Строение клетки егэ картинка

Строение митохондрии ЕГЭ биология

Строение митохондрии ЕГЭ биология

Скачать

Молекула органического вещества клетки

Молекула органического вещества клетки

Скачать

Картинки из ЕГЭ по биологии

Картинки из ЕГЭ по биологии

Скачать

ЕГЭ биология схемы

ЕГЭ биология схемы

Скачать

Картинки для ЕГЭ по биологии

Картинки для ЕГЭ по биологии

Скачать

Строение стебля ЕГЭ биология

Строение стебля ЕГЭ биология

Скачать

Эпителиальные соединительные мышечные ткани

Эпителиальные соединительные мышечные ткани

Скачать

21284 ЕГЭ биология

21284 ЕГЭ биология

Скачать

Ботаника для ЕГЭ по биологии в таблицах и схемах

Ботаника для ЕГЭ по биологии в таблицах и схемах

Скачать

Задание с изображением биологического объекта

Задание с изображением биологического объекта

Скачать

Биология в таблицах и схемах 6-11 класс

Биология в таблицах и схемах 6-11 класс

Скачать

Органоиды клетки ЕГЭ биология

Органоиды клетки ЕГЭ биология

Скачать

Органоиды клетки рисунки ЕГЭ

Органоиды клетки рисунки ЕГЭ

Скачать

Строение эукариотической клетки клетки растения

Строение эукариотической клетки клетки растения

Скачать

Жизненный цикл печеночного сосальщика рисунок ЕГЭ

Жизненный цикл печеночного сосальщика рисунок ЕГЭ

Скачать

Рисунки по биологии ЕГЭ

Рисунки по биологии ЕГЭ

Скачать

Вопросы по биологии ЕГЭ

Вопросы по биологии ЕГЭ

Скачать

ЕГЭ по биологии задания по ботанике

ЕГЭ по биологии задания по ботанике

Скачать

Таблица сравнение скелета костных рыб и земноводных

Таблица сравнение скелета костных рыб и земноводных

Скачать

Задания с рисунками по биологии ЕГЭ

Задания с рисунками по биологии ЕГЭ

Скачать

Задания по ботанике

Задания по ботанике

Строение растительной клетки ЕГЭ биология

Строение растительной клетки ЕГЭ биология

Скачать

Строение растительной клетки ЕГЭ рисунок

Строение растительной клетки ЕГЭ рисунок

Скачать

ЕГЭ по биологии 2021

ЕГЭ по биологии 2021

Скачать

Органоиды живой клетки строение

Органоиды живой клетки строение

Скачать

Жизненный цикл папоротника рисунок

Жизненный цикл папоротника рисунок

Скачать

Клетка животного строение и функции

Клетка животного строение и функции

Скачать

Строение органоидов клетки ЕГЭ биология

Строение органоидов клетки ЕГЭ биология

Скачать

Гаплоидные стадии развития папоротника схема

Гаплоидные стадии развития папоротника схема

Подземные видоизмененные побеги ЕГЭ

Подземные видоизмененные побеги ЕГЭ

Скачать

Типы плодов растений

Типы плодов растений

Скачать

Схема строения листа двудольного растения

Схема строения листа двудольного растения

Скачать

Картинки по биологии

Картинки по биологии

Скачать

Строение скелета человека ЕГЭ биология

Строение скелета человека ЕГЭ биология

Скачать

ЕГЭ по биологии задания

ЕГЭ по биологии задания

Скачать

Человек ЕГЭ тесты биология

Человек ЕГЭ тесты биология

Скачать

Строение кости человека

Строение кости человека

Скачать

Строение сердца ЕГЭ биология

Строение сердца ЕГЭ биология

Скачать

Схема растение биология для ЕГЭ

Схема растение биология для ЕГЭ

Скачать

Строение растительной клетки ЕГЭ биология

Строение растительной клетки ЕГЭ биология

Скачать

Задания по ботанике ЕГЭ биология 2021

Задания по ботанике ЕГЭ биология 2021

Скачать

Рисунки из заданий ЕГЭ по биологии

Рисунки из заданий ЕГЭ по биологии

Скачать

Рисунки по биологии ЕГЭ

Рисунки по биологии ЕГЭ

Скачать


Скачать



Скачать материал

Строение клетки.СТРОЕНИЕ КЛЕТКИГотовимся к ЕГЭ



Скачать материал

  • Сейчас обучается 45 человек из 23 регионов

  • Сейчас обучается 35 человек из 18 регионов

аудиоформат

  • Сейчас обучается 63 человека из 35 регионов

Описание презентации по отдельным слайдам:

  • Строение клетки.СТРОЕНИЕ КЛЕТКИГотовимся к ЕГЭ

    1 слайд

    Строение клетки.

    СТРОЕНИЕ КЛЕТКИ
    Готовимся к ЕГЭ

  • Органоиды клеткиОрганоиды (органеллы) клетки – специализированные структуры к...

    2 слайд

    Органоиды клетки
    Органоиды (органеллы) клетки – специализированные структуры клетки, выполняющие различные жизненно необходимые функции. Особенно сложно устроены клетки простейших, где одна клетка составляет весь организм и выполняет функции дыхания, выделения, пищеварения и др.

  • Клеточная мембранаПредставляет собой билипидный слой , который пронизывают мо...

    5 слайд

    Клеточная мембрана
    Представляет собой билипидный слой , который пронизывают молекулы белков.
    Билипидный слой насквозь насквозь пронизывают интегральные белки, частично погруженные белки, имеются также поверхностно лежащие белки-периферические.
    Молекулы олигосахаридов на поверхности клетки образуют гликокаликс.

  • Молекулы олигосахаридов на поверхности клетки образуют гликокаликс

    6 слайд

    Молекулы олигосахаридов на поверхности клетки образуют гликокаликс

  • Функции клеточной мембраны 1.Разделительная (барьерная)-образует барьер между...

    7 слайд

    Функции клеточной мембраны
    1.Разделительная (барьерная)-образует барьер между внешней средой клетки.
    2. Поддержание обмена веществ между внешней средой и цитоплазмой
    3. Транспортная.

  • ЦитоплазмаОрганоиды клетки расположены в цитоплазме, которая состоит из воды,...

    8 слайд

    Цитоплазма
    Органоиды клетки расположены в цитоплазме, которая состоит из воды, питательных веществ и продуктов обмена. В цитоплазме происходит постоянный ток веществ: поступившие в клетку вещества для расщепления необходимо доставить к органоидам, а побочные прордукты-удалить из клетки.

  • Прокариоты или доядерные – одноклеочные организмы, не обладающие в отличие от...

    9 слайд

    Прокариоты или доядерные – одноклеочные организмы, не обладающие в отличие от эукариот оформленным ядром и мембранными органоидами. Генетический материал представлен в виде кольцевой молекулы ДНК- нуклеоида.

    Эукариоты или ядерные-клетки содержат оформленное ядро. Растения, животные, грибы-относятся к эукариотам.

  • ЯдроЯдерная оболочка с порами регулирует обмен веществ с цитоплазмой
Под обол...

    10 слайд

    Ядро
    Ядерная оболочка с порами регулирует обмен веществ с цитоплазмой
    Под оболочкой находится кариоплазма или ядерный сок
    В кариоплазме располагаются ядрышки и хромосомы
    Ядрышки отвечают за образование рибосом
    Хромосома – это комплекс ДНК с основным белком гистоном
    Хромосомы контролируют все процессы клетки

  • Эндоплазматическая сетьСеть каналов, пронизывающих всю цитоплазму
Стенки кана...

    11 слайд

    Эндоплазматическая сеть
    Сеть каналов, пронизывающих всю цитоплазму
    Стенки каналов представляют собой мембраны
    Различают гладкую и шероховатую ЭПС
    На мембранах шероховатой ЭПС синтезируются белки, которые затем поступают внутрь каналов ЭПС
    На мембранах гладкой ЭПС синтез липидов и углеводов
    Синтез и транспорт веществ
    Разделение клетки на отсеки

  • РибосомыМелкие немембранные органоиды
В клетке из несколько тысяч
Состоят из...

    12 слайд

    Рибосомы
    Мелкие немембранные органоиды
    В клетке из несколько тысяч
    Состоят из больших и малых субъединиц
    Отвечают за синтез белка

  • Комплекс ГольджиЭто сложная сеть полостей, трубочек и пузырьков вокруг ядра
Б...

    13 слайд

    Комплекс Гольджи
    Это сложная сеть полостей, трубочек и пузырьков вокруг ядра
    Белки обрабатываются ферментами и упаковываются в отдельные пузырьки
    Отшнуровавшиеся от КГ пузырьки с пищеварительными ферментами – это лизосомы

  • ЛизосомаПузырек с ферментами, ограниченный одной мембраной, он обеспечивает р...

    14 слайд

    Лизосома
    Пузырек с ферментами, ограниченный одной мембраной, он обеспечивает расщепление жиров, углеводов, белков
    Участвуют в переваривании пищевых частиц и в удалении отмирающих органов (хвост головастиков)

  • МитохондрияДвумембранный органоид
Наружная мембрана гладкая, внутренняя имеет...

    15 слайд

    Митохондрия
    Двумембранный органоид
    Наружная мембрана гладкая, внутренняя имеет выросты — кристы
    Внутри митохондрии жидкий матрикс
    В нем содержатся РНК.ДНК, белки, липиды, углеводы, АТФ
    Обеспечивают клеточное дыхание и синтез АТФ

  • ХлоропластыТолько в растениях
Двумембранный органоид
Внутренняя мембрана имее...

    16 слайд

    Хлоропласты
    Только в растениях
    Двумембранный органоид
    Внутренняя мембрана имеет выросты — тилакоиды
    Тилакоиды образуют стопки-граны
    В мембранах тилакоидов располагается хлорофилл
    Внутренняя среда хлоропластов заполнена стромой
    В строме есть рибосомы, ДНК, РНК
    Функция: фотосинтез

  • Клеточный центрНемембранный органоид
В состав входят микротрубочки и две цент...

    17 слайд

    Клеточный центр
    Немембранный органоид
    В состав входят микротрубочки и две центриоли
    Играет важную роль в организации цитоскелета
    Образуют митотическое веретено деления

  • Реснички и жгутикиЭто выросты мембраны, содержащие в середине микротрубочку
О...

    18 слайд

    Реснички и жгутики
    Это выросты мембраны, содержащие в середине микротрубочку
    Отвечают за передвижение

  • ЦитоскелетПредставляет собой совокупность микротрубочек и микрофиламентов.
Яв...

    19 слайд

    Цитоскелет
    Представляет собой совокупность микротрубочек и микрофиламентов.
    Является основой или же каркасом клетки
    Имеется во всех эукариотических клетках
    Участвует в поддержании формы клеток
    Участвует в эндо и экзоцитозе

  • Клеточные включенияЭто непостоянные структуры
Они синтезируются и расходуютс...

    20 слайд

    Клеточные включения

    Это непостоянные структуры
    Они синтезируются и расходуются
    К ним относятся капли и зерна белков, жиров, углеводов, кристаллы различных солей

  • Трофические включения - отложенные в запас гранулы питательных веществ ( белк...

    21 слайд

    Трофические включения — отложенные в запас гранулы питательных веществ ( белки, жиры, углеводы)
    Пигментные включения-гранулы эндогенных или экзогенных пигментов. Например: меланин в меланоцитах кожи (для защиты от УФ)
    Секреторные включения – капельки (гранулы) секрета веществ, подготовленные для выделения из любых секреторных клеток (в клетках всех экзокринных и эндокринных желез)
    Экскреторные включения –конечные (вредные) продукты обмена веществ, подлежащие удалению из организма
    Классификация включений:

Найдите материал к любому уроку, указав свой предмет (категорию), класс, учебник и тему:

6 156 566 материалов в базе

  • Выберите категорию:

  • Выберите учебник и тему

  • Выберите класс:

  • Тип материала:

    • Все материалы

    • Статьи

    • Научные работы

    • Видеоуроки

    • Презентации

    • Конспекты

    • Тесты

    • Рабочие программы

    • Другие методич. материалы

Найти материалы

Материал подходит для УМК

  • «Биология», Пономарёва И.Н., Корнилова О.А., Чернова Н.М. / Под ред. Пономарёвой И.Н.

Другие материалы

«Биология », Жемчугова М.Б., Романова Н.И

  • 13.01.2022
  • 262
  • 2

«Биология. Человек», Сонин Н.И., Сапин М.Р.

«Биология, изд.

  • 13.01.2022
  • 126
  • 1
  • 13.01.2022
  • 222
  • 7
  • 13.01.2022
  • 180
  • 1

Разработка урока «Бесполое размножение»

  • Учебник: «Биология. Общая биология (базовый уровень)», Сивоглазов В.И., Агафонова И.Б., Захарова Е.Т.
  • Тема: 3.5. Размножение: бесполое и половое
  • 13.01.2022
  • 343
  • 8

«Биология. Общая биология (базовый уровень)», Сивоглазов В.И., Агафонова И.Б., Захарова Е.Т.

Вам будут интересны эти курсы:

  • Курс повышения квалификации «Организация и руководство учебно-исследовательскими проектами учащихся по предмету «Биология» в рамках реализации ФГОС»

  • Курс повышения квалификации «ФГОС общего образования: формирование универсальных учебных действий на уроке биологии»

  • Курс повышения квалификации «Медико-биологические основы безопасности жизнедеятельности»

  • Курс повышения квалификации «Методические аспекты реализации элективного курса «Антропология и этнопсихология» в условиях реализации ФГОС»

  • Курс повышения квалификации «Государственная итоговая аттестация как средство проверки и оценки компетенций учащихся по биологии»

  • Курс повышения квалификации «Нанотехнологии и наноматериалы в биологии. Нанобиотехнологическая продукция»

  • Курс повышения квалификации «Основы биоэтических знаний и их место в структуре компетенций ФГОС»

  • Курс профессиональной переподготовки «Анатомия и физиология: теория и методика преподавания в образовательной организации»

  • Курс профессиональной переподготовки «Организация производственно-технологической деятельности в области декоративного садоводства»

  • Курс повышения квалификации «Составление и использование педагогических тестов при обучении биологии»

  • Курс профессиональной переподготовки «Организация и выполнение работ по производству продукции растениеводства»


Пройти тестирование по этим заданиям
Вернуться к каталогу заданий

Версия для печати и копирования в MS Word

1

Задания Д2 № 801

Цитоплазма выполняет функцию скелета клетки за счет наличия в ней

2) множества хлоропластов

4) системы разветвленных канальцев


2

Задания Д2 № 804

Какова роль цитоплазмы в растительной клетке

1) защищает содержимое клетки от неблагоприятных условий

2) обеспечивает избирательную проницаемость веществ

3) осуществляет связь между ядром и органоидами

4) обеспечивает поступление в клетку веществ из окружающей среды


3

Задания Д2 № 805

Все органоиды и ядро клетки связаны между собой с помощью

2) плазматической мембраны

4) вакуолей


4

Задания Д2 № 808

Цитоплазма в клетке НЕ принимает участия в

4) осуществлении связи между органоидами


5

Задания Д2 № 820

Плазматическая мембрана клетки не участвует в процессах

Пройти тестирование по этим заданиям

Строение клетки

Строение прокариотических и эукариотических клеток

Основными структурными компонентами клеток являются плазматическая мембрана, цитоплазма и наследственный аппарат. В зависимости от особенностей организации различают два основных типа клеток: прокариотические и эукариотические. Главным отличием прокариотических клеток от эукариотических является организация их наследственного аппарата: у прокариот он находится непосредственно в цитоплазме (эта область цитоплазмы называется нуклеоидом) и не отделен от нее мембранными структурами, тогда как у эукариот бульшая часть ДНК сосредоточена в ядре, окруженном двойной мембраной. Кроме того, генетическая информация прокариотических клеток, находящаяся в нуклеоиде, записана в кольцевой молекуле ДНК, а у эукариот молекулы ДНК незамкнутые.

В отличие от эукариот, цитоплазма прокариотических клеток содержит также небольшое количество органоидов, тогда как для эукариотических характерно значительное разнообразие этих структур.

Строение и функции биологических мембран

Строение биомембраны. Мембраны, ограничивающие клетки и мембранные органоиды эукариотических клеток, имеют общий химический состав и строение. В их состав входят липиды, белки и углеводы. Липиды мембраны представлены в основном фосфолипидами и холестерином. Большинство белков мембран относится к сложным белкам, например гликопротеинам. Углеводы не встречаются в мембране самостоятельно, они связаны с белками и липидами. Толщина мембран составляет 7–10 нм.

Согласно общепринятой в настоящее время жидкостно-мозаичной модели строения мембран, липиды образуют двойной слой, или липидный бислой, в котором гидрофильные «головки» молекул липидов обращены наружу, а гидрофобные «хвосты» спрятаны вовнутрь мембраны. Эти «хвосты» благодаря своей гидрофобности обеспечивают разделение водных фаз внутренней среды клетки и ее окружения. С липидами с помощью различных типов взаимодействия связаны белки. Часть белков расположена на поверхности мембраны. Такие белки называют периферическими, или поверхностными. Другие белки частично или полностью погружены в мембрану — это интегральные, или погруженные белки. Белки мембран выполняют структурную, транспортную, каталитическую, рецепторную и другие функции.

Мембраны не похожи на кристаллы, их компоненты постоянно находятся в движении, вследствие чего между молекулами липидов возникают разрывы — поры, через которые в клетку могут попадать или покидать ее различные вещества.

Биологические мембраны различаются по расположению в клетке, химическому составу и выполняемым функциям. Основные типы мембран — плазматическая и внутренние. Плазматическая мембрана содержит около 45 % липидов (в т. ч. гликолипидов), 50 % белков и 5 % углеводов. Цепочки углеводов, входящих в состав сложных белков-гликопротеинов и сложных липидов-гликолипидов, выступают над поверхностью мембраны. Гликопротеины плазмалеммы чрезвычайно специфичны. Так, например, по ним происходит взаимное узнавание клеток, в том числе сперматозоида и яйцеклетки.

На поверхности животных клеток углеводные цепочки образуют тонкий поверхностный слой — гликокаликс. Он выявлен почти во всех животных клетках, но степень его выраженности неодинакова (10–50 мкм). Гликокаликс обеспечивает непосредственную связь клетки с внешней средой, в нем происходит внеклеточное пищеварение; в гликокаликсе размещены рецепторы. Клетки бактерий, растений и грибов, помимо плазмалеммы, окружены еще и клеточными оболочками.

Внутренние мембраны эукариотических клеток разграничивают различные части клетки, образуя своеобразные «отсеки» — компартменты, что способствует разделению различных процессов обмена веществ и энергии. Они могут различаться по химическому составу и выполняемым функциям, но общий план строения у них сохраняется.

Функции мембран:

  1. Ограничивающая. Заключается в том, что они отделяют внутреннее пространство клетки от внешней среды. Мембрана является полупроницаемой, то есть ее свободно преодолевают только те вещества, которые необходимы клетке, при этом существуют механизмы транспорта необходимых веществ.
  2. Рецепторная. Связана в первую очередь с восприятием сигналов окружающей среды и передачей этой информации внутрь клетки. За эту функцию отвечают специальные белки-рецепторы. Мембранные белки отвечают еще и за клеточное узнавание по принципу «свой-чужой», а также за образование межклеточных соединений, наиболее изученными из которых являются синапсы нервных клеток.
  3. Каталитическая. На мембранах расположены многочисленные ферментные комплексы, вследствие чего на них происходят интенсивные синтетические процессы.
  4. Энерготрансформирующая. Связана с образованием энергии, ее запасанием в виде АТФ и расходованием.
  5. Компартментализация. Мембраны разграничивают также пространство внутри клетки, разделяя тем самым исходные вещества реакции и ферменты, которые могут осуществлять соответствующие реакции.
  6. Образование межклеточных контактов. Несмотря на то, что толщина мембраны настолько мала, что ее невозможно различить невооруженным глазом, она, с одной стороны, служит достаточно надежным барьером для ионов и молекул, в особенности водорастворимых, а с другой — обеспечивает их перенос в клетку и наружу.
  7. Транспортная.

Мембранный транспорт. В связи с тем, что клетки как элементарные биологические системы являются открытыми системами, для обеспечения обмена веществ и энергии, поддержания гомеостаза, роста, раздражимости и других процессов требуется перенос веществ через мембрану — мембранный транспорт. В настоящее время транспорт веществ через мембрану клетки делят на активный, пассивный, эндо- и экзоцитоз.

Пассивный транспорт — это вид транспорта, который происходит без затраты энергии от большей концентрации к меньшей. Растворимые в липидах небольшие неполярные молекулы (О2, СО2) легко проникают в клетку путем простой диффузии. Нерастворимые же в липидах, в том числе заряженные небольшие частицы, подхватываются белкамипереносчиками или проходят через специальные каналы (глюкоза, аминокислоты, К+, PO43-). Такой вид пассивного транспорта называется облегченной диффузией. Вода поступает в клетку через поры в липидной фазе, а также по специальным каналам, выстланным белками. Транспорт воды через мембрану называется осмосом.

Осмос имеет чрезвычайно важное значение в жизни клетки, так как если ее поместить в раствор с более высокой концентрацией солей, чем в клеточном растворе, то вода начнет выходить из клетки, и объем живого содержимого начнет уменьшаться. У животных клеток происходит съеживание клетки в целом, а у растительных — отставание цитоплазмы от клеточной стенки, которое называется плазмолизом. При помещении клетки в менее концентрированный, чем цитоплазма, раствор, транспорт воды происходит в обратном направлении — в клетку. Однако существуют пределы растяжимости цитоплазматической мембраны, и животная клетка в конце концов разрывается, а у растительной этого не позволяет сделать прочная клеточная стенка. Явление заполнения клеточным содержимым всего внутреннего пространства клетки называется деплазмолизом. Внутриклеточную концентрацию солей следует учитывать при приготовлении лекарственных препаратов, особенно для внутривенного введения, так как это может приводить к повреждению клеток крови (для этого используют физиологический раствор с концентрацией 0,9 % хлорида натрия). Это не менее важно при культивировании клеток и тканей, а также органов животных и растений.

Активный транспорт протекает с затратой энергии АТФ от меньшей концентрации вещества к большей. Он осуществляется с помощью специальных белков-насосов. Белки перекачивают через мембрану ионы К+, Na+, Са2+ и другие, что способствует транспорту важнейших органических веществ, а также возникновению нервных импульсов и т. д.

Эндоцитоз — это активный процесс поглощения веществ клеткой, при котором мембрана образует впячивания, а затем формирует мембранные пузырьки — фагосомы, в которых заключены поглощаемые объекты. Затем с фагосомой сливается первичная лизосома, и образуется вторичная лизосома, или фаголизосома, или пищеварительная вакуоль. Содержимое пузырька расщепляется ферментами лизосом, а продукты расщепления поглощаются и усваиваются клеткой. Непереваренные остатки удаляются из клетки путем экзоцитоза. Различают два основных вида эндоцитоза: фагоцитоз и пиноцитоз.

Фагоцитоз — это процесс захвата клеточной поверхностью и поглощения клеткой твердых частиц, а пиноцитоз — жидкости. Фагоцитоз протекает в основном в животных клетках (одноклеточные животные, лейкоциты человека), он обеспечивает их питание, а часто и защиту организма . Путем пиноцитоза происходит поглощение белков, комплексов антиген-антитела в процессе иммунных реакций и т. д. Однако путем пиноцитоза или фагоцитоза в клетку также попадают многие вирусы. В клетках растений и грибов фагоцитоз практически невозможен, так как они окружены прочными клеточными оболочками.

Экзоцитоз — процесс, обратный эндоцитозу. Таким образом выделяются непереваренные остатки пищи из пищеварительных вакуолей, выводятся необходимые для жизнедеятельности клетки и организма в целом вещества. Например, передача нервных импульсов происходит благодаря выделению посылающим импульс нейроном химических посредников — медиаторов, а в растительных клетках так выделяются вспомогательные углеводы клеточной оболочки.

Клеточные оболочки клеток растений, грибов и бактерий. Снаружи от мембраны клетка может выделять прочный каркас — клеточную оболочку, или клеточную стенку.

У растений основу клеточной оболочки составляет целлюлоза, упакованная в пучки по 50–100 молекул. Промежутки между ними заполняют вода и другие углеводы. Оболочка растительной клетки пронизана канальцами — плазмодесмами, через которые проходят мембраны эндоплазматической сети. По плазмодесмам осуществляется транспорт веществ между клетками. Однако транспорт веществ, например воды, может происходить и по самим клеточным стенкам. Со временем в клеточной оболочке растений накапливаются различные вещества, в том числе дубильные или жироподобные, что приводит к одревеснению или опробковению самой клеточной стенки, вытеснению воды и отмиранию клеточного содержимого. Между клеточными стенками соседних клеток растений располагаются желеобразные прокладки — срединные пластинки, которые скрепляют их между собой и цементируют тело растения в целом. Они разрушаются только в процессе созревания плодов и при опадании листьев.

Клеточные стенки клеток грибов образованы хитином — углеводом, содержащим азот. Они достаточно прочны и являются внешним скелетом клетки, но все же, как и у растений, препятствуют фагоцитозу.

У бактерий в состав клеточной стенки входит углевод с фрагментами пептидов — муреин, однако его содержание существенно различается у разных групп бактерий. Поверх от клеточной стенки могут выделяться также иные полисахариды, образующие слизистую капсулу, защищающую бактерии от внешних воздействий.

Оболочка определяет форму клетки, служит механической опорой, выполняет защитную функцию, обеспечивает осмотические свойства клетки, ограничивая растяжение живого содержимого и предотвращая разрыв клетки, увеличивающейся вследствие поступления воды. Кроме того, клеточную стенку преодолевают вода и растворенные в ней вещества, прежде чем попасть в цитоплазму или, наоборот, при выходе из нее, при этом по клеточным стенкам вода транспортируется быстрее, чем по цитоплазме.

Цитоплазма

Цитоплазма — это внутреннее содержимое клетки. В нее погружены все органоиды клетки, ядро и разнообразные продукты жизнедеятельности.

Цитоплазма связывает все части клетки между собой, в ней протекают многочисленные реакции обмена веществ. Цитоплазма отделяется от окружающей среды и делится на отсеки мембранами, то есть клеткам присуще мембранное строение. Она может находиться в двух состояниях — золя и геля. Золь — это полужидкое, киселеобразное состояние цитоплазмы, при котором процессы жизнедеятельности протекают наиболее интенсивно, а гель — более плотное, студнеобразное состояние, затрудняющее протекание химических реакций и транспорт веществ.

Жидкая часть цитоплазмы без органоидов называется гиалоплазмой. Гиалоплазма, или цитозоль, представляет собой коллоидный раствор, в котором находится своеобразная взвесь достаточно крупных частиц, например белков, окруженных диполями молекул воды. Осаждения этой взвеси не происходит вследствие того, что они имеют одинаковый заряд и отталкиваются друг от друга.

Органоиды

Органоиды — это постоянные компоненты клетки, выполняющие определенные функции.

В зависимости от особенностей строения их делят на мембранные и немембранные. Мембранные органоиды, в свою очередь, относят к одномембранным (эндоплазматическая сеть, комплекс Гольджи и лизосомы) или двумембранным (митохондрии, пластиды и ядро). Немембранными органоидами являются рибосомы, микротрубочки, микрофиламенты и клеточный центр. Прокариотам из перечисленных органоидов присущи только рибосомы.

Строение и функции ядра. Ядро — крупный двумембранный органоид, лежащий в центре клетки или на ее периферии. Размеры ядра могут колебаться в пределах 3–35 мкм. Форма ядра чаще сферическая или эллипсоидная, однако имеются также палочковидные, веретеновидные, бобовидные, лопастные и даже сегментированные ядра. Некоторые исследователи считают, что форма ядра соответствует форме самой клетки.

Большинство клеток имеет одно ядро, но, например, в клетках печени и сердца их может быть два, а в ряде нейронов — до 15. Волокна скелетных мышц содержат обычно много ядер, однако они не являются клетками в полном смысле этого слова, поскольку образуются в результате слияния нескольких клеток.

Ядро окружено ядерной оболочкой, а его внутреннее пространство заполнено ядерным соком, или нуклеоплазмой (кариоплазмой), в которую погружены хроматин и ядрышко. Ядро выполняет такие важнейшие функции, как хранение и передача наследственной информации, а также контроль жизнедеятельности клетки.

Роль ядра в передаче наследственной информации была убедительно доказана в экспериментах с зеленой водорослью ацетабулярией. В единственной гигантской клетке, достигающей в длину 5 см, различают шляпку, ножку и ризоид. При этом она содержит только одно ядро, расположенное в ризоиде. В 1930-е годы И. Хеммерлинг пересадил ядро одного вида ацетабулярии с зеленой окраской в ризоид другого вида, с коричневой окраской, у которого ядро было удалено. Через некоторое время у растения с пересаженным ядром выросла новая шляпка, как у водоросли- донора ядра. В то же время отделенные от ризоида шляпка или ножка, не содержащие ядра, через некоторое время погибали.

Ядерная оболочка образована двумя мембранами — наружной и внутренней, между которыми есть пространство. Межмембранное пространство сообщается с полостью шероховатой эндоплазматической сети, а наружная мембрана ядра может нести рибосомы. Ядерная оболочка пронизана многочисленными порами, окантованными специальными белками. Через поры происходит транспорт веществ: в ядро попадают необходимые белки (в т. ч. ферменты), ионы, нуклеотиды и другие вещества, и покидают его молекулы РНК, отработанные белки, субъ единицы рибосом. Таким образом, функциями ядерной оболочки являются отделение содержимого ядра от цитоплазмы, а также регуляция обмена веществ между ядром и цитоплазмой.

Нуклеоплазмой называют содержимое ядра, в которое погружены хроматин и ядрышко. Она представляет собой коллоидный раствор, по химическому составу напоминающий цитоплазму. Ферменты нуклеоплазмы катализируют обмен аминокислот, нуклеотидов, белков и др. Нуклеоплазма связана с гиалоплазмой через ядерные поры. Функции нуклеоплазмы, как и гиалоплазмы, состоят в обеспечении взаимосвязи всех структурных компонентов ядра и осуществлении ряда ферментных реакций.

Хроматином называют совокупность тонких нитей и гранул, погруженных в нуклеоплазму. Выявить его можно только при окрашивании, так как коэффициенты преломления хроматина и нуклеоплазмы приблизительно одинаковы. Нитчатый компонент хроматина называют эухроматином, а гранулярный — гетерохроматином. Эухроматин слабо уплотнен, поскольку с него считывается наследственная информация, тогда как более спирализованный гетерохроматин является генетически неактивным.

Хроматин представляет собой структурное видоизменение хромосом в неделящемся ядре. Таким образом, хромосомы постоянно присутствуют в ядре, изменяется лишь их состояние в зависимости от функции, которую ядро выполняет в данный момент.

В состав хроматина в основном входят белки-нуклеопротеины (дезоксирибонуклеопротеины и рибонуклеопротеины), а также ферменты, важнейшие из которых связаны с синтезом нуклеиновых кислот, и некоторые другие вещества.

Функции хроматина состоят, во-первых, в синтезе специфических для данного организма нуклеиновых кислот, которые направляют синтез специфических белков, во-вторых, в передаче наследственных свойств от материнской клетки дочерним, для чего хроматиновые нити в процессе деления упаковываются в хромосомы.

Ядрышко — сферическое, хорошо заметное под микроскопом тельце диаметром 1–3 мкм. Оно формируется на участках хроматина, в которых закодирована информация о структуре рРНК и белках рибосом. Ядрышко в ядре часто одно, однако в тех клетках, где происходят интенсивные процессы жизнедеятельности, ядрышек может быть два и более. Функции ядрышек — синтез рРНК и сборка субъединиц рибосом путем объединения рРНК с белками, поступающими из цитоплазмы.

Митохондрии — двумембранные органоиды округлой, овальной или палочковидной формы, хотя встречаются и спиралевидные (в сперматозоидах). Диаметр митохондрий составляет до 1 мкм, а длина — до 7 мкм. Пространство внутри митохондрий заполнено матриксом. Матрикс — это основное вещество митохондрий. В него погружены кольцевая молекула ДНК и рибосомы. Наружная мембрана митохондрий гладкая, она непроницаема для многих веществ. Внутренняя мембрана имеет выросты — кристы, увеличивающие площадь поверхности мембран для протекания химических реакций. На поверхности мембраны расположены многочисленные белковые комплексы, составляющие так называемую дыхательную цепь, а также грибовидные ферменты АТФ-синтетазы. В митохондриях протекает аэробный этап дыхания, в ходе которого происходит синтез АТФ.

Пластиды — крупные двумембранные органоиды, характерные только для растительных клеток. Внутреннее пространство пластид заполнено стромой, или матриксом. В строме находится более или менее развитая система мембранных пузырьков — тилакоидов, которые собраны в стопки — граны, а также собственная кольцевая молекула ДНК и рибосомы. Различают четыре основных типа пластид: хлоропласты, хромопласты, лейкопласты и пропластиды.

Хлоропласты — это зеленые пластиды диаметром 3–10 мкм, хорошо различимые под микроскопом. Они содержатся только в зеленых частях растений — листьях, молодых стеблях, цветках и плодах. Хлоропласты в основном имеют овальную или эллипсоидную формы, но могут быть также чашевидными, спиралевидными и даже лопастными. Количество хлоропластов в клетке в среднем составляет от 10 до 100 штук. Однако, например, у некоторых водорослей он может быть один, иметь значительные размеры и сложную форму — тогда его называют хроматофором. В других случаях количество хлоропластов может достигать нескольких сотен, при этом их размеры невелики. Окраска хлоропластов обусловлена основным пигментом фотосинтеза — хлорофиллом, хотя в них содержатся и дополнительные пигменты — каротиноиды. Каротиноиды становятся заметными только осенью, когда хлорофилл в стареющих листьях разрушается. Основной функцией хлоропластов является фотосинтез. Световые реакции фотосинтеза протекают на мембранах тилакоидов, на которых закреплены молекулы хлорофилла, а темновые реакции — в строме, где содержатся многочисленные ферменты.

Хромопласты — это желтые, оранжевые и красные пластиды, содержащие пигменты каротиноиды. Форма хромопластов может также существенно варьировать: они бывают трубчатыми, сферическими, кристаллическими и др. Хромопласты придают окраску цветкам и плодам растений, привлекая опылителей и распространителей семян и плодов.

Лейкопласты — это белые или бесцветные пластиды в основном округлой или овальной формы. Они распространены в нефотосинтезирующих частях растений, например в кожице листа, клубнях картофеля и т. д. В них откладываются в запас питательные вещества, чаще всего крахмал, но у некоторых растений это могут быть белки или масло.

Пластиды образуются в растительных клетках из пропластид, которые имеются уже в клетках образовательной ткани и представляют собой небольшие двумембранные тельца. На ранних этапах развития разные виды пластид способны превращаться друг в друга: при попадании на свет лейкопласты клубня картофеля и хромопласты корнеплода моркови зеленеют.

Пластиды и митохондрии называют полуавтономными органоидами клетки, так как они имеют собственные молекулы ДНК и рибосомы, осуществляют синтез белка и делятся независимо от деления клеток. Эти особенности объясняются происхождением от одноклеточных прокариотических организмов. Однако «самостоятельность » митохондрий и пластид является ограниченной, так как их ДНК содержит слишком мало генов для свободного существования, остальная же информация закодирована в хромосомах ядра, что позволяет ему контролировать данные органоиды.

Эндоплазматическая сеть (ЭПС), или эндоплазматический ретикулум (ЭР), — это одномембранный органоид, представляющий собой сеть мембранных полостей и канальцев, занимающих до 30 % содержимого цитоплазмы. Диаметр канальцев ЭПС составляет около 25–30 нм. Различают два вида ЭПС — шероховатую и гладкую. Шероховатая ЭПС несет рибосомы, на ней происходит синтез белков. Гладкая ЭПС лишена рибосом. Ее функция — синтез липидов и углеводов, а также транспорт, запасание и обезвреживание токсических веществ. Она особенно развита в тех клетках, где происходят интенсивные процессы обмена веществ, например в клетках печени — гепатоцитах — и волокнах скелетных мышц. Вещества, синтезированные в ЭПС, транспортируются в аппарат Гольджи. В ЭПС происходит также сборка мембран клетки, однако их формирование завершается в аппарате Гольджи.

Аппарат Гольджи, или комплекс Гольджи, — одномембранный органоид, образованный системой плоских цистерн, канальцев и отшнуровывающихся от них пузырьков. Структурной единицей аппарата Гольджи является диктиосома — стопка цистерн, на один полюс которой приходят вещества из ЭПС, а с противоположного полюса, подвергшись определенным превращениям, они упаковываются в пузырьки и направляются в другие части клетки. Диаметр цистерн — порядка 2 мкм, а мелких пузырьков — около 20–30 мкм. Основные функции комплекса Гольджи — синтез некоторых веществ и модификация (изменение) белков, липидов и углеводов, поступающих из ЭПС, окончательное формирование мембран, а также транспорт веществ по клетке, обновление ее структур и образование лизосом. Свое название аппарат Гольджи получил в честь итальянского ученого Камилло Гольджи, впервые обнаружившего данный органоид (1898).

Лизосомы — небольшие одномембранные органоиды до 1 мкм в диаметре, в которых содержатся гидролитические ферменты, участвующие во внутриклеточном пищеварении. Мембраны лизосом слабопроницаемы для этих ферментов, поэтому выполнение лизосомами своих функций происходит очень точно и адресно. Так, они принимают активное участие в процессе фагоцитоза, образуя пищеварительные вакуоли, а в случае голодания или повреждения определенных частей клетки переваривают их, не затрагивая иных. Недавно была открыта роль лизосом в процессах клеточной гибели.

Вакуоль — это полость в цитоплазме растительных и животных клеток, ограниченная мембраной и заполненная жидкостью. В клетках простейших обнаруживаются пищеварительные и сократительные вакуоли. Первые принимают участие в процессе фагоцитоза, так как в них происходит расщепление питательных веществ. Вторые обеспечивают поддержание водно-солевого баланса за счет осморегуляции. У многоклеточных животных в основном встречаются пищеварительные вакуоли.

В растительных клетках вакуоли присутствуют всегда, они окружены специальной мембраной и заполнены клеточным соком. Мембрана, окружающая вакуоль, по химическому составу, строению и выполняемым функциям близка к плазматической мембране. Клеточный сок представляет собой водный раствор различных неорганических и органических веществ, в том числе минеральных солей, органических кислот, углеводов, белков, гликозидов, алкалоидов и др. Вакуоль может занимать до 90 % объема клетки и оттеснять ядро на периферию. Эта часть клетки выполняет запасающую, выделительную, осмотическую, защитную, лизосомную и другие функции, поскольку в ней накапливаются питательные вещества и отходы жизнедеятельности, она обеспечивает поступление воды и поддержание формы и объема клетки, а также содержит ферменты расщепления многих компонентов клетки. К тому же биологически активные вещества вакуолей способны препятствовать поеданию этих растений многими животными. У ряда растений за счет разбухания вакуолей происходит рост клетки растяжением.

Вакуоли имеются также и в клетках некоторых грибов и бактерий, однако у грибов они выполняют только функцию осморегуляции, а у цианобактерий поддерживают плавучесть и участвуют в процессах усвоения азота из воздуха.

Рибосомы — небольшие немембранные органоиды диаметром 15–20 мкм, состоящие из двух субъединиц — большой и малой. Субъединицы рибосом эукариот собираются в ядрышке, а затем транспортируются в цитоплазму. Рибосомы прокариот, митохондрий и пластид меньше по величине, чем рибосомы эукариот. В состав субъединиц рибосом входят рРНК и белки.

Количество рибосом в клетке может достигать нескольких десятков миллионов: в цитоплазме, митохондриях и пластидах они находятся в свободном состоянии, а на шероховатой ЭПС — в связанном. Они принимают участие в синтезе белка, в частности, осуществляют процесс трансляции — биосинтеза полипептидной цепи на молекуле иРНК. На свободных рибосомах синтезируются белки гиалоплазмы, митохондрий, пластид и собственные белки рибосом, тогда как на прикрепленных к шероховатой ЭПС рибосомах осуществляется трансляция белков для выведения из клеток, сборки мембран, образования лизосом и вакуолей.

Рибосомы могут находиться в гиалоплазме поодиночке или собираться в группы при одновременном синтезе на одной иРНК сразу нескольких полипептидных цепей. Такие группы рибосом называются полирибосомами, или полисомами.

Микротрубочки — это цилиндрические полые немембранные органоиды, которые пронизывают всю цитоплазму клетки. Их диаметр составляет около 25 нм, толщина стенки — 6–8 нм. Они образованы многочисленными молекулами белка тубулина, которые сначала формируют 13 нитей, напоминающих бусы, а затем собираются в микротрубочку. Микротрубочки образуют цитоплазматическую сеть, которая придает клетке форму и объем, связывают плазматическую мембрану с другими частями клетки, обеспечивают транспорт веществ по клетке, принимают участие в движении клетки и внутриклеточных компонентов, а также в делении генетического материала. Они входят в состав клеточного центра и органоидов движения — жгутиков и ресничек.

Микрофиламенты, или микронити, также являются немембранными органоидами, однако они имеют нитевидную форму и образованы не тубулином, а актином. Они принимают участие в процессах мембранного транспорта, межклеточном узнавании, делении цитоплазмы клетки и в ее движении. В мышечных клетках взаимодействие актиновых микрофиламентов с миозиновыми нитями обеспечивает сокращение.

Микротрубочки и микрофиламенты образуют внутренний скелет клетки — цитоскелет. Он представляет собой сложную сеть волокон, обеспечивающих механическую опору для плазматической мембраны, определяет форму клетки, расположение клеточных органоидов и их перемещение в процессе деления клетки.

Клеточный центр — немембранный органоид, располагающийся в животных клетках вблизи ядра; в растительных клетках он отсутствует. Его длина составляет около 0.2–0.3 мкм, а диаметр — 0.1–0.15 мкм. Клеточный центр образован двумя центриолями, лежащими во взаимно перпендикулярных плоскостях, и лучистой сферой из микротрубочек. Каждая центриоль образована девятью группами микротрубочек, собранных по три, т. е. триплетами. Клеточный центр принимает участие в процессах сборки микротрубочек, делении наследственного материала клетки, а также в образовании жгутиков и ресничек.

Органоиды движения. Жгутики и реснички представляют собой выросты клетки, покрытые плазмалеммой. Основу этих органоидов составляют девять пар микротрубочек, расположенных по периферии, и две свободные микротрубочки в центре. Микротрубочки связаны между собой различными белками, обеспечивающими их согласованное отклонение от оси — колебание. Колебания энергозависимы, то есть на этот процесс тратится энергия макроэргических связей АТФ. Восстановление утраченных жгутиков и ресничек является функцией базальных телец, или кинетосом, расположенных в их основании.

Длина ресничек составляет около 10–15 нм, а жгутиков — 20–50 мкм. За счет строго направленных движений жгутиков и ресничек осуществляется не только движение одноклеточных животных, сперматозоидов и др., но и происходит очистка дыхательных путей, продвижение яйцеклетки по маточным трубам, поскольку все эти части организма человека выстланы реснитчатым эпителием.

Включения

Включения — это непостоянные компоненты клетки, которые образуются и исчезают в процессе ее жизнедеятельности. К ним относят как запасные вещества, например, зерна крахмала или белка в растительных клетках, гранулы гликогена в клетках животных и грибов, волютина у бактерий, капли жира во всех типах клеток, так и отходы жизнедеятельности, в частности, непереваренные в результате фагоцитоза остатки пищи, образующие так называемые остаточные тельца.

Взаимосвязь строения и функций частей и органоидов клетки — основа ее целостности

Каждая из частей клетки, с одной стороны, является обособленной структурой со специфическим строением и функциями, а с другой — компонентом более сложной системы, называемой клеткой. Бульшая часть наследственной информации эукариотической клетки сосредоточена в ядре, однако само ядро не в состоянии обеспечить ее реализацию, поскольку для этого необходимы как минимум цитоплазма, выступающая как основное вещество, и рибосомы, на которых и происходит этот синтез. Большинство рибосом расположено на гранулярной эндоплазматической сети, откуда белки чаще всего транспортируются в комплекс Гольджи, а затем после модификации — в те части клетки, для которых они предназначены, или выводятся наружу. Мембранные упаковки белков и углеводов могут встраиваться в мембраны органоидов и цитоплазматическую мембрану, обеспечивая их постоянное обновление. От комплекса Гольджи отшнуровываются также выполняющие важнейшие функции лизосомы и вакуоли. Например, без лизосом клетки быстро превратились бы в свое образную свалку отработанных молекул и структур.

Протекание всех этих процессов требует энергии, вырабатываемой митохондриями, а у растений — и хлоропластами. И хотя эти органоиды являются относительно автономными, т. к. имеют собственные молекулы ДНК, часть их белков все равно кодируется ядерным геномом и синтезируется в цитоплазме.

Таким образом, клетка представляет собой неразрывное единство составляющих ее компонентов, каждый из которых выполняет свою уникальную функцию.

Разбор заданий с иллюстрациями из открытого банка заданий (фипи) по теме «Клетка как биологическая система»

Для того, что бы успешно сдать экзамен нужно, в том числе хорошо ориентироваться в иллюстративном материале. В этом посте мы разберем задания с иллюстрациями из открытого банка заданий. Конечно, это не все возможные иллюстрации, которые могут быть на экзамене, но чем больше иллюстраций вы разберете при подготовке, тем больше вероятность того, что вас не застанут врасплох.

Цветные метки на некоторых изображениях — мое добавление для удобства изучения картинки.

1.  Изображённая на рисунке структура клетки, обладающая полупроницаемостью, представляет собой…

задание 1

При данной формулировке задания картинка практически лишняя, так как упоминается одно из главных свойств этой структуры — полупроницаемость. На это свойство вы должны сразу среагировать и понять, что речь идет про плазматическую мембрану. Но узнавать мембрану на изображениях несомненно нужно. Стрелочками на изображении указаны: синими — основной и наиважнейший элемент мембран — фосфолипиды; красными белки, часть из которых лежит на поверхности фосфолипидного слоя, часть полупогружена, а часть полностью пронизывает оба фосфолипидных слоя.

На данном изображение мембрана показана как бы на срезе и отсутствует еще один важный элемент строения мембраны. Он есть в следующем задании.

2.  Какие элементы строения клеточной мембраны обозначены на рисунке цифрами 1, 2, 3 и какие функции они выполняют?

задание 2

На этом изображении мы видим клеточную (она же плазматическая, она же цитоплазматическая, она же плазмоллема, она же цитолемма) мембрану как бы сверху и сбоку. Видя одновременно и срез и поверхность. Ответить на первую часть вопроса нам уже просто: 1 — белки, 2 — фосфолипиды, а вот 3 — это цепочки углеводов (гликокаликс).

Значение каждого элемента. Фосфолипиды являются важнейшей структурным элементом (основой, каркасом) мембраны. Каждая молекула состоит из двух частей (гидрофобные «хвостики» и гидрофильные «головки»). Гидрофобные части молекул «не любят» воду и поворачиваются всегда друг к другу (хвостик к хвостику), а гидофильные части молекул воду «любят», поэтому все время оказываются на поверхности слоя мембраны. За счет таких особенностей мембрана легко восстанавливается, а по сути самозамыкается, в случае небольших разрывов и в случае эндо- и экзоцитоза.

эндоцитоз

3.  Какая структура изображена на рисунке?

3

Тут все просто — это хромосома, состоящая из двух сестринских хроматид, очень близко расположенных друг к другу. Хромосома состоит из двух хроматид перед делением (митозом/мейозом) и имеет определенные элементы, которые нужно знать обязательно. Молекулы ДНК обозначены зеленой стрелочкой (на этом рисунке не самое удачное изображение, но какое есть). Центромера (или первичная перетяжка) обозначена оранжевой стрелочкой. В районе центромеры до определенного момента деления две сестринские хроматиды соединены друг с другом. Красной стрелочкой обозначена вторичная перетяжка (есть не у всех хромосом), она же называется ядрышковым организатором, в этом месте располагаются гены содержащие информацию о рРНК (рибосомальных). Сиреневой стрелочкой обозначен спутник.

4.

4

Первым делом нужно вспомнить что такое тРНК. Это транспортная РНК, которая участвует в трансляции (этап биосинтеза белка), принося к рибосоме конкретную аминокислоту. Она небольшого размера и похожа на лист клевера. Правильный ответ — четвертый. И тРНК нужно запомнить в лицо.

Что же изображено на остальных рисунках? 1 — АТФ, состоящая из азотистого основания (аденин), углевода (рибоза) и трех остатков фосфорной кислоты. При чем на рисунке мы можем увидеть символичное изображение двух макроэргических связей (связи содержащие в себе большое количество энергии) — сиреневыми стрелками. 2 — третичная структура молекулы белка (глобула). 3 — молекула ДНК.

5.

5

На рисунке в целом изображен схематично нуклеотид. А — азотистое основание урацил. Б — пентоза (моносахарид) рибоза. Вывод о рибозе сделан на основании того, что на рисунке обозначен именно урацил, а урацил входит в состав только молекул РНК. А в состав нуклеотидов РНК входит пентоза рибоза (у ДНК дезоксирибоза). В — это остаток фосфорной кислоты.

Соответственно, на третий вопрос нужно ответить так: данный нуклеотид входит в состав иРНК, рРНК и тРНК.

6. Часть клетки, с помощью которой устанавливаются связи между органоидами, обозначена на рисунке буквой…

6

Сначала разберемся что мы видим на рисунке. Клетка явно имеет толстую клеточную оболочку, а значит это растительная клетка (может быть клетка грибов, но такое в заданиях редко бывает). Смотрим дальше. В — точно ядро; А — вакуоль с клеточным соком; Б — внутреннее содержимое клетки, т.е. цитоплазма; Г — вероятно, хлоропласты. И только цитоплазма (из представленных элементов) играет важную роль в «общении» органоидов между собой. Цитоплазма текуча (у эукариотов) и вещества с помощью перемещения цитоплазмы перемещаются от органоида к органоиду или к плазматической мембране. Соответственно, правильный ответ — Б.

7.  На рисунке изображена клетка…

7

Видим тот же рисунок, но с более правильными (по форме) хлоропластами. Никаких сомнений — это растительная клетка. Основной момент при определении растительная перед вами находится клетка или животная, на мой взгляд, это наличие клеточной стенки (у животной клетки ее нет).

8. Назовите органоид растительной клетки, изображенный на рисунке, его структуры, обозначенные цифрами 1-3, и их функции.

8

Рассматривая внимательно изображение этого органоида, в первую очередь, нужно увидеть, что он двумембранный, т.е. окружен двумя мембранами (на рисунке хорошо видны две линии). Сразу же вспоминаем, что мы знаем два двумембранных органоида (митохондрия и хлоропласт) и митохондрия намного проще устроена. Значит, это хлоропласт. Конечно, это изображение нужно выучить наизусть, но нужно быть готовым, к тому, что хлоропласт может быть изображен и немного по-другому.

Теперь перейдем к внутреннему содержимому. Внутренняя мембрана хлоропласта образует целую сеть достаточно упорядоченных мембран. Мембраные пузыречки похожи на монетки. Один самостоятельный пузыречек — это тилакоид (оранжевая стрелочка), стопка тилакоидов — это грана. Длинный вытянутый тилакоид (часто соединяющий несколько гран) называют ламелой (зеленая стрелочка). Хлоропласт (вместе с митохондрией) имеет особенность строения, заключающуюся в наличии собственной ДНК. В этой молекуле ДНК содержатся гены с информацией о белках-ферментах, участвующих в фотосинтезе. И эти ферменты синтезируются на месте, т.е. в самом хлоропласте, а значит есть рибосомы.  В результате фотосинтеза образуется глюкоза и из нее может здесь же синтезироваться крахмал (зерна крахмала можно увидеть под сиреневой стрелочкой) и липидные капли (на рисунке под синей стрелочкой). Внутреннее жидкое содержимое хлоропласта называют стромой.

Соответственно, правильный ответ: 1 — грана, 2 — ДНК, 3 — рибосомы (скорее всего, но так как рисунок не совсем четкий, то может и имеется ввиду строма).

9. На каком рисунке изображена митохондрия?

9

На третьем рисунке, уже знакомый нам (достаточно узнаваемый) хлоропласт. Вспоминаем, что митохондрия имеет две мембраны и безошибочно выбираем правильный — четвертый ответ. На рисунке под цифрой 4 хорошо видно, что мембран две и внутренняя мембрана органоида впячивется внутрь, образуя складки — кристы. Посмотрим на все многообразие изображений митохондрий. Попутно вспомним, что у митохондрий тоже есть собственная ДНК и рибосомы.

Что же изображено на первом и втором рисунке? Под номером 1 рибосома во время трансляции, на ее фоне мы можем видеть две тРНК и цепочку из аминокислот, которая пока прикреплена к одной из тРНК. Под номером 2 аппарат (комплекс) Гольджи. Не самое удачное, на мой взгляд, изображение этого органоида, но мы должны быть готовы ко всему, поэтому идем по ссылке и наслаждаемся многообразием изображений аппарата Гольджи. Вспоминая попутно, что это одномембранный органоид, который по мимо всего прочего образует лизосомы (мембранные пузырьки сверху органоида на рисунке).

10.

10

Самое главное чем отличаются прокариоты от эукариот — отсутствие (у прокариот) или наличие (у эукариот) оформленного ядра, т.е. ядерной оболочки вокруг наследственной информации. А — бактерия (относится к прокариотам),  Б — хламидоманада (эукариоты). У бактерии кольцевая ДНК (синяя стрелочка), расположенная в цитоплазме, у хламидоманады оформленное ядро с ядрышком (оранжевая стрелочка). Так же можно добавить, что у эукариот есть различные органоиды. В частности у хламидоманады хроматофор, вакуоль и светочувствительный глазок. А у прокариот из органоидов есть только рибосомы.

11.

11

На рисунке изображен эндоцитоз — поступление веществ внутрь клетки (экзоцитоз наоборот). Процесс этот происходит с помощью плазматической мембраны и благодаря ее пластичности и текучести (а так же несомненно благодаря цитоскелету). Эндоцитоз делят на два разных процесса: фагоцитоз — поступление твердых веществ либо клеток (соответственно, фагоцитоз изображен на рис. А) и пиноцитоз — поступление жидкости (рис. Б). Бактерия будет переварена (разрушена) клеткой.

12.  Определите тип и фазу деления клетки, изображенной на рисунке. Какие процессы происходят в этой фазе?

12

Первым делом надо понять митоз это или мейоз. Два важных момента, на которые нужно обратить внимание. Первое: нет признаков кроссинговера, т.е. хроматиды хромосом нарисованы однородными. Второе: здесь видно четко две пары гомологичных хромосом — две большие и две маленькие. это значит, что редукции наследственного материала не произошло. Значит — это митоз. Фаза — метафаза, так как хромосомы выстроились вдоль экватора по одной линии (так называемая метафазная пластинка).

Процессы: хромосомы, состоящие из двух хроматид, выстраиваются вдоль экватора. К центромерам хромосом прикрепляются нити веретена деления.

13.  Какие стадии гаметогенеза обозначены на рисунке буквами А, Б и В? Какой набор хромосом имеют клетки на каждой из этих стадий? К развитию каких специализированных клеток ведёт этот процесс?

13

Если воспринимать на рисунке под буквой А все пространство до первой горизонтальной линии, то несомненно — это стадия размножения. На этой стадии происходит деление клетки путем митоза, набор хромосом <<2n4c>>. Под буквой Б обозначена стадия роста. Клетка увеличивается в размере, накапливает вещества и энергию для финальной стадии. Под буквой В стадия созревания. На этой стадии происходит мейоз и количество хромосом уменьшается. Набор хромосом становится <<nc>>.

Результатом гаметогенеза становится образования гамет, т.е. половых клеток (несомненно специализированных клеток).

Понравилась статья? Поделить с друзьями:
  • Строение письма егэ английский
  • Строение клетки егэ биология теория
  • Строение печени егэ
  • Строение клетки егэ биология 2023
  • Строение пестика егэ