+-sqrt((1-cosalpha)/(1+cosalpha))=(1-cosalpha)/sinalpha=sinalpha/(1+cosalpha)` |
Обратные тригонометрические функции
`sinx=A` | `x=(-1)^k*arcsinA + pik` или `{(x=arcsinA + 2pik),(x=pi-arcsinA+2pik):}` |
`kinZZ` |
`cosx=A` | `x=±arccosA + 2pik` | `kinZZ` |
`tg x=A` | `x=text(arctg) A + pik` | `kinZZ` |
`ctg x=A` | `x=text(arcctg) A + pik` | `kinZZ` |
Также некоторые тригонометрические соотношения смотрите в разделе Геометрия.
Производные
Основные правила дифференцирования
`(u+-v)’=u’+-v’` | |
`(u*v)’=u’*v+u*v’` | |
`(u/v)^’=(u’*v-u*v’)/v^2` | |
`[f(g(x))]’=f'(g(x))*g'(x)` |
Уравнение касательной
`y=f(x_0)+f'(x_0)*(x-x_0)` |
Производные элементарных функций
`C’=0` | `(C*x)’=C` | |
`(x^m)’=mx^(m-1)` | `(sqrtx)’=1/(2sqrtx)` | |
`(1/x)^’=-1/x^2` | ||
`(e^x)’=e^x` | `(lnx)’=1/x` | |
`(a^x)’=a^x*lna` | `(log_ax)’=1/(xlna)` | |
`(sinx)’=cosx` | `(cosx)’=-sinx` | |
`(text(tg)x)’=1/cos^2x` | `(text(ctg)x)’=-1/sin^2x` | |
`(arcsinx)’=1/sqrt(1-x^2)` | `(arccosx)’=-1/sqrt(1-x^2)` | |
`(text(arctg))=1/(1+x^2)’` | `(text(arcctg))’=-1/(1+x^2)` |
Также некоторые сведения про производные смотрите в описании задач
№14 (база), №7 (профиль), №12 (профиль).
Первообразные
Первообразная: | `F'(x)=f(x)` | |||
Неопределённый интеграл: | `intf(x)dx=F(x)+C` | |||
Определённый интеграл (формула Ньютона-Лейбница): | `int_a^bf(x)dx=F(b)-F(a)` |
Таблица первообразных
`f(x)` | `F(x)` | `f(x)` | `F(x)` | |
---|---|---|---|---|
`a` | `ax` | |||
`x^n` | `x^(n+1)/(n+1)` | `1/x` | `lnx` | |
`e^x` | `e^x` | `a^x` | `a^x/lna` | |
`sinx` | `-cosx` | `cosx` | `sinx` | |
`1/cos^2x` | `text(tg)x` | `1/sin^2x` | `-text(ctg)x` | |
`1/(x^2+a^2)` | `1/atext(arctg)x/a` | `1/(x^2-a^2)` | `1/(2a)ln|(x-a)/(x+a)|` | |
`1/sqrt(a^2-x^2)` | `text(arcsin)x/a` | `1/sqrt(x^2+a)` | `ln|x+sqrt(x^2+a)|` |
Геометрия
Планиметрия (2D)
Площади фигур:
Окружность: | `S=pir^2` | |
Треугольник: | `S=1/2ah` | |
Параллелограмм: | `S=ah` | |
Четырёхугольник: | `S=1/2d_1d_2sinvarphi` | |
Трапеция: | `S=(a+b)/2*h` |
Стереометрия (3D)
Призма: | `V=S_(осн)h` | |
Пирамида: | `V=1/3S_(осн)h` | |
Конус: | `V=1/3S_(осн)h` | |
`S_(бок)=pirl` | ||
Цилиндр: | `V=pir^2h` | |
`S_(бок)=2pirh` | ||
Шар: | `V=4/3pir^3` | |
`S=4pir^2` |
- Взрослым: Skillbox, Хекслет, Eduson, XYZ, GB, Яндекс, Otus, SkillFactory.
- 8-11 класс: Умскул, Лектариум, Годограф, Знанио.
- До 7 класса: Алгоритмика, Кодланд, Реботика.
- Английский: Инглекс, Puzzle, Novakid.
Справочные материалы ЕГЭ по профильной математике 2022-2023
sin2 α + cos2 α = 1
sin 2α = 2sin α * cos α
cos 2α = cos2α — sin2α
sin (α + β) = sin α *cos β + cos α *sin β
cos (α + β) = cos α * cos β — sin α * sin β
- Взрослым: Skillbox, Хекслет, Eduson, XYZ, GB, Яндекс, Otus, SkillFactory.
- 8-11 класс: Умскул, Лектариум, Годограф, Знанио.
- До 7 класса: Алгоритмика, Кодланд, Реботика.
- Английский: Инглекс, Puzzle, Novakid.
На ЕГЭ по профильной математике с собой можно взять только черные гелевые ручки и линейку. На экзамене профильного уровня, в отличие от базового, не выдаются справочные материалы – выпускникам не предоставляются формулы, необходимые для решения задач. Исключение составляют лишь 5 формул по тригонометрии, но, естественно, они не помогут набрать максимальные баллы, если экзаменуемые не будут знать об остальных важных сведениях и математических свойствах.
Содержание
Формулы для ЕГЭ по профильной математике. Алгебра
Формулы сокращенного умножения
Квадрат суммы: (a + b)² = a² + 2ab + b²
Квадрат разности: (a – b)² = a² – 2ab + b²
Разность квадратов: a² – b² = (a + b)(a – b)
Сумма кубов: a³ + b³ = (a + b)(a² – ab + b²)
Разность кубов: a³ – b³ = (a – b)(a² + ab + b²)
Прогрессия
Арифметическая
Геометрическая
Таблица степеней
Свойства степеней
Таблица квадратов
Интенсивы по подготовке к региональному этапу ВсОШ
Все, что нужно знать
для победы, за 7 дней!
Свойства корней
Тригонометрия
Таблица значений тригонометрических функций
Тригонометрическая окружность
Тригонометрические формулы
Обратные тригонометрические функции
Преобразование суммы и разности в произведение
Регулярные курсы по подготовке к олимпиадам и ЕГЭ
Поступаем в вуз мечты без проблем!
Вероятность
Вероятность события А: m – благоприятные, n – общее число событий
P(A) = m/n
События А и В происходят одновременно: A · B
Независимые события: P(A · B) = P(A) · P(B)
Зависимые события: P(A · B) = P(A) · P(B | A)
Происходит или А, или В: A + B
Несовместные события: P(A + B) = P(A) + P(B)
Совместные события: P(A + B) = P(A) + P(B) – P(A · B)
Свойства модуля
Производные
Основные правила дифференцирования
Таблица производных
Первообразные
Логарифмы
Квадратные уравнения
Дискриминант
Теорема Виета
Разложение на множители
Формулы для ЕГЭ по профильной математике. Геометрия
Планиметрия
Треугольник
Следствие из теоремы косинусов:
Длина биссектрисы (через угол):
Длина биссектрисы (через отрезки):
Прямоугольный треугольник
24 декабря – 20 января
5-11 классы
Онлайн-олимпиада Коалиции
Равносторонний треугольник
Аргументы для итогового сочинения
Подборка лучших аргументов
Равносторонний шестиугольник
Площадь внутреннего треугольника:
Площадь внутреннего прямоугольника:
Ромб
Трапеция
Произвольный четырёхугольник
Окружность
Стереометрия
Выводы
Не заучивайте формулы без осознания того, откуда берутся числа. Как можно чаще применяйте формулы при решении задач, тренируйте гибкость мышления, чтобы на ЕГЭ по профильной математике справиться со всеми заданиями.
А чтобы в разы повысить шансы на успех и разобраться в тонкостях непростой науки, можно обратиться за помощью к преподавателю онлайн-курса по подготовке к ЕГЭ.
Поделиться в социальных сетях
Какими формулами вам приходится пользоваться чаще всего?
Межтекстовые Отзывы
Посмотреть все комментарии
Читайте также
Анализ
результатов итогового тестирования (ЕГЭ) по математике (профильный уровень) 2022-2023учебный
год.
Всего 11 уч
Писало : 11 уч.
ЕГЭ по математике профильного уровня состоит из двух
частей, включающих 19 заданий. Минимальный
порог – 27 баллов.
Экзаменационная
работа состоит из двух частей, которые различаются по содержанию,
сложности и числу заданий.
Определяющим
признаком каждой части работы является форма заданий:
·
часть 1 содержит 8 заданий (задания 1–8) с кратким ответом в
виде целого числа или конечной десятичной дроби;
·
часть 2 содержит 4 задания (задания 9–12) с кратким ответом в
виде целого числа или конечной десятичной дроби и 7 заданий (задания 13–19) с
развернутым ответом (полная запись решения с обоснованием выполненных
действий).
·
Целью работы была диагностика уровня
знаний учащихся по математике на данном этапе обучения для планирования процесса
подготовки к ЕГЭ в оставшееся до государственной итоговой аттестации время.
Проверяемые
требования:
1. Уметь использовать приобретённые знания и умения в
практической деятельности и повседневной жизни (Простейшие текстовые задачи
(округление с избытком и недостатком, проценты).
2. Уметь использовать приобретённые знания и умения в
практической деятельности и повседневной жизни (Чтение графиков и диаграмм).
3. Уметь выполнять действия с геометрическими фигурами,
координатами и векторами (Планиметрия: вычисление длин и площадей. Вектора,
координатная плоскость).
4. Уметь строить и исследовать простейшие математические модели
(Начала теории вероятностей).
5. Уметь решать уравнения и неравенства (Простейшие уравнения
(линейные, квадратные, кубические, рациональные, иррациональные, показательные,
логарифмические, тригонометрические).
6. Уметь выполнять действия с геометрическими фигурами,
координатами и векторами (Планиметрия: задачи, связанные с углами в различных
фигурах планиметрии).
7. Уметь выполнять действия с функциями (Производная:
физический, геометрический смысл производной, касательная, применение
производной к исследованию функций, первообразная).
8. Уметь выполнять действия с геометрическими фигурами,
координатами и векторами (Стереометрия: задачи на вычисление основных элементов
геометрических тел).
9. Уметь выполнять вычисления и преобразования (Вычисление
значений и преобразования выражений, дробей различного вида: алгебраических,
тригонометрических, показательных, логарифмических).
10. Уметь использовать приобретённые знания и умения в
практической деятельности и повседневной жизни (Задачи с прикладным
содержанием).
11. Уметь строить и исследовать простейшие математические модели (Текстовые
задачи: на движение по прямой и окружности, по воде, на совместную работу,
проценты, сплавы, смеси, прогрессии).
12. Уметь выполнять действия с функциями (Наибольшее и наименьшее
значение основных функций: с помощью производной и на основе свойств функции).
13. Уметь решать уравнения и неравенства (Уравнения, системы
уравнений: тригонометрические, показательные, логарифмические, смешанные).
14. Уметь выполнять действия с геометрическими фигурами,
координатами и векторами (Стереометрия: углы и расстояния в пространстве).
15. Уметь решать уравнения и неравенства (Неравенства и системы
неравенств).
16. Уметь выполнять действия с геометрическими фигурами,
координатами и векторами (Планиметрическая задача).
17. Уметь использовать приобретённые знания и умения в
практической деятельности и повседневной жизни (Задачи на проценты).
18. Уметь решать уравнения и неравенства (Уравнения, неравенства,
системы с параметром).
19. Уметь строить и исследовать простейшие математические модели.
Ф.И. учащегося |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
13 |
14 |
15 |
16 |
17 |
18 |
19 |
|||
Простейшие текстовые задачи |
Чтение графиков и диаграмм |
Квадратная решётка, координатная плоскость |
Начала теории вероятностей |
Простейшие уравнения |
Планиметрия: задачи, связанные с углами |
Производная и первообразная |
Стереометрия |
Вычисления и преобразования |
Задачи с прикладным содержанием |
Текстовые задач |
Наибольшее и наименьшее значение функций |
Уравнения |
Стереометрическая задача |
Неравенства |
Планиметрическая задача |
Финансовая математика |
Задача с параметром |
Числа и их свойства |
Первичный балл |
Тестовый балл |
Оценка |
|
Абдусаламов И |
1 |
1 |
1 |
1 |
1 |
0 |
1 |
1 |
1 |
1 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
9 |
45 |
4 |
Алиев М |
1 |
0 |
1 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
2 |
9 |
2 |
Ахмедханова П |
1 |
0 |
1 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
2 |
9 |
2 |
Карибова З |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
2 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
13 |
68 |
4 |
Аппасов Ш |
0 |
1 |
0 |
1 |
0 |
1 |
0 |
0 |
0 |
0 |
1 |
0 |
0 |
1 |
0 |
0 |
0 |
0 |
0 |
4 |
18 |
2 |
Алиханова С |
0 |
0 |
1 |
0 |
1 |
0 |
1 |
1 |
0 |
1 |
1 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
6 |
27 |
3 |
Зенгиев М |
1 |
1 |
1 |
1 |
1 |
0 |
1 |
1 |
0 |
1 |
1 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
9 |
45 |
3 |
Османгаджиев |
1 |
1 |
1 |
1 |
1 |
0 |
0 |
1 |
0 |
1 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
7 |
33 |
3 |
Асланбекова |
1 |
1 |
1 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
3 |
14 |
2 |
Махмудова Ж |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
2 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
13 |
68 |
4 |
Яралиев Ш |
1 |
1 |
1 |
1 |
1 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
5 |
25 |
2 |
Не справились |
2 |
3 |
1 |
4 |
4 |
8 |
6 |
5 |
8 |
5 |
6 |
9 |
11 |
10 |
11 |
11 |
11 |
11 |
11 |
|||
справились |
9 |
8 |
10 |
7 |
7 |
3 |
5 |
6 |
3 |
6 |
5 |
2 |
0 |
1 |
0 |
0 |
0 |
0 |
0 |
Таблица
по профильной ЕГЭ 11 кл.
№ |
Всего |
Писали |
«5» |
«4» |
«3» |
«2» |
%усп |
%кач |
С/Б |
Учитель |
11 «а,б» класс |
11 |
11 |
0 |
3 |
3 |
5 |
55% |
27% |
3,8 |
Абдусаламова М.Р |
№ |
Тема |
Основные понятия, необходимые для решения |
№ заданий в КИМах ЕГЭ |
% Выполнения |
1 |
Решение |
Уметь |
№1 |
82% |
2 |
Анализ |
Уметь |
№2 |
73% |
3 |
Планиметрическая |
Уметь |
№3 |
91% |
4 |
Задание |
Уметь |
№4 |
64% |
5 |
Решение |
Уметь |
№5 |
64% |
6 |
Задача |
Уметь |
№6 |
27% |
7 |
Исследование |
Уметь |
№7 |
45% |
8 |
Стереометрическая |
Уметь |
№8 |
55% |
9 |
Выполнение |
Уметь |
№9 |
27% |
10 |
Выполнение |
Уметь |
№10 |
55% |
11 |
Задачи |
Уметь |
№11 |
45% |
12 |
Нахождение |
Уметь |
№12 |
18% |
13 |
Решение |
Уметь |
№13 |
0% |
14 |
Стереометрическая |
Уметь |
№14 |
9% |
15 |
Решение |
Уметь |
№15 |
0% |
16 |
Планиметрическая |
Уметь |
№16 |
0% |
17 |
Решение |
Уметь |
№17 |
0% |
18 |
Решение |
Уметь |
№18 |
0% |
19 |
Задача |
Уметь |
№19 |
0% |
Анализируя результаты экзамена по
математике в форме ЕГЭ можно сделать вывод, не все ученики преодолели
минимальный порог в 27 баллов установленные Рособрнадзором. 5 учащихся не
преодолела минимальный порог набрав меньше 27 балла, это
обусловлено низкой мотивацией к процессу обучения, итоговая отметка за уровень среднего общего образования
Наибольшую
трудность из первой части у обучающихся вызвало задание: №7 и 6 .
Как показывают данные, с первой частью работы учащиеся справились удовлетворительно:
1, 2,3, 4,5, задания выполнены на 60 % и выше , 7, 8, 9, 12 задания —
ниже 50 % . В дальнейшей работе необходимо заострять внимание учащихся на
данных темах, больше времени уделять на решение заданий по западающим темам,
включать данные разделы в программу дополнительных заданий и консультаций
учащихся.
Лучший результат
показал Махмудова Ж Карибова З (68 б).
Вывод:
Анализ
итогового тестирования показывает, что при подготовке учащихся необходимо особое
внимание уделить решению заданий на
геометрический и физический смысл производной, исследование функции с помощью
производной (№6, 9), задачи на вычисление основных элементов
геометрических тел (№8), решению геометрических
задач на построение сечения в многогранниках (№14), решению тригонометрических
уравнений (№13), логарифмических неравенств (№15), решению практических задач
на сложные проценты (№17).
По
итогам ЕГЭ необходимо скорректировать индивидуальные образовательные маршруты
для обучающихся 11 класса.
На основании выше изложенного,
рекомендуется:
1.Способствовать
осознанному выбору учащимися экзамена профильного уровня.
2.
Проанализировать результаты выполнения заданий КИМ, обратив внимание на
выявленные типичные ошибки и пути их устранения.
3.Использовать
на уроках задания, включенные в КИМ.
4.Обратить
внимание на формирование у учащихся общеучебных и простейших математических
навыков, находящих непосредственное применение на практике.
5.При
организации повторения уделить необходимое внимание вопросам, вызвавшим
наибольшие затруднения у школьников на экзамене.
6.
Организовать систему повторения с поурочным контролем и проверкой.
7. В течение
учебного года тщательнее прорабатывать задания ЧАСТИ 2.
8.Учебный процесс
осуществлять на основе организации активной познавательной деятельности
учащихся на основе деятельностного подхода обучения, необходимого для
выполнения заданий, требующих комплексного подхода.
Зам Директора по УВР ______________Гаджибалаева
З.В
Руководитель ШМО ___________ Рабадаова Б.Р
- Взрослым: Skillbox, Хекслет, Eduson, XYZ, GB, Яндекс, Otus, SkillFactory.
- 8-11 класс: Умскул, Лектариум, Годограф, Знанио.
- До 7 класса: Алгоритмика, Кодланд, Реботика.
- Английский: Инглекс, Puzzle, Novakid.
Справочные материалы ЕГЭ по профильной математике 2022-2023
sin2 α + cos2 α = 1
sin 2α = 2sin α * cos α
cos 2α = cos2α — sin2α
sin (α + β) = sin α *cos β + cos α *sin β
cos (α + β) = cos α * cos β — sin α * sin β
- Взрослым: Skillbox, Хекслет, Eduson, XYZ, GB, Яндекс, Otus, SkillFactory.
- 8-11 класс: Умскул, Лектариум, Годограф, Знанио.
- До 7 класса: Алгоритмика, Кодланд, Реботика.
- Английский: Инглекс, Puzzle, Novakid.