Строение хлоропласта рисунок
Скачать
Хлоропласты Строма тилакоиды граны
Скачать
Строение клетки хлоропласты
Скачать
Хлоропласты Строма тилакоиды граны
Скачать
Пластиды хлоропласты
Скачать
Структурные компоненты хлоропластов
Скачать
Строение хлоропласта
Скачать
Схема строения хлоропласта
Скачать
Схематическое строение хлоропласта
Скачать
Строение хлоропласта без подписей
Скачать
Схема строения хлоропласта растительной клетки
Скачать
Строение хлоропласта Строма
Скачать
Строма Грана тилакоид
Скачать
Структура клетки растения пластиды
Скачать
Пластиды хлоропласты строение
Скачать
Схема строения хлоропласта
Скачать
Строение хлоропласта
Скачать
Строение хлоропласта Строма
Скачать
Ламеллы хлоропластов
Скачать
Хлоропласты строение и функции
Скачать
Схема строения хлоропласта
Скачать
Ламеллы хлоропластов
Скачать
Пластиды хлоропласт биология рисунок
Скачать
Подробное строение хлоропласта
Скачать
Схема внутреннего строения хлоропласта
Скачать
Хлоропласты на схеме клетки
Скачать
Что такое хлоропласты в биологии 6 класс
Скачать
Схема строения хлоропласта биология 9 класс
Скачать
Хлоропласты хлорофиллы рисунок
Скачать
Строение хлоропласта Строма
Скачать
Строение хлоропласта рисунок с подписями черно белый
Скачать
Строение хлоропласта фотосинтез
Скачать
Строение хлоропласта Ламелла
Скачать
Строение хлоропласта фотосинтез
Скачать
Строение хлоропласта биология 5 класс
Скачать
Схема строения хлоропласта
Скачать
Хлоропласт строение черно белое
Скачать
Строение хлоропласта без обозначений
Скачать
Строение хлоропласта Ламелла
Пластиды функции органоида
Скачать
Строение хлоропласта рисунок
Скачать
Хлоропласты Строма тилакоиды граны
Скачать
Строение хлоропласта без подписей
Скачать
Клетка с пластидами и хлоропластами
Скачать
Строение хлоропласта 10 класс биология
Скачать
Строение хлоропласта Ламелла
Скачать
Скачать
Фотосинтез происходит в две фазы, а именно в световую фазу и темновую фазу.
Во время световой фазы происходит образование энергии, которая затем расходуется на темновые реакции. Процесс световой фазы фотосинтеза включает в себя нециклическое фотофосфорилирование и фотолиз воды. В качестве побочного продукта реакции в результате фотолиза воды выделяется кислород. Реакция происходит на мембранах тилакоидов.
Квант красного света, поглощенный хлорофиллом П680 (фотосистема ІІ), переводит электрон в возбужденное состояние (рис. 6). Возбужденный светом электрон приобретает большой запас энергии, вследствие чего перемещается на более высокий энергетический уровень. Такой электрон захватывается акцептором электронов Х, перемещаясь с одной ступени на другую, то есть от одного акцептора к другому, он теряет энергию, которая используется для синтеза АТФ.
Рис. 6. Схема процессов световой фазы фотосинтеза
Место вышедших электронов молекулы хлорофилла П680, занимают электроны воды, так как вода под действием света подвергается фотолизу, где в качестве побочного продукта образуется кислород. Фотолиз происходит в полости тилакоида (рис. 7).
Рис. 7. Фотолиз воды
В фотосистеме І возбужденные электроны под действием фотона света также переходят на более высокий уровень и захватываются акцептором Y. В конце концов, электроны доходят от Y до переносчика – НАДФ, и, взаимодействуя с ионами водорода, выделенными при фотолизе воды, образуют восстановленный НАДФН. НАДФ расшифровывается как – никотинамидадениндинуклеотидфосфат.
Рис. 8. Взаимодействие фотосистемы I и фотосистемы II
Место вышедших электронов в молекуле П700 занимают электроны, полученные от фотосистемы II П680 (рис. 8). Таким образом, на свету электроны перемещаются от воды к фотосистемам II и I, и затем к НАДФ. Такой однонаправленный поток электронов носит название нециклического потока электронов, а образование АТФ, которое при этом происходит, носит название нециклического фотофосфорилирования. Таким образом, в световой фазе образуются АТФ и восстановленный НАДФ, богатые энергией, и в качестве побочного продукта реакции выделяется кислород.
Темновая фаза фотосинтеза. Если световая фаза протекает только на свету, то темновая фаза не зависит от света. Темновая фаза протекает в строме хлоропластов, куда переносятся богатые энергией соединения, а именно АТФ и восстановленный НАДФ, кроме этого, туда же поступает углекислый газ в качестве источника углеводов, который берется из воздуха и поступает в растения через устьица. В реакциях темновой фазы углекислый газ восстанавливается до глюкозы с помощью энергии, запасенной молекулами АТФ и НАДФ.
Превращение углекислого газа в глюкозу в ходе темновой фазы фотосинтеза получило название цикла Кальвина – по имени его первооткрывателя.
Первая стадия фотосинтеза – световая – происходит на мембранах хлоропласта в тилакоидах.
Вторая стадия фотосинтеза – темновая – протекает внутри хлоропласта, в строме.
Суммарное уравнение фотосинтеза выглядит следующим образом. При взаимодействии 6 молекул углекислого газа и 6 молекул воды образуется одна молекула глюкозы и выделяется шесть молекул кислорода. Этот процесс протекает на свету в хлоропластах у высших растений.
Таким образом, фотосинтез – процесс превращения вещества и энергии.
Изучая строение растительной клетки, рисунок с подписями станет полезным визуальным конспектом для усвоения этой темы. Но сначала немного истории.
Историю открытия и изучения клетки связывают с именем английского изобретателя Роберта Гука. В 17 веке, на срезе растительной пробки, рассматриваемой под микроскопом, Р. Гук обнаружил ячейки, которые и были в дальнейшем названы клетками.
Основные сведения о клетке были представлены позже немецким ученым Т. Шванном в клеточной теории, сформулированной в 1838 году. Основные положения этого трактата гласят:
- все живое на земле состоит из структурных единиц — клеток,
- по строению и функциям все клетки имеют общие черты. Эти элементарные частицы способны к размножению, которое возможно благодаря делению материнской клетки,
- в многоклеточных организмах клетки способны объединяться на основании общих функций и структурно-химической организации в ткани.
Клетка растения
Растительная клетка, наряду с общими признаками и схожестью в строении с животной, имеет и свои отличительные особенности, присущие только ей:
- наличие клеточной стенки (оболочки),
- наличие пластид,
- наличие вакуоли.
Строение растительной клетки
На рисунке схематично показана модель растительной клетки, из чего она состоит, как называются основные её части.
Ниже будет подробно рассказано о каждой из них.
Органоиды клетки и их функции описательная таблица
В таблице собрана важная информация об органоидах клетки. Она поможет школьнику составить план рассказа по рисунку.
Органоид | Описание | Функция | Особенности |
Клеточная стенка | Покрывает цитоплазматическую мембрану, состав – в основном целлюлоза. | Поддержание прочности, механическая защита, создание формы клетки, поглощение и обмен различных ионов, транспорт веществ. | Характерна для растительных клеток (отсутствует в животной клетке). |
Цитоплазма | Внутренняя среда клетки. Включает полужидкую среду, расположенные в ней органоиды и нерастворимые включения. | Объединение и взаимодействие всех структур (органоидов). | Возможно изменение агрегатного состояния. |
Ядро | Самый крупный органоид. Форма шаровидная или яйцевидная. В нем расположены хроматиды (молекулы ДНК). Ядро покрыто двумембранной ядерной оболочкой. | Хранение и передача наследственной информации. | Двумембранный органоид. |
Ядрышко | Сферическая форма, d – 1-3 мкм. Являются основными носителями РНК в ядре. | В них синтезируются рРНК и субъединицы рибосом. | Ядро содержит 1-2 ядрышка. |
Вакуоль | Резервуар с аминокислотами и минеральными солями. | Регулировка осмотического давления, хранение запасных веществ, аутофагия (самопереваривание внутриклеточного мусора). | Чем старше клетка, тем большее пространство в клетке занимает вакуоль. |
Пластиды | 3 вида: хлоропласты, хромопласты и лейкопласты. | Обеспечивает автотрофный тип питания, синтез органических веществ из неорганических. | Иногда могут переходить из одного вида пластид в другой. |
Ядерная оболочка | Содержит две мембраны. К внешней прикрепляются рибосомы, в некоторых местах происходит соединение с ЭПР. Пронизана порами (обмен между ядром и цитоплазмой). | Разделяет цитоплазму от внутреннего содержимого ядра. | Двумембранный органоид. |
Цитоплазматические образования органеллы клетки
Поговорим подробнее о составляющих растительной клетки.
Ядро
Ядро осуществляет хранение генетической информации и реализацию наследуемой информации. Местом хранения являются молекулы ДНК. При этом в ядре присутствуют репарационные ферменты, которые способны контролировать и ликвидировать самопроизвольное повреждение молекул ДНК.
Кроме этого, сами молекулы ДНК в ядре подвержены редупликации (удвоению). В этом случае клетки, образованные при делении исходной, получают одинаковый и в качественном и количественном соотношении объем генетической информации.
Эндоплазматическая сеть (ЭПС)
Выделяют два типа: шероховатый и гладкий. Первый тип синтезирует белки на экспорт и клеточные мембраны. Второй тип способен осуществлять детоксикацию вредных продуктов обмена.
Аппарат Гольджи
Открыт исследователем из Италии К. Гольджи в 1898 году. В клетках располагается вблизи ядра. Эти органоиды представляют собой мембранные структуры, укомплектованные вместе. Такую зону скопления называют диктиосомой.
Они принимают участие в накоплении продуктов, которые синтезируются в эндоплазматическом ретикулуме и являются источником клеточных лизосом.
Лизосомы
Не являются самостоятельными структурами. Они представляют собой результат деятельности эндоплазматического ретикулума и аппарата Гольджи. Их главное предназначение участвовать в процессах расщепления внутри клетки.
В лизосомах насчитывается около четырех десятков ферментов, которые разрушают большинство органических соединений. При этом сама мембрана лизосом устойчива к действию таких ферментов.
Митохондрии
Двумембранные органеллы. В каждой клетке их число и размеры могут варьироваться. Они окружены двумя высокоспециализированными мембранами. Между ними расположено межмембранное пространство.
Внутренняя мембрана способна образовывать складки кристы. Благодаря наличию крист, внутренняя мембрана превосходит в 5 раз площадь внешней мембраны.
Повышенная функциональная активность клетки обусловлена увеличенным числом митохондрий и большим количеством крист в них, тогда как в условиях гиподинамиии количество крист в митохондрии и число митохондрий резко и быстро изменяется.
Обе мембраны митохондрий отличаются по своим физиологическим свойствам. При повышенном или пониженном осмотическом давлении внутренняя мембрана способна сморщиваться или растягиваться. Для наружной мембраны характерно только необратимое растяжение, которое может привести к разрыву. Весь комплекс митохондрий, наполняющих клетку, называют хондрионом.
Пластиды
По своим размерам эти органоиды уступают только ядру. Существует три вида пластид:
- отвечающие за зелёную окраску растений хлоропласты,
- ответственные за осенние цвета — оранжевый, красный, жёлтый, охра хромопласты,
- не влияющие на окрашивание, бесцветные лейкопласты.
Стоит отметить: установлено, что в клетках одновременно может быть только какой-то один из видов пластид.
Строение и функции хлоропластов
В них осуществляются процессы фотосинтеза. Присутствует хлорофилл (придает зеленую окраску). Форма – двояковыпуклая линза. Количество в клетке – 40-50. Имеет двойную мембрану. Внутренняя мембрана формирует плоские пузырьки – тилакоиды, которые упакованы в стопки – граны.
Это важно: основной функцией хлоропластов является фотосинтез – синтез органических веществ из неорганических при участии световой.
Хромопласты
За счет ярких пигментов придают органам растений яркие цвета: разноцветным лепесткам цветов, созревшим плодам, осенним листьям и некоторым корнеплодам (морковь).
Хромопласты не имеют внутренней мембранной системы. Пигменты могут накапливаться в кристаллическом виде, что придает пластидам разнообразные формы (пластина, ромб, треугольник).
Функции данного вида пластид пока до конца не изучены. Но по имеющейся информации, это устаревшие хлоропласты с разрушенным хлорофиллом.
Лейкопласты
Присущи тем частям растений, на которые солнечные лучи не попадают. Например, клубни, семена, луковицы, корни. Бесплатные действующие промокоды для 1хБет на сегодня. Инструкция как использовать бонус-код. Виды промокодов и бонусов. Куда вводить код при регистрации и в магазине промокодов. Промокод 1xBet на Сегодня в 2021 году Здесь проверенный рабочий список промо Витрина промо-кодов Регистрация с промокодом позволяет получить бонус 32500 р. Где взять и как использовать читайте на сайте. На официальном сайте букмекерской конторы 1xbet появилась опция, которая позволяет «бесплатно» ознакомиться с функционалом сайта и при удачном стечении обстоятельств еще и выиграть некую сумму денежных средств. Внутренняя система мембран развита слабее, чем у хлоропластов.
Ответственны за питание, накапливают питательные вещества, принимают участие в синтезе. При наличии света лейкопласты способны переродиться в хлоропласты.
Рибосомы
Мелкие гранулы, состоящие из РНК и белков. Единственные безмембранные структуры. Могут располагаться одиночно или в составе группы (полисомы).
Рибосому формируют большая и малая субъединица, соединенные ионами магния. Функция – синтез белка.
Микротрубочки
Это длинные цилиндры, в стенках которых расположен белок тубулин. Этот органоид – динамическая структура (может происходить его наращивание и распад). Принимают активное участие в процессе деления клеток.
Вакуоль — строение и функции
На рисунке обозначена голубым цветом. Состоит из мембраны (тонопласта) и внутренней среды (клеточного сока).
Занимает большую часть клетки, центральную её часть.
Запасает воду и питательные вещества, а также продукты распада.
Несмотря на единую структурную организацию в строении основных органоидов, в мире растений наблюдается огромное видовое разнообразие.
Любому школьнику, а тем более взрослому, нужно понимать и знать, какие обязательные части имеет растительная клетка и как выглядит её модель, какую роль они выполняют, и как называются органоиды, отвечающие за окраску частей растений.
Органоиды (органеллы) клетки — специализированные структуры клетки, выполняющие различные жизненно необходимые
функции. Особенно сложно устроены клетки простейших, где одна клетка составляет весь организм и выполняет функции
дыхания, выделения, пищеварения и многие другие.
Органоиды клетки подразделяются на:
- Немембранные — рибосомы, клеточный центр, микротрубочки, органоиды движения (жгутики, реснички)
- Одномембранные — ЭПС, комплекс (аппарат) Гольджи, лизосомы и вакуоли
- Двумембранные — пластиды, митохондрии
Ядро не включается в понятие «органоиды клетки», является структурой клетки, однако также будет рассмотрено нами в этой статье.
Прежде чем говорить об органоидах клетки, без которых невозможна ее жизнедеятельность, необходимо
упомянуть о том, без чего вообще не существует клетки — о клеточной мембране. Клеточная мембрана ограничивает клетку
от окружающего мира и формирует ее внутреннюю среду.
Клеточная мембрана (оболочка)
Запомните, что в отличие от клеточной стенки, которая есть только у растительных клеток и у клеток грибов (она придает им плотную,
жесткую форму) клеточная мембрана есть у всех клеток без исключения! Этот важный момент объясню еще раз У клеток животных имеется
только клеточная мембрана, а у клеток растений и грибов есть и клеточная стенка, и клеточная мембрана.
Клеточная мембрана представляет собой билипидный слой (лат. bi — двойной + греч. lipos — жир), который пронизывают молекулы
белков.
Билипидный слой представлен двумя слоями фосфолипидов. Обратите внимание, что их гидрофобные концы обращены внутрь мембраны, а
гидрофильные «головки» смотрят наружу. Билипидный слой насквозь пронизывают интегральные белки, частично — погруженные белки,
имеются также поверхностно лежащие белки — периферические.
Белки принимают участие в:
- Поддержании постоянства структуры мембраны
- Рецепции сигналов из окружающей среды (химического раздражения)
- Транспорте веществ через мембрану
- Ускорении (катализе) реакций, которые ассоциированы с мембраной
Интегральные (пронизывающие) белки образуют каналы, по которым молекулы различных веществ могут поступать в клетку или удаляться из нее.
«Заякоренные» молекулы олигосахаридов на поверхности клетки образуют гликокаликс, который выполняет рецепторную функцию, участвует
в избирательном транспорте веществ через мембрану.
Теперь вы знаете, что гликокаликс — надмембранный комплекс, совокупность клеточных рецепторов, которые нужны клетке для восприятия регуляторных
сигналов биологически активных веществ (гормонов, гормоноподобных веществ). Гормон избирателен, специфичен и присоединяется
только к своему рецептору: меняется конформация молекулы рецептора и обмен веществ в клетке. Так гормоны
регулируют жизнедеятельность клеток.
Вирусы и бактерии не являются исключением: они взаимодействуют только с теми клетками, на которых есть подходящие к
ним рецепторы. Так, вирус гриппа поражает преимущественно клетки слизистой верхних дыхательных путей. Однако, если рецепторов
нет, то вирус не может проникнуть в клетку, и организм приобретает невосприимчивость к инфекции. Вспомните врожденный
иммунитет: именно по причине отсутствия рецепторов человек не восприимчив ко многим болезням животных.
Итак, вернемся к клеточной мембране. Ее можно сравнить со стенами помещения, в котором, вероятно, вы находитесь. Стены дома защищают
его от ветра, дождя, снега и прочих факторов внешней среды. Рискну предположить, что в вашем доме есть окна и двери, которые
по мере необходимости открываются и закрываются Так и клеточная мембрана может сообщать внутреннюю среду клетки с внешней средой:
через мембрану вещества поступают в клетку и удаляются из нее.
Подведем итоги. Клеточная мембрана выполняет ряд важнейших функций:
- Разделительная (барьерная) — образует барьер между внешней средой и внутренней средой клетки (цитоплазмой с органоидами)
- Поддержание обмена веществ между внешней средой и цитоплазмой
- Транспортная
-
Пассивный — часто идет по градиенту концентрации, без затрат АТФ (энергии). Возможен путем осмоса, простой диффузии
или облегченной (с участием белка-переносчика) диффузии. - Активный
Через мембрану по каналам кислород и питательные вещества поступают в клетку, а продукты жизнедеятельности — мочевина
— удаляются из клетки во внешнюю среду.
Тесно связана с обменом веществ, однако здесь мне особенно хочется подчеркнуть варианты транспорта веществ через клетку.
Выделяется два вида транспорта:
Внутрь клетки с помощью осмоса поступает вода. Путем простой диффузии в клетку попадают O2, H2O,
CO2, мочевина. Облегченная диффузия характерна для транспорта глюкозы, аминокислот.
Активный транспорт чаще происходит против градиента концентрации, в ходе него используются белки-переносчики и
энергия АТФ. Ярким примером является натрий-калиевый насос, который накачивает ионы калия внутрь клетки, а ионы
натрия выводит наружу. Это происходит против градиента концентрации, поэтому без затрат энергии (АТФ) не обойтись.
Внутрь клетки крупные молекулы попадают путем эндоцитоза (греч. endo — внутрь) двумя путями:
- Фагоцитоз (греч. phago — ем + cytos — клетка) — поглощение твердых пищевых частиц и бактерий фагоцитами
- Пиноцитоз (греч. pino — пью) — поглощение клеткой жидкости, захват жидкости клеточной поверхностью
Фагоцитоз был открыт И.И. Мечниковым, который создал фагоцитарную теорию иммунитета. Это теория гласит, что в основе иммунной системы
нашего организма лежит явление фагоцитоза: попавшие в организм бактерии уничтожаются фагоцитами (T-лимфоцитами), которые переваривают их.
В ходе эндоцитоза мембрана сильно прогибается внутрь клетки, ее края смыкаются, захватывая бактерию, пищевые частицы или жидкость внутрь
клетки. Образуется везикула (пузырек), который движется к пищеварительной вакуоли или лизосоме, где происходит внутриклеточное
пищеварение.
Клетки многих органов, к частности эндокринных желез, которые выделяют в кровь гормоны, транспортируют синтезированные вещества к
мембране и удаляют их из клетки с помощью экзоцитоза (от др.-греч. ἔξω — вне, снаружи). Таким образом, процессы экзоцитоза и
эндоцитоза противоположны.
Клеточная стенка
Расположена снаружи клеточной мембраны. Присутствует только в клетках бактерий, растений и грибов, у животных отсутствует.
Придает клетке определенную форму, направляет ее рост, придавая характерное строение всему организму.
Клеточная стенка бактерий состоит из полимера муреина, у грибов — из хитина, у растений — из целлюлозы.
Цитоплазма
Органоиды клетки расположены в цитоплазме, которая состоит из воды, питательных веществ и продуктов обмена. В цитоплазме
происходит постоянный ток веществ: поступившие в клетку вещества для расщепления необходимо доставить к органоидам, а побочные продукты — удалить из клетки.
Постоянное движение цитоплазмы поддерживает связь между органоидами клетки и обеспечивает ее целостность.
Прокариоты и эукариоты
Прокариоты (греч. πρό — перед и κάρυον — ядро) или доядерные — одноклеточные организмы, не обладающие в отличие от
эукариот оформленным ядром и мембранными органоидами. У прокариот могут обнаруживаться только немембранные органоиды.
Их генетический материал представлен в виде кольцевой молекулы ДНК — нуклеоида (нуклеоид — ДНК–содержащая зона клетки прокариот). К прокариотам относятся бактерии, в их числе цианобактерии (цианобактерий по-другому называют — сине-зеленые водоросли).
Эукариоты (греч. εὖ — хорошо + κάρυον — ядро) или ядерные — домен живых организмов, клетки которых содержат оформленное
ядро. Растения, животные, грибы — относятся к эукариотам.
Немембранные органоиды
- Рибосома
- Микротрубочки и микрофиламенты
- Клеточный центр (центросома, от греч. soma — тело)
- Реснички и жгутики
Очень мелкая органелла (около 20 нм), которая была открыта после появления электронного микроскопа.
Состоит из двух субъединиц: большой и малой, в состав которых входят белки и рРНК (рибосомальная РНК), синтезируемая
в ядрышке.
Запомните ассоциацию: «Рибосома — фабрика белка». Именно здесь в ходе матричного биосинтеза — трансляции, с которой
подробнее мы познакомимся в следующих статьях, на базе иРНК (информационной РНК) синтезируется белок — последовательность
соединенных аминокислот в заданном иРНК порядке.
Микротрубочки являются внутриклеточными белковыми производными, входящими в состав цитоскелета. Они поддерживают
определенную форму клетки, участвуют во внутриклеточном транспорте и процессе деления путем образования нитей веретена деления. Микротрубочки
также образуют основу органоидов движения: жгутиков (у бактерий жгутик состоит из сократительного белка — флагеллина) и ресничек.
Микрофиламенты — тонкие длинные нитевидные структуры, состоящие из белка актина. Встречаются во всей цитоплазме,
служат для создания тока цитоплазмы, принимают участие в движении клетки, в процессах эндо- и экзоцитоза.
Этот органоид характерен только для животной клетки, в клетках низших грибов (мукор) и высших растений отсутствует. Клеточный
центр состоит из 9 триплетов микротрубочек (триплет — три соединенных вместе). Участвует в образовании нитей веретена деления,
располагается на полюсах клетки.
Это органоиды движения, которые выступают над поверхностью клетки и имеют в основе пучок микротрубочек.
Реснички встречаются только в клетках животных, жгутики можно обнаружить у животных, растений и бактерий.
Одномембранные органоиды
- Эндоплазматическая сеть (ЭПС), эндоплазматический ретикулум (лат. reticulum — сеть)
- Комплекс (аппарат) Гольджи
- Лизосома (греч. lisis — растворение + soma — тело)
- Пероксисомы (лат. per — сверх, греч. oxys — кислый и soma — тело)
- Вакуоли
ЭПС представляет собой систему мембран, пронизывающих всю клетку и разделяющих ее на отдельные изолированные части
(компартменты). Это крайне важно, так как в разных частях клетки идут реакции, которые могут помешать друг другу,
что нарушит процессы жизнедеятельности.
Выделяют гладкую ЭПС и шероховатую ЭПС. Обе они выполняют функцию внутриклеточного транспорта веществ, однако между ними
имеются различия. На мембранах гладкой ЭПС происходит синтез липидов, обезвреживаются вредные вещества. Шероховатая
ЭПС синтезирует белок, так как имеет на мембранах многочисленные рибосомы (потому и называется шероховатой).
Комплекс Гольджи состоит из трубочек, сети уплощенных канальцев (цистерн) и связанных с ними пузырьков. Располагается
вокруг ядра клетки, внешне напоминает стопку блинов. Это — «клеточный склад». В нем запасаются жиры и углеводы, с
которыми здесь происходят химические видоизменения.
Модифицированные вещества упаковываются в пузырьки и могут перемещаться к мембране клетки, соединяясь с ней, они
изливают свое содержимое во внешнюю среду. Можно догадаться, что комплекс Гольджи хорошо развит в клетках
эндокринных желез, которые в большом количестве синтезируют и выделяют в кровь гормоны.
В комплексе Гольджи появляются первичные лизосомы, которые содержат ферменты в неактивном состоянии.
Представляет собой мембранный пузырек, содержащий внутри ферменты (энзимы) — липазы, протеазы, фосфатазы.
Лизосому можно ассоциировать с «клеточным желудком».
Лизосома участвует во внутриклеточном пищеварении поступивших в клетку веществ. Сливаясь с фагосомой, первичная лизосома превращается во вторичную, ферменты активируются. После расщепления веществ образуется остаточное тельце — вторичная лизосома с непереваренными остатками, которые удаляются из клетки.
Лизосома может переварить содержимое фагосомы (самое безобидное), переварить часть клетки или всю клетку целиком.
В норме у каждой клетки жизненный цикл заканчивается апоптозом — запрограммированным процессом клеточной гибели.
В ходе апоптоза ферменты лизосомы изливаются внутрь клетки, ее содержимое переваривается. Предполагают, что
нарушение апоптоза в раковых клетках ведет к бесконтрольному росту опухоли.
Пероксисомы (микротельца) содержат окислительно-восстановительные ферменты, которые разлагают H2O2
(пероксид водорода) на воду и кислород. Если бы пероксид водорода оставался неразрушенными, это приводило бы
к серьезным повреждениям клетки.
Вакуоли характерны для растительных клеток, однако встречаются и у животных (у одноклеточных — сократительные
вакуоли). У растений вакуоли выполняют другие функции и имеют иное строение: они заполняются клеточным соком, в котором
содержится запас питательных веществ. Снаружи вакуоль окружена тонопластом.
Трудно переоценить значение вакуолей в жизнедеятельности растительной клетки. Вакуоли создают осмотическое давление,
придают клетке форму.
Примечательно, что по размеру вакуолей можно судить о возрасте клетки: молодые клетки имеют
вакуоли небольшого размера, а в старых клетках вакуоли могут настолько увеличиваться, что оттесняют ядро и остальные
органоиды на периферию.
Двумембранные органоиды
- Митохондрия
- Пластиды (др.-греч. πλαστός — вылепленный)
- Хлоропласт (греч. chlōros — зелёный)
- Хромопласты (греч. chromos – краска)
- Лейкопласты (др.-греч. λευκός — белый )
Органоид палочковидной формы. Митохондрию можно сравнить с «энергетической станцией». Если в цитоплазме происходит
анаэробный этап дыхания (бескислородный), то в митохондрии идет более совершенный — аэробный этап (кислородный). В
результате кислородного этапа (цикла Кребса) из двух молекул пировиноградной кислоты (образовавшихся из 1 глюкозы)
получаются 36 молекул АТФ.
Митохондрия окружена двумя мембранами. Внутренняя ее мембрана образует выпячивания внутрь — кристы, на которых имеется
большое скопление окислительных ферментов, участвующих в кислородном этапе дыхания. Внутри митохондрия заполнена
матриксом.
Запомните, что особенностью этого органоида является наличие кольцевой молекулы ДНК — нуклеоида (ДНК–содержащая зона клетки прокариот), и рибосом. То есть
митохондрия обладает собственным генетическим материалом и возможностью синтеза белка, почти как отдельный организм.
В связи с этим, митохондрия считается полуавтономным органоидом. Вероятнее всего, изначально митохондрии были
самостоятельными организмами, однако со временем вступили в симбиоз с эукариотами и стали частью клетки.
Митохондрий особенно много в клетках мышц, в том числе — в сердечной мышечной ткани. Эти клетки выполняют активную работу и
нуждаются в большом количестве энергии.
Двумембранные органоиды, встречающиеся только в клетках высших растений, водорослей и некоторых простейших. У
подавляющего большинства животных пластиды отсутствуют. Подразделяются на три типа:
Получил свое название за счет содержащегося в нем зеленого пигмента — хлорофилла (греч. chloros — зеленый
и phyllon — лист). Под двойной мембраной расположены тилакоиды, которые собраны в стопки — граны. Внутреннее
пространство между тилакоидами и мембраной называется стромой.
Запомните, что светозависимая (световая) фаза фотосинтеза происходит на мембранах тилакоидов, а темновая
(светонезависимая) фаза — в строме хлоропласта за счет цикла Кальвина. Это очень пригодится при изучении
фотосинтеза в дальнейшем.
Так же, как и митохондрии, пластиды относятся к полуавтономным органоидам: в них имеется кольцевидная ДНК (находится в нуклеоиде), рибосомы.
Пластиды, которые содержат пигменты каратиноиды в различных сочетаниях. Сочетание пигментов обуславливает
красную, оранжевую или желтую окраску. Находятся в плодах, листьях, лепестках цветков.
Хромопласты могут развиваться из хлоропластов: во время созревания плодов хлоропласты теряют хлорофилл и крахмал,
в них активируется биосинтез каротиноидов.
Не содержат пигментов, образуются в запасающих частях растения (клубни, корневища). В лейкопластах накапливается
крахмал, липиды (жиры), пептиды (белки). На свету лейкопласты могут превращаться в хлоропласты и запускать
процесс фотосинтеза.
Ядро («ядро» по лат. — nucleus, по греч. — karyon)
Важнейшая структура эукариотической клетки — оформленное ядро, которое у прокариот отсутствует. Внутренняя часть
ядра представлена кариоплазмой, в которой расположен хроматин — комплекс ДНК, РНК и белков, и одно или несколько
ядрышек.
Ядрышко — место в ядре, где активно идет процесс матричного биосинтеза — транскрипция, с которым мы познакомимся
подробнее в следующих статьях. В течение дня, наблюдая за одной и той же клеткой, можно увидеть разное количество
ядрышек или не найти ни одного.
Оболочка ядра состоит из двух мембран и пронизана большим количеством ядерных пор, через которые происходит сообщение
между кариоплазмой и цитоплазмой. Главными функциями ядра является хранение, защита и передача наследственного материала
дочерним клеткам.
Замечу, что хромосомы видны только в момент деления клетки. Хромосомы представляют собой сильно спирализованные молекулы
ДНК, связанные с белками.
Я всегда рекомендую ученикам ассоциировать хромосому с мотком ниток: если все нитки обмотать
вокруг одной оси, то они становятся мотком и хорошо видны (хромосомы — во время деления, спирализованное ДНК), если же клетка не
делится, то нитки размотаны и разбросаны в один слой, хромосом не видно (хроматин — деспирализованное ДНК).
Хромосомы отличаются друг от друга по строению, форме, размерам. Совокупность всех признаков (форма, число, размер) хромосом
называется кариотип. Кариотип может быть представлен по-разному: существует кариотип вида, особи, клетки.
Изучая кариотип человека, врач-генетик может обнаружить различные наследственные заболевания, к примеру, синдром Дауна — трисомия по 21-ой паре хромосом (должно быть 2 хромосомы, однако при синдроме Дауна их три).
© Беллевич Юрий Сергеевич 2018-2023
Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение
(в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов
без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования,
обратитесь, пожалуйста, к Беллевичу Юрию.
Изучая строение растительной клетки, рисунок с подписями станет полезным визуальным конспектом для усвоения этой темы. Но сначала немного истории.
Оглавление:
- Клетка растения
- Строение растительной клетки
- Органоиды клетки и их функции — описательная таблица
- Цитоплазматические образования — органеллы клетки
Историю открытия и изучения клетки связывают с именем английского изобретателя Роберта Гука. В 17 веке, на срезе растительной пробки, рассматриваемой под микроскопом, Р. Гук обнаружил ячейки, которые и были в дальнейшем названы клетками.
Основные сведения о клетке были представлены позже немецким ученым Т. Шванном в клеточной теории, сформулированной в 1838 году. Основные положения этого трактата гласят:
- все живое на земле состоит из структурных единиц — клеток;
- по строению и функциям все клетки имеют общие черты. Эти элементарные частицы способны к размножению, которое возможно благодаря делению материнской клетки;
- в многоклеточных организмах клетки способны объединяться на основании общих функций и структурно-химической организации в ткани.
Клетка растения
Растительная клетка, наряду с общими признаками и схожестью в строении с животной, имеет и свои отличительные особенности, присущие только ей:
- наличие клеточной стенки (оболочки);
- наличие пластид;
- наличие вакуоли.
Строение растительной клетки
На рисунке схематично показана модель растительной клетки, из чего она состоит, как называются основные её части.
Ниже будет подробно рассказано о каждой из них.
Органоиды клетки и их функции — описательная таблица
В таблице собрана важная информация об органоидах клетки. Она поможет школьнику составить план рассказа по рисунку.
Органоид | Описание | Функция | Особенности |
Клеточная стенка | Покрывает цитоплазматическую мембрану, состав – в основном целлюлоза. | Поддержание прочности, механическая защита, создание формы клетки, поглощение и обмен различных ионов, транспорт веществ. | Характерна для растительных клеток (отсутствует в животной клетке). |
Цитоплазма | Внутренняя среда клетки. Включает полужидкую среду, расположенные в ней органоиды и нерастворимые включения. | Объединение и взаимодействие всех структур (органоидов). | Возможно изменение агрегатного состояния. |
Ядро | Самый крупный органоид. Форма шаровидная или яйцевидная. В нем расположены хроматиды (молекулы ДНК). Ядро покрыто двумембранной ядерной оболочкой. | Хранение и передача наследственной информации. | Двумембранный органоид. |
Ядрышко | Сферическая форма, d – 1-3 мкм. Являются основными носителями РНК в ядре. | В них синтезируются рРНК и субъединицы рибосом. | Ядро содержит 1-2 ядрышка. |
Вакуоль | Резервуар с аминокислотами и минеральными солями. | Регулировка осмотического давления, хранение запасных веществ, аутофагия (самопереваривание внутриклеточного мусора). | Чем старше клетка, тем большее пространство в клетке занимает вакуоль. |
Пластиды | 3 вида: хлоропласты, хромопласты и лейкопласты. | Обеспечивает автотрофный тип питания, синтез органических веществ из неорганических. | Иногда могут переходить из одного вида пластид в другой. |
Ядерная оболочка | Содержит две мембраны. К внешней прикрепляются рибосомы, в некоторых местах происходит соединение с ЭПР. Пронизана порами (обмен между ядром и цитоплазмой). | Разделяет цитоплазму от внутреннего содержимого ядра. | Двумембранный органоид. |
Цитоплазматические образования — органеллы клетки
Поговорим подробнее о составляющих растительной клетки.
Ядро
Ядро осуществляет хранение генетической информации и реализацию наследуемой информации. Местом хранения являются молекулы ДНК. При этом в ядре присутствуют репарационные ферменты, которые способны контролировать и ликвидировать самопроизвольное повреждение молекул ДНК.
Кроме этого, сами молекулы ДНК в ядре подвержены редупликации (удвоению). В этом случае клетки, образованные при делении исходной, получают одинаковый и в качественном и количественном соотношении объем генетической информации.
Эндоплазматическая сеть (ЭПС)
Выделяют два типа: шероховатый и гладкий. Первый тип синтезирует белки на экспорт и клеточные мембраны. Второй тип способен осуществлять детоксикацию вредных продуктов обмена.
Аппарат Гольджи
Открыт исследователем из Италии К. Гольджи в 1898 году. В клетках располагается вблизи ядра. Эти органоиды представляют собой мембранные структуры, укомплектованные вместе. Такую зону скопления называют диктиосомой.
Они принимают участие в накоплении продуктов, которые синтезируются в эндоплазматическом ретикулуме и являются источником клеточных лизосом.
Лизосомы
Не являются самостоятельными структурами. Они представляют собой результат деятельности эндоплазматического ретикулума и аппарата Гольджи. Их главное предназначение — участвовать в процессах расщепления внутри клетки.
В лизосомах насчитывается около четырех десятков ферментов, которые разрушают большинство органических соединений. При этом сама мембрана лизосом устойчива к действию таких ферментов.
Митохондрии
Двумембранные органеллы. В каждой клетке их число и размеры могут варьироваться. Они окружены двумя высокоспециализированными мембранами. Между ними расположено межмембранное пространство.
Внутренняя мембрана способна образовывать складки — кристы. Благодаря наличию крист, внутренняя мембрана превосходит в 5 раз площадь внешней мембраны.
Повышенная функциональная активность клетки обусловлена увеличенным числом митохондрий и большим количеством крист в них, тогда как в условиях гиподинамиии количество крист в митохондрии и число митохондрий резко и быстро изменяется.
Обе мембраны митохондрий отличаются по своим физиологическим свойствам. При повышенном или пониженном осмотическом давлении внутренняя мембрана способна сморщиваться или растягиваться. Для наружной мембраны характерно только необратимое растяжение, которое может привести к разрыву. Весь комплекс митохондрий, наполняющих клетку, называют хондрионом.
Пластиды
По своим размерам эти органоиды уступают только ядру. Существует три вида пластид:
- отвечающие за зелёную окраску растений — хлоропласты;
- ответственные за осенние цвета — оранжевый, красный, жёлтый, охра — хромопласты;
- не влияющие на окрашивание, бесцветные лейкопласты.
[warning]Стоит отметить: установлено, что в клетках одновременно может быть только какой-то один из видов пластид.[/warning]
Строение и функции хлоропластов
В них осуществляются процессы фотосинтеза. Присутствует хлорофилл (придает зеленую окраску). Форма – двояковыпуклая линза. Количество в клетке – 40-50. Имеет двойную мембрану. Внутренняя мембрана формирует плоские пузырьки – тилакоиды, которые упакованы в стопки – граны.
[advice]Это важно: основной функцией хлоропластов является фотосинтез – синтез органических веществ из неорганических при участии световой.[/advice]
Хромопласты
За счет ярких пигментов придают органам растений яркие цвета: разноцветным лепесткам цветов, созревшим плодам, осенним листьям и некоторым корнеплодам (морковь).
Хромопласты не имеют внутренней мембранной системы. Пигменты могут накапливаться в кристаллическом виде, что придает пластидам разнообразные формы (пластина, ромб, треугольник).
Функции данного вида пластид пока до конца не изучены. Но по имеющейся информации, это устаревшие хлоропласты с разрушенным хлорофиллом.
Лейкопласты
Присущи тем частям растений, на которые солнечные лучи не попадают. Например, клубни, семена, луковицы, корни. Внутренняя система мембран развита слабее, чем у хлоропластов.
Ответственны за питание, накапливают питательные вещества, принимают участие в синтезе. При наличии света лейкопласты способны переродиться в хлоропласты.
Рибосомы
Мелкие гранулы, состоящие из РНК и белков. Единственные безмембранные структуры. Могут располагаться одиночно или в составе группы (полисомы).
Рибосому формируют большая и малая субъединица, соединенные ионами магния. Функция – синтез белка.
Микротрубочки
Это длинные цилиндры, в стенках которых расположен белок тубулин. Этот органоид – динамическая структура (может происходить его наращивание и распад). Принимают активное участие в процессе деления клеток.
Вакуоль — строение и функции
На рисунке обозначена голубым цветом. Состоит из мембраны (тонопласта) и внутренней среды (клеточного сока).
Занимает большую часть клетки, центральную её часть.
Запасает воду и питательные вещества, а также продукты распада.
Несмотря на единую структурную организацию в строении основных органоидов, в мире растений наблюдается огромное видовое разнообразие.
Любому школьнику, а тем более взрослому, нужно понимать и знать, какие обязательные части имеет растительная клетка и как выглядит её модель, какую роль они выполняют, и как называются органоиды, отвечающие за окраску частей растений.