Стереометрия подготовка к егэ по математике профиль

На этой странице – все необходимое для освоения стереометрии и решения задач ЕГЭ.

Для того чтобы справиться с задачей 2 из первой части Профильного ЕГЭ, вам нужно знать формулы объемов и площадей поверхности. Объем конуса, площадь боковой поверхности призмы, длина диагонали куба – все это вы найдете здесь:

Многогранники: формулы объема и площади поверхности

Тела вращения: формулы объема и площади поверхности

Не ждите, когда конус или сферу будут «проходить» в школе. Начинайте решать задачи по стереометрии из первой части ЕГЭ. Это задание №2 .

Вам помогут наши методические материалы:

Задачи по стереометрии часть 1: Просто применяем формулы

Стереометрия на ЕГЭ.  Приемы и секреты

Для решения задачи №13 из второй части Профильного ЕГЭ по математике надо повторить весь курс стереометрии. Нет, не обязательно перечитывать весь учебник. Полный курс стереометрии – здесь:

Задача 13 (часть 2 ЕГЭ по математике). Программа по стереометрии 

Плоскость в пространстве. Взаимное расположение плоскостей

Прямые в пространстве. Пересекающиеся, параллельные, скрещивающиеся прямые

Параллельность прямой и плоскости

Угол между прямой и плоскостью. Перпендикулярность прямой и плоскости

Параллельность плоскостей

Угол между плоскостями. Перпендикулярность плоскостей

Угол и расстояние между скрещивающимися прямыми. Расстояние от точки до плоскости   –

Метод объемов

Теорема о трёх перпендикулярах

Теорема о прямой и параллельной ей плоскости

Параллельное проецирование

Как строить чертежи в задачах по стереометрии

Построение сечений в задачах по стереометрии

Можно ли, посмотрев на задачу, сразу понять, что с ней делать и каким методом решать? Да, можно! Для вас — наш новый уникальный материал:

Стереометрия, задача 13 Профильного ЕГЭ по математике. Классификация задач и методы их решения

Обратите внимание на координатный метод. Если вы в 10-м классе – у вас есть время освоить оба способа решения задач по стереометрии, классический и векторно-координатный.

Векторы и метод координат. Задача 13,  часть 2 на ЕГЭ по математике

Для старшеклассников и учителей – дополнительные материалы, автор В.М. Мамаева.

 «Перпендикулярность. Книга для учащихся»

 «Перпендикулярность. Книга для учителя»

 «Тела вращения. Книга для учащихся»

 «Тела вращения. Книга для учителя»

Решаем задачи из сборника И. В. Ященко, 2020. Вариант 6, задача 13

Несколько полезных советов тем, кто решает задачи по стереометрии

1. Учитесь строить чертежи. Изучите правила построения чертежей. Хороший чертеж – это половина решения. И если чертеж вам не нравится, бросайте его и рисуйте другой.

2. Выучите теорему о прямой и параллельной ей плоскости. Ее очень трудно найти в учебнике. Однако множество задач решаются с помощью этой теоремы.

3. Запомните формулу для площади прямоугольной проекции фигуры. И посмотрите, как решаются с ее помощью задачи на нахождение угла между плоскостями.

4. Учитесь правильно оформлять решения. Часто старшеклассники говорят: «Сделаем параллельный перенос и перенесем прямую АВ так, чтобы она проходила через точку М». Однако, если вы решили ввести параллельный перенос, вам надо его описать. В каком направлении, на какое расстояние. И зачем вам лишние сложности? Намного проще сказать: «Проведем через точку М прямую, параллельную АВ».

Спасибо за то, что пользуйтесь нашими публикациями.
Информация на странице «Стереометрия» подготовлена нашими авторами специально, чтобы помочь вам в освоении предмета и подготовке к экзаменам.
Чтобы успешно сдать необходимые и поступить в ВУЗ или колледж нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими материалами из разделов нашего сайта.

Публикация обновлена:
09.03.2023

Параллельность в пространстве

  • Две прямые в пространстве называются параллельными, если они лежат в одной плоскости и не имеют общих точек.
  • Если две прямые на плоскости перпендикулярны к третьей прямой, то они параллельны.
  • Если две прямые в трехмерном пространстве перпендикулярны к одной плоскости, то они параллельны.
  • Если прямая a, не лежащая в плоскости $α$, параллельна некоторой прямой $b$, которая лежит в плоскости $α$, то прямая a параллельна плоскости $α$.
  • Если две пересекающиеся прямые одной плоскости соответственно параллельны двум прямым, лежащим в другой плоскости, то такие плоскости параллельны.

Перпендикулярность в пространстве

  • Две прямые называются перпендикулярными, если угол между ними равен $90°$.
  • Прямая перпендикулярна плоскости, если она перпендикулярна двум пересекающимся прямым, лежащим в этой плоскости.
  • Если одна из двух плоскостей проходит через прямую, перпендикулярную к другой плоскости, то заданные плоскости перпендикулярны.
  • Теорема о трех перпендикулярах: если прямая, проведенная на плоскости через основание наклонной, перпендикулярна ее проекции, то она перпендикулярна и самой наклонной.
  • Если из одной точки проведены к плоскости перпендикуляр и наклонные, то:
  1. Перпендикуляр короче наклонных.
  2. Равные наклонные имеют равные проекции на плоскости.
  3. Большей наклонной соответствует большая проекция на плоскости.

Скрещивающиеся прямые

  • Если одна из двух прямых лежит на плоскости, а другая прямая пересекает эту плоскость в точке, не лежащей на первой прямой, то эти прямые скрещиваются.
  • Через две скрещивающиеся прямые проходит единственная пара параллельных плоскостей.
  • Расстояние между скрещивающимися прямыми – это расстояние от некоторой точки одной из скрещивающихся прямых до плоскости, проходящей через другую прямую параллельно первой прямой.
  • Угол между скрещивающимися прямыми – это острый угол между двумя пересекающимися прямыми, которые соответственно параллельны заданным скрещивающимся прямым.

Многогранники

Введем общие обозначения

$P_{осн}$ — периметр основания;

$S_{осн}$ — площадь основания;

$S_{бок}$ — площадь боковой поверхности;

$S_{п.п}$ — площадь полной поверхности;

$V$ — объем фигуры.

Название Определение и свойства фигуры Обозначения и формулы объема, площади
Прямоугольный параллелепипед 1. Все двугранные углы прямоугольного параллелепипеда – прямые.
2. Противоположные грани попарно равны и параллельны.

3. Диагонали прямоугольного параллелепипеда равны.

4. Квадрат диагонали прямоугольного параллелепипеда равен сумме квадратов трех его измерений (длины, ширины, высоты).

$B_1D^2=AD^2+DC^2+C_1C^2$

$V=a·b·c$, где $a, b$ и $с$ – длина, ширина и высота.
$S_{бок}=P_{осн}·c=2(a+b)·c$
$S_{п.п}=2(ab+bc+ac)$.
Куб 1. Противоположные грани попарно параллельны.
2. Все двугранные углы куба – прямые.

3. Диагональ куба в $√3$ раз больше его ребра.

$B_1 D=АВ√3$
4. Диагональ грани куба в $√2$ раза больше длины ребра.
$DС1=DC√2$

Пусть $а$ — длина ребра куба, $d$ — диагональ куба, тогда справедливы формулы:
$V=a^3={d^3}/{3√3}$.
$S_{п.п}=6а^2=2d^2$
$R={a√3}/{2}$, где $R$ — радиус сферы, описанной около куба.
$r={a}/{2}$, где $r$ — радиус сферы, вписанной в куб.
Призма

Призма – это многогранник, состоящий из двух равных многоугольников, расположенных в параллельных плоскостях, и $n$-го количества параллелограммов.

  1. Если боковые ребра призмы перпендикулярны к основаниям, то призма называется прямой, в противном случае – наклонной. Высота прямой призмы равна ее боковому ребру.
  2. Прямая призма называется правильной, если ее основания – правильные многоугольники.
  3. В правильной четырехугольной призме диагонали точкой пересечения делятся пополам.
$S_{бок}=P_{осн}·h$
$S_{п.п}=S_{бок}+2S_{осн}$
$V=S_{осн}·h$
Пирамида
  1. У треугольной пирамиды есть еще одно название – тетраэдр (четырехгранник).
  2. Пирамида называется правильной, если в ее основании лежит правильный многоугольник, а ее высота приходит в центр основания (в центр описанной окружности). Все боковые ребра правильной пирамиды равны, следовательно, все боковые грани являются равнобедренными треугольниками.
Формулы вычисления объема и площади поверхности правильной пирамиды.
$h_a$ — высота боковой грани (апофема)
$S_{бок}={P_{осн}·h_a}/{2}$
$S_{п.п}=S_{бок}+S_{осн}$
$V={1}/{3} S_{осн}·h$
Усеченная пирамида
  1. Усеченной пирамидой называется многогранник, заключенный между пирамидой и секущей плоскостью, параллельной.
  2. Правильная усечённая пирамида получается при сечении правильной пирамиды плоскостью, параллельной основанию.
  3. У правильной усеченной пирамиды апофемы равны
$V={h(F+f+√{Ff})}/{3}$
Где $F,f$ — площади оснований;
$h$ — высота (расстояние между основаниями);
Для правильной ус. пирамиды
$S_{бок}={(P+p)·a}/{2}$, где $P$ и $p$ – периметры оснований; $а$ – апофема.
Цилиндр
  1. Осевое сечение цилиндра — это прямоугольник, у которого одна сторона равна диаметру основания, а вторая – высоте цилиндра.
  2. Если призму вписать в цилиндр, то ее основаниями будут являться равные многоугольники, вписанные в основание цилиндра, а боковые ребра — образующими цилиндра.
  3. Если цилиндр вписан в призму, то ее основания — равные многоугольники, описанные около оснований цилиндра. Плоскости граней призмы касаются боковой поверхности цилиндра.
  4. Если в цилиндр вписана сфера, то радиус сферы равен радиусу цилиндра и равен половине высоты цилиндра.
    $R_{сферы}=R_{цилиндра}={h_{цилиндра}}/{2}$
$S_{бок.пов.}=2πR·h$
$S_{полной.пов.}=2πR(R+h)$
$V=πR^2·h$
Конус
  1. Осевым сечением конуса является равнобедренный треугольник, основание которого равно двум радиусам, а боковые стороны равны образующим конуса.
  2. Если боковая поверхность конуса – полукруг, то осевым сечением является равносторонний треугольник, угол при вершине равен $60°$.
  3. Если радиус или диаметр конуса увеличить в $n$ раз, то его объем увеличится в $n^2$ раз.
  4. Если высоту конуса увеличить в m раз, то объем конуса увеличится в то же количество раз.
$S_{бок.пов.}=πR·l$
$S_{полной.пов.}=πR^2+πR·l=πR(R+l)$
$V={πR^2·h}/{3}$
Усеченный конус
  1. Усеченным конусом называется часть конуса, заключенная между основанием и секущей плоскостью, параллельной основанию.
  2. Осевым сечением усеченного конуса является равнобедренная трапеция.
$S_{бок}=πl(R+r)$
$S_{п.п.}=π(R^2+r^2+l(R+r))$
$V={πH(R^2+r^2+Rr)}/{3}$
Где $R$ и $r$ – радиусы оснований; $Н$ — высота усеченного конуса.
Сфера, шар
  1. Тело, ограниченное сферой, называется шаром.
  2. Осевое сечение шара это круг, радиус которого равен радиусу шара. Осевым сечением является самый большой круг шара.
  3. Если радиус или диаметр шара увеличить в $n$ раз, то площадь поверхности увеличится в $n^2$ раз, а объем в $n^3$ раз.
$S_{п.п}=4π·R^2=π·d^2$, где $R$ — радиус сферы, $d$ — диаметр сферы
$V={4π·R^3}/{3}={π·d^3}/{6}$, где $R$ — радиус шара, $d$ — диаметр шара.

Тетраэдр

Радиус описанной сферы тетраэдра.

Вокруг тетраэдра можно описать сферу, радиус которой находим по формуле, где $R$ — радиус описанной сферы, $a$ — ребро тетраэдра.

$R={a√6}/{4}$

Радиус вписанной в тетраэдр сферы.

В тетраэдр можно вписать сферу, радиус вписанной сферы находим по формуле, приведенной ниже.

Где $r$ — радиус вписанной в тетраэдр сферы,

$a$ — ребро тетраэдра.

$r={a√6}/{12}$

Составные многогранники

Задачи на нахождение объема составного многогранника:

  1. Разделить составной многогранник на несколько параллелепипедов.
  2. Найти объем каждого параллелепипеда.
  3. Сложить объемы.

Задачи на нахождение площади поверхности составного многогранника.

— Если можно составной многогранник представить в виде прямой призмы, то находим площадь поверхности по формуле:

$S_{полн.пов.}=P_{осн}·h+2S_{осн}$

Чтобы найти площадь основания призмы, надо разделить его на прямоугольники и найти площадь каждого.

— Если составной многогранник нельзя представить в виде призмы, то площадь полной поверхности можно найти как сумму площадей всех граней, ограничивающих поверхность.

Пример:

Найдите площадь поверхности многогранника, изображённого на рисунке (все двугранные углы прямые).

Представим данный многогранник как прямую призму с высотой равной $12$.

$S_{полн.пов.}=P_{осн}·h+2S_{осн}$

$P_{осн}=8+6+6+2+2+4=28$

Чтобы найти площадь основания, разделим его на два прямоугольника и найдем площадь каждого:

$S_1=6·6=36$

$S_2=2·4=8$

$S_осн=36+8=44$

Далее подставим все данные в формулу и найдем площадь поверхности многогранника

$S_{полн.пов.}=28·12+2·44=336+88=424$

Ответ: $424$

— Если составной многогранник нельзя представить в виде призмы, то площадь полной поверхности можно найти как сумму площадей всех граней, ограничивающих поверхность.

Задачи на нахождение расстояния между точками составного многогранника.

В данных задачах приведены составные многогранники, у которых двугранные углы прямые. Надо соединить расстояние между заданными точками и достроить его до прямоугольного треугольника. Далее остается воспользоваться теоремой Пифагора для нахождения нужной стороны.

Теорема Пифагора

В прямоугольном треугольнике сумма квадратов катетов равна квадрату гипотенузы.

$АС^2+ВС^2=АВ^2$

Задачи на нахождение угла или значения одной из тригонометрических функций обозначенного в условии угла составного многогранника.

Так как в данных задачах приведены составные многогранники, у которых все двугранные углы прямые, то достроим угол до прямоугольного треугольника и найдем его значение по тригонометрическим значениям.

Соотношение между сторонами и углами в прямоугольном треугольнике:

В прямоугольном треугольнике $АВС$, с прямым углом $С$:

Для острого угла $В: АС$ — противолежащий катет; $ВС$ — прилежащий катет.

Для острого угла $А: ВС$ — противолежащий катет; $АС$ — прилежащий катет.

  1. Синусом ($sin$) острого угла прямоугольного треугольника называется отношение противолежащего катета к гипотенузе.
  2. Косинусом ($cos$) острого угла прямоугольного треугольника называется отношение прилежащего катета к гипотенузе.
  3. Тангенсом ($tg$) острого угла прямоугольного треугольника называется отношение противолежащего катета к прилежащему катету.

Значения тригонометрических функций некоторых углов:

$α$ $30$ $45$ $60$
$sinα$ ${1}/{2}$ ${√2}/{2}$ ${√3}/{2}$
$cosα$ ${√3}/{2}$ ${√2}/{2}$ ${1}/{2}$
$tgα$ ${√3}/{3}$ $1$ $√3$
$ctgα$ $√3$ $1$ ${√3}/{3}$

Связь между сторонами правильного n-угольника и радиусами описанной и вписанной окружностей

$АВ=a_n$ — сторона правильного многоугольника

$R$ — радиус описанной окружности

$r$ — радиус вписанной окружности

$n$ — количество сторон и углов

$a_n=2·R·sin{180°}/{n}$;

$r=R·cos{180°}/{n}$;

$a_n=2·r·tg{180°}/{n}$.

Формула нахождения градусной меры угла в правильном многоугольнике:

$α={(n-2)·180°}/{n}$

Формулы площадей треугольников и многоугольников, которые могут находиться в основании многогранников

В основании лежит треугольник

1. $S={a·h_a}/{2}$, где $h_a$ — высота, проведенная к стороне а

2. $S={a·b·sin⁡α}/{2}$, где $a, b$ — соседние стороны, $α$ — угол между этими соседними сторонами.

3. $S=p·r$, где $r$ — радиус вписанной окружности

4. $S={a·b·c}/{4R}$, где $R$ — радиус описанной окружности

5. Для прямоугольного треугольника $S={a·b}/{2}$, где $а$ и $b$ — катеты прямоугольного треугольника.

В основании лежит четырехугольник

Прямоугольник

$S=a·b$, где $а$ и $b$ — смежные стороны.

Ромб

$S={d_1·d_2}/{2}$, где $d_1$ и $d_2$ — диагонали ромба

$S=a^2·sin⁡α$, где $а$ — длина стороны ромба, а $α$ — угол между соседними сторонами.

Трапеция

$S={(a+b)·h}/{2}$, где $а$ и $b$ — основания трапеции, $h$ — высота трапеции.

Площади правильных многоугольников:

1. Для равностороннего треугольника $S={a^{2}√3}/{4}$, где $а$ — длина стороны.

2. Квадрат

$S=a^2$, где $а$ — сторона квадрата.

3. Правильный шестиугольник

Шестиугольник разделим на шесть правильных треугольников и найдем площадь как:

$S=6·S_{треугольника}={6·a^{2}√3}/{4}={3·a^{2}√3}/{2}$, где $а$ — сторона правильного шестиугольника.

По теме: методические разработки, презентации и конспекты

Решение стереометрической задачи тремя различными способами

Здесь представлено на трех файлах моё решение решение задачи С2 (вариант 13) из пособия «МАТЕМАТИКА. Подготовка к ЕГЭ-2011» под редакцией Ф.Ф. Лысенко, С.Ю. Калабухова. Эта-же задача встречается в пос…

Методическая разработка по теме: «Применение аналитической геометрии к решению стереометрических задач».

ВЫЧИСЛЕНИЕ РАССТОЯНИЙ И УГЛОВ       Рассмотрим несколько геометрических задач, для решения которых необходимо вычислить те или иные расстояния или углы в пространст…

Тема 36. ГЕОМЕТРИЯ.ОСНОВНЫЕ СВЕДЕНИЯ ДЛЯ РЕШЕНИЯ СТЕРЕОМЕТРИЧЕСКИХ ЗАДАЧ.

Уважаемые коллеги!Актуальной задачей на сегодняшний день является качественная подготовка учащихся к единому государственному экзамену (ЕГЭ) по математике, а также  абитуриентов к вступительным э…

Тема 37.ИТОГОВЫЙ КОНТРОЛЬ ПО ТЕМАМ 34-36: «РЕШЕНИЕ ПЛАНИМЕТРИЧЕСКИХ И СТЕРЕОМЕТРИЧЕСКИХ ЗАДАЧ»

Уважаемые коллеги!Актуальной задачей на сегодняшний день является качественная подготовка учащихся к государственной итоговой аттестации (ГИА) и единому государственному экзамену (ЕГЭ) по математике, …

Методическая разработка по теме: «Применение векторно-координатного метода в решении стереометрических задач»

    Учёные всегда стремились упростить себе жизнь – придумывали новые, простые методы решения, универсальные для множества задач, позволяющие быстро решить даже самую трудную задачу. …

Методическая разработка по теме: «Применение векторно-координатного метода в решении стереометрических задач»

    Учёные всегда стремились упростить себе жизнь – придумывали новые, простые методы решения, универсальные для множества задач, позволяющие быстро решить даже самую трудную задачу. …

Программа внеурочной деятельности «Практикум решения стереометрических задач». Пропедевтика стереометрических знаний на примере качественных стереометрических задач.

Всем известная трудность в изучении стереометрии, возникающая у учащихся 10 классов, в значительной степени объясняется низким уровнем развитием их пространственных представлений. Ученики теряю…

Задание ЕГЭ №13 (бывшая ЕГЭ №14) по стереометрии считается очень сложным на ЕГЭ. И многие за нее не берутся.

А зря!

Если проходить стереометрию от простого к сложному освоить стереометрию можно. В 2022 году за ЕГЭ №13 дают не 2, а целых 3 балла на ЕГЭ! И вы можете их получить.

Читайте эту статью, смотрите вебинары и решайте задачи вместе с Алексеем Шевчуком и вы полюбите стереометрию.

ЕГЭ 13 Стереометрия. Расстояние между точками и от точки до прямой

Расстояние между точками и от точки до прямой – это первое видео раздела “Стереометрия”, входящее в наш курс подготовки к ЕГЭ (о нем ниже).

В этом видео мы научимся “видеть” 3-мерное пространство и изображать 3-мерные объекты на бумаге (то есть на плоской поверхности).

Затем мы научимся двум основным вещам – находить расстояние между точками на таких рисунках, а также расстояние от точки до прямой.

На этих умениях строится всё дальнейшее изучение стереометрии. В общем это очень важное, базовое видео, с которого нужно начинать изучение стереометрии. Не перескакивайте, не пропускайте его!

Даже если вы знаете стереометрию, вы найдете для себя очень много полезного и нового в этом видео.

ЕГЭ 13 (14). Стереометрия. Разбор варианта профильного ЕГЭ 2020

Нужно великолепно знать основные теоремы планиметрии, уметь рассчитывать расстояния, площади и объемы плоских и объемных фигур.

Но самое сложное, нужно научиться строить доказательства с помощью этих теорем и правильно их записывать.

Давайте этим займемся.

  • 00:00 Условие задачи
  • 00:25 Как нарисовать шестиугольную пирамиду
  • 05:52 Как подписать вершины пирамиды
  • 06:24 Как исправить рисунок, если грани пирамиды сливаются
  • 10:18 Доказательство пункта А
  • 14:13 Запись доказательства пункта А
  • 18:50 Доказательство (решение) пункта Б (Найти объем пирамиды)
  • 23:45 Запись доказательства (решения) пункта Б
  • 26:08 Найдем площадь основания пирамиды (чтобы найти объем) и запишем решение
  • 29:18 Нахождение объема пирамиды
  • 29:59 На что рекомендуем обратить внимание

Самые бюджетные курсы по подготовке к ЕГЭ на 90+

Алексей Шевчук – ведущий мини-групп

математика, информатика, физика

+7 (905) 541-39-06 – WhatsApp/Телеграм для записи

alexei.shevchuk@youclever.org – email для записи

  • тысячи учеников, поступивших в лучшие ВУЗы страны
  • автор понятного всем учебника по математике ЮКлэва (с сотнями благодарных отзывов);
  • закончил МФТИ, преподавал на малом физтехе;
  • репетиторский стаж – c 2003 года;
  • в 2021 году сдал ЕГЭ (математика 100 баллов, физика 100 баллов, информатика 98 баллов – как обычно дурацкая ошибка:);
  • отзыв на Профи.ру: “Рейтинг: 4,87 из 5. Очень хвалят. Такую отметку получают опытные специалисты с лучшими отзывами”.

4 марта 2022

В закладки

Обсудить

Жалоба

Задачи по стереометрии в профильном ЕГЭ

Запись вебинара.

Задание 5

Основные типы задач на нахождение

→ объёма тела (многогранника, цилиндра, конуса или других)
→ площади поверхности
→ угла между прямыми
→ расстояния между точками

Задание 13

→ Построение сечений.
→ Угол между прямыми.
→ Угол между плоскостями.
→ Угол между прямой и плоскостью.
→ Расстояние от точки до плоскости.
→ Расстояние между скрещивающимися прямыми.

Презентация: zster.pdf

Понравилась статья? Поделить с друзьями:
  • Стереометрия куб егэ
  • Степенная функция егэ профиль
  • Стереометрия задачи решу егэ
  • Степенина дацюк химия варианты егэ 2022
  • Стереометрия егэ фипи