Анализаторы
Одним из важнейших свойств всего живого является раздражимость — способность воспринимать информацию о внутренней и
внешней среде с помощью рецепторов. В ходе этого ощущение, свет, звук преобразуются рецепторами в нервные
импульсы, которые анализируются центральным отделом нервной системы.
И.П. Павлов при изучении восприятия корой головного мозга различных раздражений ввел понятие анализатор. Под этим
термином скрыта вся совокупность нервных структур, начинающаяся рецепторами и оканчивающаяся корой больших полушарий.
В любом анализаторе выделяют следующие отделы:
- Периферический — рецепторный аппарат органов чувств, который преобразует действие раздражителя в нервные импульсы
- Проводниковый — чувствительные нервные волокна, по которым движутся нервные импульсы
- Центральный (корковый) — участок (доля) коры больших полушарий, который анализирует поступающие нервные импульсы
Зрительный анализатор
С помощью зрения человек получает большую часть информации об окружающей среде. Поскольку эта статья посвящена зрительному
анализатору, рассмотрим его строение и отделы. Наибольшее внимание обратим на периферическую часть — орган зрения,
состоящий из глазного яблока и вспомогательных органов глаза.
Глазное яблоко лежит в костном вместилище — глазнице. Глазное яблоко имеет три оболочки, которые мы детально изучим:
- Наружная, называемая также — фиброзная оболочка
- Средняя — сосудистая оболочка
- Внутренняя оболочка — сетчатка
Эта оболочка подразделяется на роговицу и склеру. Склера — белочная оболочка, которая характеризуется плотностью и непрозрачностью. Она выполняет опорную и защитную функции.
Впереди непрозрачная склера переходит в прозрачную роговицу. Роговица (роговая оболочка) обладает высокими
светопреломляющими способностями, и лишена кровеносных сосудов (а это значит, что она отлично приживается
при трансплантации).
В составе средней оболочки выделяют три части: радужку, ресничное тело и собственно сосудистую оболочку.
Радужка расположена спереди в форме ободка, посередине которого располагается отверстие — зрачок. В радужке
могут находиться разные пигменты и их сочетания, что определяет цвет глаз. Зрачок
способен сужаться (при ярком освещении) и расширяться (в темноте) благодаря наличию в радужке мышц сужающих и расширяющих зрачок.
Ресничное тело расположено впереди собственно сосудистой оболочки. При сокращении ресничной (цилиарной)
мышцы меняется кривизна хрусталика, так как отростки ресничной мышцы крепятся к нему. Изменения кривизны
хрусталика имеет важное значение для аккомодации — настройки глаза на наилучшее видение объекта.
Собственно сосудистая оболочка располагается в задней части глаза, богата кровеносными сосудами, обеспечивающими
питание и транспорт газов для тканей глаза.
Сетчатка изнутри прилежит к сосудистой оболочке. Сетчатка воспринимает световые раздражения и преобразует их
в нервные импульсы. Это становится возможным благодаря наличию в ней особых фоторецепторных клеток — палочек
и колбочек.
Палочки обеспечивают сумеречное зрение (в темноте), колбочки служат для цветового восприятия, активируются при
достаточно интенсивном освещении, вследствие чего в темноте человек практически не различает цветов.
На сетчатке имеются слепое и желтое пятна. Слепым пятном называется место выхода зрительного нерва — здесь отсутствуют палочки и колбочки. Желтое пятно (макула) — место наиболее плотного скопления колбочек, где
чувствительность к свету самая высокая. В центре макулы находится центральная ямка.
Большую часть полости глаза занимает стекловидное тело — прозрачное округлое образование, которое придает глазу шарообразную
форму. Также внутри находится хрусталик — прозрачная двояковыпуклая линза, расположенная позади зрачка. Вы уже знаете, что
изменения кривизны хрусталика обеспечивают аккомодацию — настройку глаза на наилучшее видение объекта.
Но благодаря каким именно механизмам происходит изменение его кривизны? Это возможно за счет сокращения ресничной мышцы.
Попробуйте поднести к носу свой палец, постоянно смотря на него. Вы почувствуете в глазах напряжение — это связно с сокращением
ресничной мышцы, благодаря чему хрусталик становится более выпуклым, чтобы мы могли рассмотреть близкорасположенный предмет.
Представьте другую картину. В кабинете врач говорит пациенту: «Расслабьтесь, посмотрите вдаль». При взгляде вдаль ресничная
мышца расслабляется, хрусталик становится уплощенным. Я очень надеюсь, что приведенные мной примеры помогут вам
мнемонически запомнить состояния ресничной мышцы при рассматривании объектов вблизи и вдали.
По мере прохождения света через прозрачные среды глаза: роговицу, жидкость передней камеры глаза, хрусталик, стекловидное
тело — свет преломляется и оказывается на сетчатке. Запомните, что изображение на сетчатке:
- Действительное — соответствует тому, что на самом деле видим
- Обратное — перевернуто вверх ногами
- Уменьшенное — размеры отраженной «картинки» пропорционально уменьшены
Проводниковый и корковый отделы зрительного анализатора
Мы с вами изучили периферический отдел зрительного анализатора. Теперь вы знаете, что палочки и колбочки, возбужденные световым воздействием,
генерируют нервные импульсы. Отростки нервных клеток собираются в пучки, которые образуют зрительный нерв, выходящий из глазницы и
направляющийся к корковому представительству зрительного анализатора.
Нервные импульсы по зрительному нерву (проводниковый отдел) достигают центрального отдела — затылочных долей коры больших полушарий.
Именно здесь происходит обработка и анализ информации, полученной в виде нервных импульсов.
При падении на затылок в глазах может появиться белая вспышка — «искры из глаз». Это связано с тем, что при падении механически
(вследствие удара) возбуждаются нейроны затылочной доли, зрительного анализатора, что и приводит к подобному явлению.
Заболевания
Конъюнктива — слизистая оболочка глаза, расположенная над роговицей, покрывающая глаз снаружи и выстилающая внутреннюю поверхность век.
Главная функция конъюнктивы — выработка слезной жидкости, увлажняющей и смачивающей поверхность глаза.
В результате аллергических реакций или инфекций нередко происходит воспаление слизистой оболочки глаза — конъюнктивит, который сопровождается гиперемией (повышенным кровенаполнением) сосудов глаза — «красными глазами», а также светобоязнью, слезотечением и отеком век.
Нашего пристального внимания требуют такие состояния как близорукость и дальнозоркость, которые могут быть врожденными, и, в таком
случае, связанными с изменением формы глазного яблока, либо приобретенными и связанными с нарушением аккомодации. В норме лучи
собираются на сетчатке, но при этих заболеваниях все складывается иначе.
При близорукости (миопии) фокус лучей от отраженного предмета возникает впереди сетчатки. При врожденной близорукости глазное яблоко
имеет удлиненную форму, из-за которой лучи не могут достичь сетчатки. Приобретенная близорукость развивается из-за чрезмерной
преломляющей силы глаза, которая может возникать вследствие увеличения тонуса ресничной мышцы.
Близорукие люди плохо видят предметы, расположенные вдали. Для коррекции миопии им требуются очки с двояковогнутыми линзами.
При дальнозоркости (гиперметропии) фокус лучей, отраженных от предмета, собирается позади сетчатки. При врожденной дальнозоркости
глазное яблоко укороченное. Приобретенная форма характеризуется уплощением хрусталика и нередко сопутствует пожилому возрасту.
Дальнозоркие люди плохо видят близкорасположенные предметы. Им необходимы очки с двояковыпуклыми линзами для коррекции зрения.
Гигиена зрения
Для того, чтобы сохранить хорошее зрение на долгие годы, или же не допустить дальнейшего ухудшения зрения, следует
придерживаться следующих правил гигиены зрения:
- Читать, держа текст на расстоянии 30-35 см от глаз
- При письме источник света (лампа) для правшей должен находиться с левой стороны, и, наоборот, для левшей — с правой стороны
- Следует избегать чтения лежа при слабом освещении
- Следует избегать чтения в транспорте, так как расстояние от текста до глаз постоянно меняется. Ресничная мышца то
сокращается, то расслабляется — это приводит к ее слабости, снижению способности к аккомодации и ухудшению зрения - Следует избегать травм глаза, так как повреждения роговицы вызывают нарушение преломляющей способности, что приводит
к ухудшению зрения
© Беллевич Юрий Сергеевич 2018-2023
Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение
(в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов
без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования,
обратитесь, пожалуйста, к Беллевичу Юрию.
Глаз человека.
-
Строение глаза.
-
Аккомодация.
-
Угол зрения.
-
Расстояние наилучшего зрения.
-
Близорукость.
-
Дальнозоркость.
Автор — профессиональный репетитор, автор учебных пособий для подготовки к ЕГЭ Игорь Вячеславович Яковлев
Темы кодификатора ЕГЭ: глаз как оптическая система.
Глаз — удивительно сложная и совершенная оптическая система, созданная природой. Сейчас мы в общих чертах узнаем, как функционирует человеческий глаз. Впоследствии это позволит нам лучше понять принципы работы оптических приборов; да, кроме того, это интересно и важно само по себе.
к оглавлению ▴
Строение глаза.
Мы ограничимся рассмотрением лишь самых основных элементов глаза. Они показаны на рис. 1 (правый глаз, вид сверху).
Рис. 1. Строение глаза |
Лучи, идущие от предмета (в данном случае предметом является фигура человека), попадают на роговицу — переднюю прозрачную часть защитной оболочки глаза. Преломляясь в роговице и проходя сквозь зрачок (отверстие в радужной оболочке глаза), лучи испытывают вторичное преломление в хрусталике. Хрусталик является собирающей линзой с переменным фокусным расстоянием; он может менять свою кривизну (и тем самым фокусное расстояние) под действием специальной глазной мышцы.
Преломляющая система роговицы и хрусталика формирует на сетчатке изображение предмета. Сетчатка состоит из светочувствительных палочек и колбочек — нервных окончаний зрительного нерва. Падающий свет вызывает раздражение этих нервных окончаний, и зрительный нерв передаёт соответствующие сигналы в мозг. Так в нашем сознании формируются образы предметов — мы видим окружающий мир.
Ещё раз взгляните на рис. 1 и обратите внимание, что изображение разглядываемого предмета на сетчатке — действительное, перевёрнутое и уменьшенное. Так получается потому, что предметы, рассматриваемые глазом без напряжения, расположены за двойным фокусом системы роговица-хрусталик (помните случай для собирающей линзы?).
То, что изображение является действительным, понятно: на сетчатке должны пересекаться сами лучи (а не их продолжения), концентрируя световую энергию и вызывая раздражения палочек и колбочек.
Насчёт того, что изображение является уменьшенным, тоже вопросов не возникает. А каким же ему ещё быть? Диаметр глаза равен примерно 25 мм, а поле нашего зрения попадают предметы куда большего размера. Естественно, глаз отображает их на сетчатке в уменьшенном виде.
Но вот как быть с тем, что изображение на сетчатке является перевёрнутым? Почему же тогда мы видим мир не вверх ногами? Здесь подключается корректирующее действие нашего мозга. Оказывается, кора головного мозга, обрабатывая изображение на сетчатке, переворачивает картинку обратно! Это установленный факт, проверенный экспериментами.
Как мы уже сказали, хрусталик — это собирающая линза с переменным фокусным расстоянием. Но зачем хрусталику менять своё фокусное расстояние?
к оглавлению ▴
Аккомодация.
Представьте себе, что вы смотрите на приближающегося к вам человека. Вы всё время чётко его видите. Каким образом глазу удаётся это обеспечивать?
Чтобы лучше понять суть вопроса, давайте вспомним формулу линзы:
.
В данном случае — это расстояние от глаза до предмета, — расстояние от хрусталика до сетчатки, — фокусное расстояние оптической системы глаза. Величина является неиз
менной, поскольку это геометрическая характеристика глаза. Следовательно, чтобы формула линзы оставалась справедливой, вместе с расстоянием до разглядываемого предмета должно меняться и фокусное расстояние .
Например, если предмет приближается к глазу, то уменьшается, поэтому и должно
уменьшаться. Для этого глазная мышца деформирует хрусталик, делая его более выпуклым и уменьшая тем самым фокусное расстояние до нужной величины. При удалении предмета, наоборот, кривизна хрусталика уменьшается, а фокусное расстояние возрастает.
Описанный механизм самонастройки глаза называется аккомодацией. Итак, аккомодация — это способность глаза отчётливо видеть предметы на различных расстояниях. В процессе аккомодации кривизна хрусталика меняется так, что изображение предмета всегда оказывается на сетчатке.
Аккомодация глаза совершается бессознательно и очень быстро. Эластичный хрусталик может легко менять свою кривизну в определённых пределах. Этим естественным пределам деформации хрусталика отвечает
область аккомодации — диапазон расстояний, на которых глаз способен чётко видеть предметы. Область аккомодации характеризуется своими границами -дальней и ближней точками аккомодации.
Дальняя точка аккомодации (дальняя точка ясного видения) — это точка нахождения предмета, изображение которого на сетчатке получается при расслабленной глазной мышце, т. е. когда хрусталик не деформирован.
Ближняя точка аккомодации (ближняя точка ясного видения) — это точка нахождения предмета, изображение которого на сетчатке получается при наибольшем напряжении глазной мышцы, т. е. при максимально возможной деформации хрусталика.
Дальняя точка аккомодации нормального глаза находится на бесконечности: в ненапряжённом состоянии глаз фокусирует параллельные лучи на сетчатке (рис. 2, слева). Иными словами, фокусное расстояние оптической системы нормального глаза при недеформированном хрусталике равно расстоянию от хрусталика до сетчатки.
Ближняя точка аккомодации нормального глаза расположена на некотором расстоянии от него (рис. 2, справа; хрусталик максимально деформирован). Это расстояние с возрастом увеличивается. Так, у десятилетнего ребёнка см; в возрасте 30 лет см; к 45 годам ближняя точка аккомодации находится уже на расстоянии 20–25 см от глаза.
Рис. 2. Дальняя и ближняя точки аккомодации нормального глаза |
Теперь мы переходим к простому, но очень важному понятию угла зрения. Оно является ключевым для понимания принципов работы различных оптических приборов.
к оглавлению ▴
Угол зрения.
Когда мы хотим получше рассмотреть предмет, мы приближаем его к глазам. Чем ближе предмет, тем больше его деталей оказываются различимыми. Почему так получается?
Давайте посмотрим на рис. 3. Пусть стрелка — рассматриваемый предмет, — оптический центр глаза. Проведём лучи и (которые не преломляются) и получим на сетчатке изображение нашего предмета — красную изогнутую стрелочку.
Рис. 3. Предмет далеко, угол зрения мал |
Угол называется углом зрения. Если предмет расположен далеко от глаза, то угол зрения мал, и размер изображения на сетчатке также оказывается малым.
Рис. 4. Предмет близко, угол зрения велик |
Но если предмет расположить ближе, то угол зрения увеличивается (рис. 4). Соответственно увеличивается и размер изображения на сетчатке. Сравните рис. 3 и рис. 4 — во втором случае изогнутая стрелочка оказывается явно длиннее!
Размер изображения на сетчатке — вот что важно для подробного разглядывания предмета. Сетчатка, напомним, состоит из нервных окончаний зрительного нерва. Поэтому чем крупнее изображение на сетчатке, тем больше нервных окончаний раздражается идущими от предмета световыми лучами, тем больший поток информации о предмете направляется по зрительному нерву в мозг — и, следовательно, тем больше подробностей мы различаем, тем лучше мы видим предмет!
Ну а размер изображения на сетчатке, как мы уже убедились из рисунков 3 и 4, напрямую зависит от угла зрения: чем больше угол зрения, тем крупнее изображение. Поэтому вывод: увеличивая угол зрения, мы различаем больше подробностей рассматриваемого объекта.
Вот почему мы одинаково плохо видим как мелкие объекты, пусть и находящиеся рядом, так и крупные объекты, но расположенные далеко. В обоих случаях угол зрения мал, и на сетчатке раздражается небольшое число нервных окончаний. Известно, кстати, что если угол зрения меньше одной угловой минуты (1/60 градуса), то раздражается лишь одно нервное окончание. В этом случае мы воспринимаем объект просто как точку, лишённую деталей.
к оглавлению ▴
Расстояние наилучшего зрения.
Итак, приближая предмет, мы увеличиваем угол зрения и различаем больше деталей. Казалось бы, оптимального качества видения мы достигнем, если расположим предмет максимально близко к глазу — в ближней точке аккомодации (в среднем это 10–15 см от глаза).
Однако мы так не поступаем. Например, читая книгу, мы держим её на расстоянии примерно 25 см. Почему же мы останавливаемся на этом расстоянии, хотя ещё имеется ресурс дальнейшего увеличения угла зрения?
Дело в том, что при достаточно близком расположении предмета хрусталик чрезмерно деформируется. Конечно, глаз ещё способен чётко видеть предмет, но при этом быстро утомляется, и мы испытываем неприятное напряжение.
Величина см называется расстоянием наилучшего зрения для нормального глаза. При таком расстоянии достигается компромисс: угол зрения уже достаточно велик, и в то же время глаз не утомляется ввиду не слишком большой деформации хрусталика. Поэтому с расстояния наилучшего зрения мы можем полноценно созерцать предмет в течении весьма долгого времени.
к оглавлению ▴
Близорукость.
Напомним, что фокусное расстояние нормального глаза в расслабленном состоянии равно расстоянию от оптического центра до сетчатки. Нормальный глаз фокусирует параллельные лучи на сетчатке и поэтому может чётко видеть удалённые предметы, не испытывая напряжения.
Близорукость — это дефект зрения, при котором фокусное расстояние расслабленного глаза меньше расстояния от оптического центра до сетчатки. Близорукий глаз фокусирует параллельные лучи перед сетчаткой, и от этого изображения удалённых объектов оказываются размытыми (рис. 5; хрусталик не изображаем).
Рис. 5. Близорукость |
Потеря чёткости изображения наступает, когда предмет находится дальше определённого расстояния. Это расстояние соответствует дальней точке аккомодации близорукого глаза. Таким образом, если у человека с нормальным зрением дальняя точка аккомодации находится на бесконечности, то у близорукого человека дальняя точка аккомодации расположена на конечном расстоянии перед ним.
Соответственно, ближняя точка аккомодации у близорукого глаза находится ближе, чем у нормального.
Расстояние наилучшего зрения для близорукого человека меньше 25 см. Близорукость корректируется с помощью очков с рассеивающими линзами. Проходя через рассеивающую линзу, параллельный пучок света становится расходящимся, в результате чего изображение бесконечно удалённой точки отодвигается на сетчатку (рис. 6). Если при этом мысленно продолжить расходящиеся лучи, попадающие в глаз, то они соберутся в дальней точке аккомодации .
Рис. 6. Коррекция близорукости с помощью очков |
Таким образом, близорукий глаз, вооружённый подходящими очками, воспринимает параллельный пучок света как исходящий из дальней точки аккомодации. Вот почему близорукий человек в очках может отчётливо рассматривать удалённые предметы без напряжения в глазах. Из рис. 6 мы видим также, что фокусное расстояние подходящей линзы равно расстоянию от глаза до дальней точки аккомодации.
к оглавлению ▴
Дальнозоркость.
Дальнозоркость — это дефект зрения, при котором фокусное расстояние расслабленного глаза больше расстояния от оптического центра до сетчатки.
Дальнозоркий глаз фокусирует параллельные лучи за сетчаткой, отчего изображения удалённых объектов оказываются размытыми (рис. 7).
Рис. 7. Дальнозоркость |
На сетчатке же фокусируется сходящийся пучок лучей. Поэтому дальняя точка аккомодации дальнозоркого глаза оказывается мнимой: в ней пересекаются мысленные продолжения лучей сходящегося пучка, попадающего на глаз (мы увидим это ниже на рис. 8). Ближняя точка аккомодации у дальнозоркого глаза расположена дальше, чем у нормального.Расстояние наилучшего зрения для дальнозоркого человека больше 25 см.
Дальнозоркость корректируется с помощью очков с собирающими линзами. После прохождения собирающей линзы параллельный пучок света становится сходящимся и затем фокусируется на сетчатке (рис. 8).
Рис. 8. Коррекция дальнозоркости с помощью очков |
Параллельные лучи после преломления в линзе идут так, что продолжения преломлённых лучей пересекаются в дальней точке аккомодации . Поэтому дальнозоркий человек, вооружённый подходящими очками, будет отчётливо и без напряжения рассматривать удалённые предметы. Мы также видим из рис. 8, что фокусное расстояние подходящей линзы равно расстоянию от глаза до мнимой дальней точки аккомодации.
Спасибо за то, что пользуйтесь нашими статьями.
Информация на странице «Глаз человека.» подготовлена нашими редакторами специально, чтобы помочь вам в освоении предмета и подготовке к ЕГЭ и ОГЭ.
Чтобы успешно сдать необходимые и поступить в высшее учебное заведение или колледж нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими статьями из разделов нашего сайта.
Публикация обновлена:
09.03.2023
в условии
в решении
в тексте к заданию
в атрибутах
Категория:
Атрибут:
Всего: 84 1–20 | 21–40 | 41–60 | 61–80 …
Добавить в вариант
Выберите три верно обозначенные подписи к рисунку «Строение глаза человека». Запишите в таблицу цифры, под которыми они указаны.
1) склера
2) сетчатка
3) слепое пятно
4) роговица
5) хрусталик
6) стекловидное тело
Выберите три верно обозначенные подписи к рисунку «Строение глаза». Запишите в таблицу цифры, под которыми они указаны.
1) роговица
2) стекловидное тело
3) радужная оболочка
4) зрительный нерв
5) хрусталик
6) сетчатка
Выберите три верно обозначенные подписи к рисунку, на котором изображено строение глаза. Запишите в таблицу цифры, под которыми они указаны.
1) стекловидное тело
2) склера
3) хрусталик
4) сосудистая оболочка
5) ресничная мышца
6) роговица
Выберите три верно обозначенные подписи к рисунку «Строение глаза человека». Запишите в таблицу цифры, под которыми они указаны.
1) склера
2) сетчатка
3) слепое пятно
4) роговица
5) хрусталик
6) стекловидное тело
Раздел: Человек
Установите соответствие между характеристиками и структурами, обозначенными на рисунке выше цифрами 1, 2, 3: к каждой позиции, данной в первом столбце, подберите соответствующую позицию из второго столбца.
ХАРАКТЕРИСТИКИ
А) Биологическая линза глаза
Б) Граничит с непрозрачной внешней оболочкой глаза — склерой
В) Удерживается ресничным телом
Г) Внешний элемент оптической системы глаза
Д) Гелеобразная прозрачная субстанция
Е) Поддерживает форму глаза
Запишите в ответ цифры, расположив их в порядке, соответствующем буквам:
А | Б | В | Г | Д | Е |
Показать
1
Какой цифрой на рисунке обозначено место наибольшей остроты зрения?
Экспериментатор провел с испытуемым (15-летним подростком) следующий опыт. Испытуемый закрывал левый глаз рукой. Экспериментатор включал на 10 секунд электрический звонок и затемнял правый глаз испытуемого темным экраном. С интервалами 40 секунд сочетанное действие звонка и затемнение правого глаза экспериментатор повторил 10 раз. Затем, не закрывая правый глаз экраном, включил звонок и заметил расширение зрачка. Объясните результаты эксперимента. Какой рефлекс был выработан у испытуемого? Какой фактор в этом эксперименте был безусловным раздражителем, а какой — условным раздражителем? Какое влияние оказывают эти раздражители на испытуемого? Какие параметры в эксперименте задавались самим экспериментатором (независимые переменные), а какой параметр менялся в зависимости от этого (зависимая переменная)?
Источник/автор: Ольга Саблина
Хрусталик:
1) является основной светопреломляющей структурой глаза,
3) регулирует поток света, поступающего в глаз,
4) обеспечивает питание глаза.
Установите соответствие между характеристиками и структурами, обозначенными на рисунке выше цифрами 1, 2, 3: к каждой позиции, данной в первом столбце, подберите соответствующую позицию из второго столбца.
ХАРАКТЕРИСТИКИ
А) Пространство между роговицей и радужкой
Б) Регулирует поток света, попадающего на сетчатку
В) Участвует в повороте глаза
Г) Содержит внутриглазную жидкость
Д) Отвечает за цвет глаза
Е) Влияет на диаметр зрачка
Запишите в ответ цифры, расположив их в порядке, соответствующем буквам:
А | Б | В | Г | Д | Е |
Показать
1
Какой цифрой на рисунке обозначена сетчатка глаза?
Глаза птиц и млекопитающих имеют большое анатомическое сходство. Какие особенности строения глазного яблока обеспечивают его светочувствительность? Объясните, в связи с каким образом жизни у большинства птиц отряда Совообразные светочувствительность глаз выше, чем у птиц отряда Соколообразные? Какой вид фоторецепторов обеспечивает высокую светочувствительность глаз у Совообразных?
Источник: ЕГЭ по биологии 14.06.2022. Основная волна. Разные задачи
Установите соответствие между функцией глаза и оболочкой, которая эту функцию выполняет.
ОБОЛОЧКИ ГЛАЗА
1) белочная
2) сосудистая
3) сетчатка
ФУНКЦИИ ОБОЛОЧЕК
А) защита от механических и химических повреждений
Б) снабжение глазного яблока кровью
В) поглощение световых лучей
Г) участие в восприятии света
Д) преобразование раздражения в нервные импульсы
Запишите в ответ цифры, расположив их в порядке, соответствующем буквам:
A | Б | В | Г | Д |
Какую роль играют оболочки глаза человека?
Раздел: Человек
Установите соответствие между характеристиками и структурами, обозначенными на рисунке выше цифрами 1, 2, 3: к каждой позиции, данной в первом столбце, подберите соответствующую позицию из второго столбца.
ХАРАКТЕРИСТИКИ
А) Содержит колбочки и палочки
Б) Непрозрачная внешняя оболочка глаза
В) Отвечает за питание глаза
Г) Обладает сосудами
Д) Имеет места креплений глазодвигательных мышц
Е) Состоит из фоторецепторов
Запишите в ответ цифры, расположив их в порядке, соответствующем буквам:
А | Б | В | Г | Д | Е |
Показать
1
Какой цифрой на рисунке обозначена структура, регулирующая количество света, который поступает на сетчатку?
Установите соответствие между характеристиками и структурами, обозначенными на рисунке выше цифрами 1, 2, 3: к каждой позиции, данной в первом столбце, подберите соответствующую позицию из второго столбца.
ХАРАКТЕРИСТИКИ
А) Участвует во внутриглазном обмене веществ
Б) Передача информации в центральную нервную систему
В) Совпадает с местом расположения слепого пятна
Г) Прозрачная оболочка, покрывающая переднюю часть глаза
Д) Содержит много воды
Е) Обеспечивает несжимаемость глаза
Запишите в ответ цифры, расположив их в порядке, соответствующем буквам:
А | Б | В | Г | Д | Е |
Показать
1
Какой цифрой на рисунке обозначено слепое пятно?
Экспериментатор провел с испытуемым (15-летним подростком) следующий опыт. Испытуемый надевал оправу очков (рис. 2) с укрепленной на ней трубкой для подачи воздуха, соединенной с резиновой грушей (рис. 1). При нажатии груши струя воздуха попадала в глаз испытуемому, и он моргал. Экспериментатор 10 раз с интервалом 20 секунд, повторил следующие действия: включал электрический звонок и через секунду нажимал на грушу. Затем экспериментатор изменил свои действия: включив звонок, не нажал на грушу. При этом испытуемый заморгал. Объясните результаты эксперимента. Какой рефлекс был выработан у испытуемого? Какой фактор в этом эксперименте был безусловным раздражителем, а какой — условным раздражителем? Какое влияние оказывают эти раздражители на испытуемого? Какие параметры в эксперименте задавались самим экспериментатором (независимые переменные), а какой параметр менялся в зависимости от этого (зависимая переменная)?
Источник/автор: Ольга Саблина
Светочувствительные рецепторы глаза — палочки и колбочки — находятся в оболочке
К оптической системе глаза относится
1) сетчатка, белочная оболочка и роговица
2) зрачок, сосудистая и радужная оболочка
3) зрачок, слепое пятно, жёлтое пятно
4) роговица, хрусталик, стекловидное тело
Выберите три верных ответа из шести и запишите в таблицу цифры, под которыми они указаны. К светопреломляющим структурам глаза относятся:
1) роговица
2) зрачок
3) хрусталик
4) стекловидное тело
5) сетчатка
6) жёлтое пятно
Установите правильную последовательность передачи светового сигнала по структурам глаза. Запишите в таблицу соответствующую последовательность цифр.
1) стекловидное тело
2) хрусталик
3) зрительный нерв
4) рецепторы сетчатки
5) роговица
Установите правильную последовательность расположения оболочек и структур глаза человека, в обратном порядке, начиная с сетчатки. Запишите в таблицу соответствующую последовательность цифр.
1) роговица
2) стекловидное тело
3) радужная оболочка
4) задняя водянистая камера
5) сетчатка
6) хрусталик
Какие структуры глаза участвуют в фокусировке и регуляции интенсивности света при регистрации зрительного образа? Каким образом происходит данная регуляция? Ответ поясните.
Всего: 84 1–20 | 21–40 | 41–60 | 61–80 …
Оптическая система — структуры, через которые проходят лучи света для достижения сетчатки. Рассмотрим отделы этой системы.
1. Роговица
преломляет световой луч и отправляет его на хрусталик.
2. Передняя камера глаза с водянистой влагой, расположенная между роговицей и зрачком.
3. Зрачок
— окруженный мышцами проем в радужной оболочке,.
4. Хрусталик
фокусирует лучи света и преломляет их. Обеспечивает отчетливое изменение за счет изменений кривизны.
5. Стекловидное тело — прозрачное вещество между хрусталиком и сетчаткой. Придает форму глазному яблоку.
Как свет проходит через сетчатку?
1. Световые лучи проникают через нейроны вглубь сетчатки к фоторецепторам — палочкам и колбочкам.
2. В фоторецепторах возникает возбуждение, формируется нервный импульс.
3. Далее импульсы от рецепторов передаются на слои нейронов (биполярные клетки, ганглиозные клетки).
Куда идет нервный импульс от сетчатки?
1. От нейронов импульсы следуют по нервным волокнам в средний мозг — первичный зрительный центр, а также в таламус.
2. Далее импульсы идут в затылочную долю коры, где изображение окончательно анализируется.
Формирование изображения на сетчатке
Изображение на сетчатке получается перевернутым и уменьшенным. Но благодаря совместной работе анализаторов (а помимо зрительного это органы равновесия, мышечного и кожного чувства) мы получаем целостные образы предметов и явлений.
Аккомодация — важнейшее свойство глаза, благодаря которому глаз приспосабливается к ясному видению предметов. При аккомодации изменяется кривизна хрусталика, он то уплощается, то становится выпуклым, из-за чего меняется преломляющая сила оптической системы. При переводе взгляда с удаленных предметов на близкие путем аккомодации мгновенно настраивается резкость.
Нарушения зрения
1. Близорукость. Врожденная близорукость характеризуется удлиненным глазным яблоком. Из-за этой анатомической особенности лучи не могут достигать сетчатки и фокусируются внутри него. Попросту говоря, происходит «недолет». Однако приобретенная близорукость очень часто развивается в течение жизни, ею страдает в среднем каждый седьмой житель планеты. Ее причина — увеличение кривизны хрусталика при наследственной предрасположенности, нарушенном обмене веществ, травмах или повышенной долговременной нагрузке на глаза. При близорукости предписано постоянно или по мере нужды носить очки с двояковогнутыми линзами.
2. Дальнозоркость. Укороченное глазное яблоко — причина врожденной дальнозоркости. Происходит «перелет», лучи минуют яблоко, изображение формируется за сетчаткой. Приобретенная дальнозоркость — тоже явление нередкое, она возникает из-за уменьшения выпуклости хрусталика, что более характерно для людей пожилого возраста и связано с излишним расслаблением ресничных мышц, потерей ими тонуса. Очки в этом случае нужны с двояковыпуклыми линзами.
На этой странице вы узнаете
- Почему говорят, что для хорошего зрения нужно есть морковку?
- От чего зависит цвет глаз?
- Почему на некоторых фотографиях у людей получаются красные глаза?
Самые большие глаза, которые есть у ныне существующих животных — это глаза гигантских кальмаров, которые могут достигать полуметрового размера. И это неудивительно, ведь зрение — это важнейший способ восприятия окружающего нас мира, с помощью которого мы получаем 60-70% всей входящей информации. Мы можем любоваться красивым пейзажем, смотреть на дорогих нам людей, наслаждаться произведениями искусства, — и всё это благодаря зрительному анализатору, подробнее о котором поговорим в этой статье.
Общее строение анализатора
Анализатор — функциональная единица, отвечающая за восприятие и анализ сенсорной информации.
С помощью анализаторов или органов чувств мы взаимодействуем с окружающим нас миром. Каждый анализатор состоит из трех отделов:
1) Периферический отдел — это рецептор, он отвечает за восприятие и преобразование механических и химических сигналов внешнего и внутреннего мира в нервные импульсы.
2) Проводниковый отдел — это чувствительный нерв, он включает в себя чувствительные нейроны и проводящие пути от рецептора до коры полушарий большого мозга.
3) Центральный (корковый) отдел — это участки коры больших полушарий головного мозга, воспринимающие и обрабатывающие информацию от соответствующих рецепторов.
Рецептор
Рецептор — это специальная чувствительная клетка или чувствительное нервное окончание, которое воспринимает раздражение и преобразует его в нервный импульс.
В зависимости от расположения в организме рецепторы бывают:
- Экстерорецепторы (от “экстеро” — снаружи) — расположены в коже, слизистых, органах чувств;
- Интерорецепторы (от “интеро” — внутри) — расположены во внутренних органах;
- Проприорецепторы — рецепторы опорно-двигательного аппарата (находятся в сухожилиях, суставах).
Только в коже насчитывается около 500 тысяч осязательных рецепторов. То есть на каждый квадратный сантиметр кожи приходится около 25 рецепторов. Если бы у нас не было столько рецепторов, мы бы просто не выжили: рецепторы постоянно предупреждают нас об опасностях.
Разные рецепторы реагируют на разные стимулы: на изменение давления, температуры, химического состава воздуха и т.д. В зависимости от природы воспринимаемых стимулов рецепторы подразделяются на:
- Механорецепторы — рецепторы, реагирующие на какое-то механическое воздействие: тактильные, проприорецепторы, слуховые, вестибулярные, барорецепторы (на давление), волюморецепторы (на растяжение).
Например, закройте глаза и проведите пальцем по поверхности стола. Его гладкость или шероховатость, наличие или отсутствие узоров, — всё это воспринимают ваши механорецепторы.
- Терморецепторы — рецепторы, реагирующие на изменение температуры: холодовые и тепловые.
А теперь заварите себе чай. Если вы попытаетесь взять кружку не за ручку, а целиком, то скорее всего вы обожжетесь и отодвинете ее куда подальше. Это работа терморецепторов.
- Фоторецепторы — рецепторы, связанные с восприятием световых лучей: палочки и колбочки сетчатки.
Для знакомства с работой ваших фоторецепторов вам не нужно совершать какие-то особые действия: просто не закрывайте глаза. Абсолютно всё, что вы сейчас видите, — это результат работы колбочек и палочек.
- Хеморецепторы — рецепторы, воспринимающие изменение химического состава: обонятельные, вкусовые, некоторые интерорецепторы.
Ваш чай еще не остыл? Пододвигайте кружку обратно: самое время чем-то подкрепиться! Отломите кусочек шоколадки и положите его в рот. Ощущаете приятную сладость? Поблагодарите свои хеморецепторы — восприятие вкуса возможно благодаря им .
Зрительный анализатор
Начиная изучение строения любого анализатора, следует отвечать на три вопроса:
- Какая структура воспринимает изменение в окружающей среде?
- Какая структура проводит нервный импульс?
- Какая доля мозга обрабатывает информацию?
Отвечая на эти вопросы относительно зрительного анализатора, мы получим следующую картину:
- Рецепторы сетчатки воспринимают сигналы окружающей среды (освещение, цвет, форму объектов) — это периферический отдел.
- Зрительный нерв проводит нервный импульс от рецепторов к мозгу — это проводниковый отдел.
- Зрительная кора в затылочной доле больших полушарий обрабатывает информацию — это центральный отдел.
Органы зрения состоят из глазного яблока и вспомогательного аппарата.
Вспомогательный аппарат глаза включает в себя:
- Брови — защищают глаза от пота.
- Ресницы — защищают глаза от пыли.
- Веки — механическая защита и поддержание влажности.
- Слезный аппарат — состоит из слезных желез, которые выделяют слезную жидкость, увлажняющую, промывающую и дезинфицирующую глаза и слезовыводящих протоков. Избыток слезной жидкости удаляется в носовую полость через слезный канал, расположенный во внутреннем углу глазницы.
- Двигательный аппарат — прямые и косые мышцы, двигающие глазное яблоко.
Строение глаза
Глазное яблоко состоит из трех оболочек:
1) Белочная оболочка (склера) — это наружная оболочка, состоящая из соединительной ткани. Она выполняет функцию защиты глаза, а также придает ему форму. Спереди она переходит в прозрачную структуру — роговицу.
2) Сосудистая оболочка — это средняя оболочка, которая содержит кровеносные сосуды, питающие глазное яблоко. Спереди она переходит в радужку, в которой есть отверстие – зрачок. В зависимости от интенсивности освещения он меняет свои размеры.
3) Сетчатая оболочка — внутренняя оболочка, содержащая рецепторы, отвечающие за восприятие света и преобразование его в нервный импульс. В сетчатке выделяют два типа рецепторов:
- Палочки — воспринимают свет в условиях сумеречного освещения, содержат пигмент родопсин.
- Колбочки — воспринимают дневной свет и цвета при ярком освещении, содержат пигмент йодопсин.
Дело в том, что в моркови, а также в рыбе, яйцах, сыре и других продуктах содержится витамин А. Он необходим для синтеза родопсина — главного пигмента палочек, рецепторов, воспринимающих световые стимулы.
В сетчатке выделяют два “пятна”:
- Желтое пятно — место наибольшей концентрации колбочек. Здесь глаз обладает наибольшей остротой зрения и наилучшим восприятием цвета.
- Слепое пятно – место выхода зрительного нерва из глазного яблока. Здесь отсутствуют палочки и колбочки.
В структуре глаза можно выделить такое образование, как радужка. Она содержит пигменты, их концентрация и соотношение и определяет цвет наших глаз. Наличие пигментов обусловлено генетически. Например, голубой цвет глаз связан с наличием малого количества меланина, а коричневый или черный — с его высокой концентрацией.
Светопреломляющие структуры
Прежде чем свет достигнет сетчатки глаза, он должен пройти через несколько светопреломляющих структур:
- Роговица — передняя прозрачная часть склеры, является первой линзой на пути световых лучей. Функция — механическая защита глаза и пропускание световых лучей.
- Передняя камера глаза — пространство между роговицей и радужной оболочкой, заполненное прозрачной жидкостью — водянистой влагой.
- Задняя камера глаза — пространство между радужной оболочкой и хрусталиком, заполненное прозрачной жидкостью — водянистой влагой.
- Стекловидное тело — полость глаза между хрусталиком и глазным дном, заполненная прозрачным вязким гелем, поддерживающим форму глаза.
- Хрусталик — прозрачная двояковыпуклая линза, которая может изменять свою кривизну и таким образом фокусировать световые лучи. Изменять кривизну хрусталика помогает ресничное тело (цилиарная мышца). Вот, как это происходит:
При плохом освещении зрачок расширяется, а при резком включении вспышки он начинает сужаться, чтобы уменьшить количество поступающего в глаз света, но не успевает сделать это полностью. Из-за этого свет попадает на сосудистую оболочку, и отражается от нее. То есть камера фиксирует цвет сосудистой оболочки глазного дна в отраженном свете при фотовспышке.
Заболевания и аномалии зрения
Из-за неправильного преломления световых лучей они могут фокусироваться не на сетчатке, из-за чего человек испытывает трудности:
Близорукость (миопия) – изображение фокусируется перед сетчаткой, из-за чего человек видит четко только предметы, расположенные вблизи. Причина — слишком длинное глазное яблоко или чересчур выпуклый хрусталик. Исправляется очками с двояковогнутыми линзами.
Дальнозоркость (гиперметропия) — изображение формируется за сетчаткой, из-за чего человек видит четко только предметы, расположенные вдалеке. Причина — слишком короткое глазное яблоко или чересчур уплощенный хрусталик. Исправляется очками с двояковыпуклыми линзами.
Астигматизм — вызван невозможностью схождения всех лучей в одну точку вследствие неодинакового преломления лучей в разных частях глаза, из-за чего изображение воспринимается нечетким. Исправляется очками со сфероцилиндрическими линзами.
В результате различных инфекций или других патологий могут возникать следующие дефекты:
Катаракта — оптический дефект, при котором происходит помутнение хрусталика. Развитию катаракты способствуют нарушение обмена веществ, сахарный диабет, авитаминоз и другие причины. Зачастую требуется оперативное вмешательство.
Конъюнктивит — воспаление слизистой оболочки глаза (конъюнктивы), которая покрывает глаза снаружи и заднюю поверхность век и секретирует жидкость, увлажняющую глаза. При этом заболевании глаза краснеют и слезоточат. Лечится с помощью противобактериальных или противовирусных, а также противоаллергических препаратов.
Бельмо — оптический дефект, при котором происходит помутнение роговицы. Часто является последствием предшествующих воспалительных процессов оболочек глаза.
Фактчек
- Анализатор состоит из трех анатомически и функционально связанных между собой элементов: периферический, проводниковый и корковый отдел.
- В составе зрительного анализатора выделяют: периферический отдел (рецепторы сетчатки), проводниковый отдел (зрительный нерв) и центральный отдел (затылочные доли больших полушарий).
- Вспомогательный аппарат глаза включает в себя защитные приспособления (брови, ресницы, веки), слезный аппарат и двигательный аппарат (прямые и косые мышцы глаза).
- Глазное яблоко состоит из трех оболочек — наружной волокнистой, сосудистой и внутренней сетчатой.
- В состав сетчатки входят два типа рецепторов — палочки и колбочки.
- Глазное яблоко содержит светопреломляющие структуры, при прохождении через которые луч света преломляется: роговицу, хрусталик, стекловидное тело и жидкости передней и задней камер глаза.
- При близорукости изображение фокусируется перед сетчаткой, из-за чего человек хорошо видит вблизи.
- При дальнозоркости изображение фокусируется за сетчаткой, из-за чего человек хорошо видит далекие предметы.
Проверь себя
Задание 1.
В какой отдел анализатора входит нерв?
- Периферический
- Проводниковый
- Корковый
Задание 2.
К каким рецепторам относятся слуховые рецепторы?
- Механорецепторы
- Терморецепторы
- Фоторецепторы
- Хеморецепторы
Задание 3.
Какие линзы нужны при близорукости?
- Двояковогнутые
- Двояковыпуклые
- Сфероцилиндрические
Задание 4.
Выберите все светопреломляющие структуры глаза:
- Слепое пятно
- Задняя камера
- Хрусталик
- Коблочки
- Все вышеперечисленные
Ответы: 1. — 2; 2. — 1; 3. — 1; 4. — 23.