Строение корня на поперечном срезе егэ

Корень — вегетативный орган растения, обладающий положительным геотропизмом (растет по направлению силы притяжения), имеющий цилиндрическую форму и радиальную симметрию. До тех пор пока на кончике корня есть верхушечная (апикальная) меристема, корень способен к росту. Ключевое отличие корня от побега в том, что
верхушечная меристема защищена корневым чехликом, который покрывает ее. Запомните также, что на корне никогда нельзя найти листья. Основные функции корня:

  • Опорная функция — закрепляет растение в почве (заякоривание)
  • Всасывание воды и растворенных в ней минеральных веществ из почвенного раствора
  • Синтез органических веществ — в клетках корня происходит образование важных для растения соединений (алкалоиды, гормоны, аминокислоты)
  • Запасание питательных веществ — корень накапливает крахмал, масла
  • Вегетативное размножение — может осуществляться частями корня
  • Иногда на корнях закладываются придаточные почки — так называют почки, которые закладываются вне типичных мест развития почек (вне пазухи листа и верхушки побега). Из них прорастают побеги, часто называемые корневой порослью или корневыми отпрысками.

  • Симбиоз с бактериями, грибами
  • Клубеньковые (азотфиксирующие) бактерии объединяются на корнях в особые образования — клубеньки. Эти бактерии способны преобразовывать
    атмосферный азот (молекулярное вещество) в азотсодержащие сложные вещества, которые усваиваются растениями. С мицелием грибов корень образует
    симбиоз, который называется микориза (или грибокорень).

Функции корня

Корневая система и происхождение корней

Корневую систему образуют в совокупности все корни растения. Она обеспечивает надежное заякоривание растения в почве. У растений встречается три основных типа:

  • Стержневая корневая система
  • Хорошо выражен, развит главный корень, выделяется на фоне остальных корней. Боковые и придаточные корни не выделяются, занимают по отношению
    к главному подчиненное положение. Характерна для двудольных растений: клевера, одуванчика лекарственного, лопуха большого.

  • Мочковатая корневая система
  • Главный корень не развит или быстро отмирает, преобладают придаточные корни, растущие от побега. Корни равнозначны между собой. Мочковатая система характерна для большинства однодольных растений: лук репчатый, злаки. Для некоторых двудольных: подорожник большой, лютик едкий.

  • Смешанная корневая система
  • Можно отличить главный корень, он выделяется по размеру. Однако, хорошо развиты множественные придаточные и боковые корни. Смешанная корневая
    система характерна для клубники, земляники.

Функции корня

Зоны корня

Зоны корня являются отражением его роста и развития. Я всегда говорю учениками, что воображение — это самое важное. Представьте корень, растущий вглубь
почвы. Он сталкивается со множеством проблем и задач, которые зоны корня помогают решать. По мере роста вглубь, зоны корня сменяют друг друга в
направлении роста. Итак, какие же зоны корны выделяют?

  • Зона размножения (деления)
  • Это зона представлена мелкими, быстро делящимися клетками верхушечной (апикальной) меристемы, расположенной на верхушке конуса нарастания. Такие молодые
    клетки особенно уязвимы, поэтому с целью защиты зону размножения покрывает корневой чехлик. Его клетки постоянно погибают от соприкосновения с почвой,
    образуя слизистый чехол, способствующий росту корня вглубь почвы и снижающий трение о почву.

    Корневой чехлик у злаковых растений образуется из меристематических клеток, совокупность которых называется калиптрогеном. У двудольных растений имеется
    дерматокалиптроген, из которого помимо корневого чехлика развивается протодерма, из которой далее дифференцируется ризодерма (эпиблема).

  • Зона роста (растяжения)
  • В этой зоне поделившиеся «молодые клетки — взрослеют», набирают цитоплазматическую массу, увеличиваются в размерах. Именно за счет их роста зона деления
    корня проталкивается вглубь почвы, что и обеспечивает рост корня.

  • Зона всасывания
  • Здесь происходит дифференцировка клеток, формируются основные типы тканей. Клетки ризодермы (эпиблемы) образуют корневые волоски — волосовидный вырост. Важно отметить, что
    корневой волосок это вырост одной клетки. Однако клеток очень много, и в совокупности все их корневые волоски существенно увеличивают площадь всасывания корня.
    Врастая в почву, корневые волоски выполняют одну из важнейших функций корня — всасывание воды и растворенных в ней минеральных солей из почвенного раствора. По длине зона
    всасывания занимает 1-1,5 см.

  • Зона проведения
  • По мере роста корня вглубь почвы корневые волоски отпадают, когда-то активная зона всасывания теперь становится другой крайне важной зоной — проведения. По протяженности
    зона проведения корня превосходит все остальные: она тянется вплоть до корневой шейки — места перехода корня в стебель, достигает десятков сантиметров.

Зоны корня

Пикирование (пикировка) корня

Это удаление верхушки главного корня вместе с зоной размножения. Таким образом садоводы останавливают рост главного корня и стимулируют развитие боковых и
придаточных корней, корневая система получается разветвленной, и растение дает хороший урожай.

Пикрование корня

Корневое дыхание

В корнях идет процесс дыхания, подобно тому, как и в других органах. Для нормального роста и развития к корню должен поступать свежий воздух, содержащий кислород.
При плохой структуре почвы ее насыщение водой приводит к настоящему кислородному голоданию корней — асфиксии, и далеко не все растения устойчивы к этому явлению.
Есть виды, которые совершенно не переносят затоплений и требуют хорошей аэрации почвы — дуб черешчатый, бук.

Отметьте для себя важность аэрации корней растения, посмотрев на следующий опыт. С помощью груши в левой части рисунка в воду накачивают воздух,
частично растворяющийся в воде — корни получают кислород, растение развивается. Справа корневое дыхание затруднено, развитие растения замедлено, и, если асфиксия
корней продолжится, растение погибнет.

Корневое дыхание

Видоизменения корней
  • Корнеплод
  • Запасающий орган, в котором складируется крахмал, сахароза, белки, клетчатка, минеральные соли. Формируется корнеплод из главного корня и основания
    стебля побега. Корнеплод характерен для двулетних растений: свеклы, петрушки, брюквы, моркови.

    В первый год жизни у них формируется корнеплод с запасом питательных
    веществ, к осени надземная часть отмирает. Следующей весной растение «оживает» именно благодаря запасу веществ в корнеплоде с прошлого года. На второй год
    растения плодоносят и цветут, после чего отмирают полностью.

    Корнеплоды

  • Корневые клубни
  • Представляют собой видоизменения боковых и придаточных корней. Выполняют запасающую функцию. Внешне утолщены и напоминают клубни. Имеются у чистяка,
    ятрышника, георгина, батата (сладкий картофель).

    Корневые клубни

  • Питающие воздушные корни
  • Некоторые растения образуют корни в воздушной среде. Воздушные корни встречаются у лиан и эпифитов, растущих в условиях тропиков, где воздух настолько влажный, что из него в буквальном смысле можно всасывать воду, что и делают воздушные корни. Многослойная покровная ткань воздушных корней
    подобно губке впитывает воду из влажного воздуха. Имеются у тропических папоротников, орхидеи, монстеры.

    Слово эпифиты происходит от греч. ἐπι- — «на»
    и φυτόν — «растение», так обозначают растения, прикрепленные или произрастающие на других растениях, при этом совершенно не получающие от них
    питательных веществ, то есть явление паразитизма исключается.

    Питающие воздушные корни

  • Корни прицепки (или корни-зацепки)
  • Это видоизмененные придаточные корни, выполняющие опорную функцию. Они прикрепляют растения к объектам окружающей внешней среды: стволам деревьев, фасадам
    зданий, корни прицепки помогают занять растению наиболее благоприятное с точки зрения освещенности место. Яркий примеры — плющ, ваниль.

    Корни прицепки

  • Воздушные опорные корни (корни-подпорки)
  • Видоизмененные придаточные одревесневшие корни, растут на стволах и ветвях до почвы, у ее поверхности сильно разветвляются, тем самым «подпирая» растение. Придают опору
    растению и его ветвям, закрепляют его в почве. Встречаются у тропических растений: баньян, фикус.

    Воздушные опорные корни

  • Дыхательные корни
  • Формируются у растений, произрастающих в воде или на болоте, в качестве механизма адаптации к недостаточному снабжению корней воздухом. Они приподнимаются над
    поверхностью воды и поглощают воздух. Такие корни имеет болотный кипарис (таксодиум).

    Дыхательные корни

  • Ходульные корни
  • Образуются на стволах деревьев для опоры. Могут поддерживать ствол дерева над уровнем воды при затоплениях, укрепляют растение в иле или
    песчаном грунте приливной полосы морских побережий. Имеются у пандануса.

    Ходульные корни

  • Корни-присоски
  • Видоизменения корней растений-паразитов, с помощью которых они высасывают питательные вещества из клеток растения-хозяина. Эти корни внедряются в стебли
    других растений и поглощают их соки: воду, растворенные в ней минеральные вещества, органические вещества. Имеются у повилики и заразихи. У омелы, погремка
    тоже имеются корни-присоски, но они всасывают только воду и растворенные в ней соли.

    Ходульные корни

  • Клубеньки на корнях
  • Бактериальные клубеньки представляют собой видоизмененные боковые корни, которые образуются в результате симбиоза растения и азотфиксирующих бактерий.

    Клубеньки видоизменение корня

© Беллевич Юрий Сергеевич 2018-2023

Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение
(в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов
без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования,
обратитесь, пожалуйста, к Беллевичу Юрию.

Поперечное строение корня.

На поперечном срезе в зоне всасывания у двудольных растений, а у однодольных – и в зоне проведения выделяют три основные части: покровно-всасывательная ткань, первичная кора и центральный осевой цилиндр.

Покровно-всасывательная ткань – ризодерма выполняет покровную, всасывательную, а также, частично, опорную функции. Представлена одним слоем клеток эпиблемы.

Первичная кора корня наиболее мощно развита. Состоит из экзодермы, мезодермы = паренхимы первичной коры и эндодермы. Клетки экзодермы многоугольные, плотно прилегающие друг к другу, располагаются в несколько рядов. Их клеточные стенки пропитаны суберином (опробковение) и лигнином (одревеснение). Суберин обеспечивает непроницаемость клеток для воды и газов. Лигнин придает ей прочность. Поглощенные ризодермой вода и минеральные соли проходят через тонкостенные клетки экзодермы = пропускные клетки. Они расположены под корневыми волосками. По мере отмирания клеток ризодермы эктодерма может выполнять и покровную функцию.

Мезодерма располагается под эктодермой и состоит из живых паренхимных клеток. Они выполняют запасающую функцию, а также функцию проведения воды и растворенных в ней солей от корневых волосков в центральный осевой цилиндр.

Внутренний однорядный слой первичной коры представлен эндодермой. Выделяют эндодерму с поясками Каспари и эндодерму с подковообразными утолщениями.

Эндодерма с поясками Каспари – начальный этап формирования эндодермы, при котором утолщены только радиальные стенки ее клеток за счет пропитывания их лигнином и суберином.

У однодольных растений в клетках эндодермы происходит дальнейшее пропитывание суберином клеточных стенок. В результате неутолщенной остается только наружная клеточная стенка. Среди этих клеток наблюдаются клетки с тонкими целлюлозными оболочками. Это пропускные клетки. Они обычно располагаются напротив лучей ксилемы пучка радиального типа.

Считают, что эндодерма является гидравлическим барьером, способствуя продвижению минеральных веществ и воды из первичной коры в центральный осевой цилиндр, и препятствуя их обратному току.

Центральный осевой цилиндр состоит из однорядного перицикла и радиального сосудисто-волокнистого пучка. Перицикл способен к меристематической активности. Он образует боковые корни. Сосудисто-волокнистый пучок является проводящей системой корня. В корне двудольных растений радиальный пучок состоит из 1 – 5 лучей ксилемы. У однодольных – от 6 и более лучей ксилемы. Сердцевины корни не имеют.

У однодольных растений строение корня в течение жизни растения не претерпевает значительных изменений.

Для двудольных растенийна границе зоны всасывания и зоны укрепления (проведения) происходит переход от первичного ковторичному строениюкорня. Процесс вторичных изменений начинается с появления прослоек камбия под участками первичной флоэмы, внутрь от нее. Камбий возникает из слабо дифференцированной паренхимы центрального цилиндра (стелы).

Между лучами первичной ксилемы из клеток прокамбия (боковая меристема) образуются дуги камбия, замыкающиеся на перицикле. Перицикл частично формирует камбий и феллоген. Камбиальные участки, возникшие из перицикла, образуют только паренхимные клетки сердцевинных лучей. Клетки камбия к центру откладывают вторичную ксилему, а кнаружи – вторичную флоэму. В результате деятельности камбия между лучами первичной ксилемы формируются открытые коллатеральные сосудисто-волокнистые пучки, число которых равно числу лучей первичной ксилемы.

На месте перицикла закладывается пробковый камбий (феллоген), дающий начало перидерме – вторичной покровной ткани. Пробка изолирует первичную кору от центрального осевого цилиндра. Кора отмирает и сбрасывается. Покровной тканью становится перидерма. И корень фактически представлен центральным осевым цилиндром. В самом центре осевого цилиндра сохранены лучи первичной ксилемы, между ними располагаются сосудисто-волокнистые пучки. Комплекс тканей снаружи от камбия получил название вторичной коры. Т.о. корень вторичного строения состоит из ксилемы, камбия, вторичной коры и пробки.

Поглощение и транспорт корнем воды и минеральных веществ.

Поглощение из почвы воды и доставка к наземным органам – одна из важнейших функций корня, возникшая в связи с выходом на сушу.

Вода попадает в растения через ризодерму, в зоне поглощения, поверхность которой увеличена благодаря наличию корневых волосков. В этой зоне корня формируется ксилема, обеспечивающая восходящий ток воды и минеральных веществ.

Растение поглощает воду и минеральные вещества независимо друг от друга, т.к. эти процессы основаны на различных механизмах действия. Вода проходит в клетки корня пассивно, благодаря осмосу. В корневом волоске находится огромная вакуоль с клеточным соком. Ее осмотический потенциал и обеспечивает поступление воды из почвенного раствора в корневой волосок.

Минеральные вещества поступают в клетки корня в основном в результате активного транспорта. Их поглощению способствует выделение корнем различных органических кислот, переводящих неорганические соединения в доступную для поглощения форму.

В корне горизонтальное движение воды и минеральных веществ происходит в следующей последовательности: корневой волосок, клетки паренхимы коры, эндодерма, перицикл, паренхима осевого цилиндра, сосуды корня. Горизонтальный транспорт воды и минеральных веществ происходит тремя путями:

Путь через апопласт (система, состоящая из межклетников и клеточных стенок). Основной для транспорта воды и ионов неорганических веществ.

Путь через симпласт (система протопластов клеток, соединенная посредством плазмодесм). Осуществляет транспорт минеральных и органических веществ.

Вакуолярный путь – движение из вакуоли в вакуоль через другие компоненты смежных клеток (плазматические мембраны, цитоплазма, тонопласт вакуолей). Применим исключительно для транспорта воды. Для корня незначителен.

В корне вода передвигается по апопласту до эндодермы. Здесь ее дальнейшему продвижению препятствуют пояски Каспари, поэтому дальше вода попадает в стелу по симпласту через пропускные клетки эндодермы. Такое переключение путей обеспечивает регуляцию движения воды и минеральных веществ из почвы в ксилему. В стеле вода не встречает сопротивления и поступает в проводящие сосуды ксилемы.

Вертикальный транспорт воды идет по мертвым клеткам, поэтому перемещение воды обеспечивается деятельностью корня и листьев. Корень подает воду в сосуды стебля под давлением, называемым корневым. Оно возникает в результате того, что осмотическое давление в сосудах корня превышает осмотическое давление почвенного раствора из – за активного выделения клетками корня минеральных и органических веществ в сосуды. Его величина 1 – 3 атм.

Доказательством наличия корневого давления является «плач растения» и гуттация.

«Плач растения» – выделение жидкости из перерезанного стебля.

Гуттация – выделение воды у неповрежденного растения через кончики листьев, когда оно находится во влажной атмосфере или интенсивно поглощает воду и минеральные вещества из почвы.

Верхней силой движения воды является присасывающая сила листьев, обеспечиваемая транспирацией. Транспирация – испарение воды с поверхности листьев. Сосущая сила листьев у деревьев может достигать 15 – 20 атм.

В сосудах ксилемы вода движется в виде непрерывных водяных нитей. Между молекулами воды существуют силы сцепления (когезия), что заставляет их двигаться друг за другом. Прилипание молекул воды к стенкам сосудов (адгезия) обеспечивает восходящий капиллярный ток воды. Основной движущей силой является транспирация.

Для нормального развития растения корни должны быть обеспечены влагой, доступом свежего воздуха и необходимыми минеральными солями. Все это растения получают из почвы, которая представляет собой верхний плодородный слой земли.

Для повышения плодородия почвы в нее вносят различные удобрения. Внесение удобрений во время роста растений называется подкормкой.

Выделяют две основные группы удобрений:

Минеральные удобрения: азотные (селитра, мочевина, сульфат аммония), фосфорные (суперфосфат), калийные (хлорид калия, зола). Полные удобрения содержат азот, фосфор и калий.

Органические удобрения – вещества органического происхождения (навоз, птичий помет, торф, перегной).

Азотные удобрения хорошо растворяются в воде, способствуют росту растений. Их вносят в почву перед посевом. Для созревания плодов, роста корней, луковиц и клубней необходимы фосфорные и калийные удобрения. Фосфорные удобрения плохо растворимы в воде. Их вносят осенью, вместе с навозом. Фосфор и калий повышают холодоустойчивость растений.

Растения в теплицах можно выращивать без почвы, на водной среде, которая содержит все элементы, необходимые растению. Такой способ получил название гидропоники.

Существует также метод аэропоники – воздушной культуры,- когда корневая система находится в воздухе и периодически орошается питательным раствором.

в условии
в решении
в тексте к заданию
в атрибутах

Категория:

Атрибут:

Всего: 78    1–20 | 21–40 | 41–60 | 61–78

Добавить в вариант

Колючки кактуса – это

1) орган почвенного питания

4) видоизмененный лист


Усики гороха – это

4) видоизмененный стебель


Корневище – это

1) орган почвенного питания

4) часть корня


Отличие двудольных растений от однодольных состоит в том, что они имеют

1) одну семядолю в семени, мочковатую корневую систему, листья с параллельным жилкованием

2) две семядоли в семени, стержневую корневую систему, сетчатое жилкование листьев

3) корень, побег, цветок и плоды

4) соцветие метелку, сложное строение листьев


Растения отдела покрытосеменных в отличие от голосеменных

1) имеют корень, стебель, листья

4) выделяют в атмосферу кислород в процессе фотосинтеза


Какой признак характерен для растений семейства бобовых

1) наличие мочковатой корневой системы

2) наличие на корнях клубеньковых бактерий

3) небольшая поверхность корневых волосков

4) слаборазвитый главный корень


Какой орган в процессе эволюции растений впервые появился у папоротников?


Выберите примеры идиоадаптаций.

1)  сходство мухи-журчалки с пчелой

2)  второй круг кровообращения у жабы

3)  теплокровность у голубя

4)  длинный корень верблюжьей колючки

5)  диафрагма у волка

6)  обтекаемая форма тела пингвина


Вставьте в текст «Обмен веществ в растении» пропущенные термины из предложенного перечня, используя для этого цифровые обозначения. Запишите в текст цифры выбранных ответов, а затем получившуюся последовательность цифр (по тексту) впишите в приведённую ниже таблицу.

ОБМЕН ВЕЩЕСТВ В РАСТЕНИИ

Для образования органических веществ в листе необходима ___________ (А), которую растение получает из почвы с помощью ___________ (Б). Почвенный раствор поднимается вверх благодаря особому давлению  — ___________ (В)  — по специальным клеткам проводящей ткани  — ___________ (Г)  — и поступает в лист. В хлоропластах листа из неорганических веществ синтезируются органические.

ПЕРЕЧЕНЬ ТЕРМИНОВ:

1) атмосферное 2) вода 3) корень 4) корневое
5) побег 6) ситовидная трубка 7) сосуд 8) стебель

Запишите в ответ цифры, расположив их в порядке, соответствующем буквам:

Источник: РЕШУ ОГЭ


Выберите три верно обозначенные подписи к рисунку, на котором изображено строение корня. Запишите в таблицу цифры, под которыми они указаны.

1)  слой клеток, защищающий от повреждений

2)  зона роста

3)  зона деления клеток

4)  зона проведения

5)  корневой волосок

6)  придаточный корень


Какую нулевую гипотезу* смог сформулировать исследователь перед постановкой эксперимента? Объясните, какие будут результаты эксперимента, если добавить перекись к кусочку сырого мяса. Почему результаты эксперимента могут быть недостоверными, если проводить эксперимент при наличии прямых солнечных лучей?

*Нулевая гипотеза  — принимаемое по умолчанию предположение, что не существует связи между двумя наблюдаемыми событиями, феноменами.

Показать

1

Почему при увеличении количества добавляемой перекиси свыше 2000 мкл не наблюдается увеличение скорости протекания реакции, катализируемой пероксидазой? Как изменятся результаты эксперимента, если перед его началом корень вымачивать в концентрированной уксусной кислоте в течение нескольких дней? Ответ поясните.


Установите соответствие между характеристиками и видами корней: к каждой позиции, данной в первом столбце, подберите соответствующую позицию из второго столбца.

ХАРАКТЕРИСТИКИ

А)  образует корнеплод при разрастании

Б)  развивается из зародышевого корешка

В)  формирует мочковатую корневую систему

Г)  развивается на побеге

Д)  отходит от корневища или луковицы

Е)  формируется при вегетативном размножении

Запишите в ответ цифры, расположив их в порядке, соответствующем буквам:

А Б В Г Д Е

Источник: ЕГЭ по биологии 2021. Досрочная волна. Вариант 1


Какому отряду млекопитающих принадлежит приведённая ниже характеристика?

Самый многочисленный отряд млекопитающих. Отличительным признаком представителей отряда является наличие одной пары крупных резцов в верхней и нижней челюстях.


Какие части зуба обозначены на рисунке буквами А, Б, В? Какая группа животных имеет зубы такого строения и как они дифференцируются?

Источник: ЕГЭ по биологии 14.06.2016. Основная волна. Вариант 2


Корни, растущие на луковице тюльпана, называются


Рассмотрите предложенную схему. Запишите в ответе пропущенный термин, обозначенный на схеме знаком вопроса.

Источник: Типовые тестовые задания по биологии под редакцией Г. С. Калинова, Т. В. Мазяркина. 10 вариантов заданий. 2017 год.


К какому отделу и классу можно отнести изображённое на рисунке растение?

Ответ обоснуйте.


Всасывающая зона корня состоит из клеток


В клетках корня растения в отличие от клеток листа нет


Корнеплоды моркови выполняют функцию:

1) образования органических веществ из неорганических;

2) отложения в запас питательных веществ;

3) поглощения воды и минеральных веществ;

4) размножения растения

Всего: 78    1–20 | 21–40 | 41–60 | 61–78

Корень

Корень — вегетативный осевой орган растения, обладающий радиальной симметрией и чаще всего находящийся в почве. На корнях растений никогда не образуется генеративных органов и листьев.

Функции:

  • поглощение воды и минеральных веществ (минеральное питание растений);
  • опора;
  • запас питательных веществ;
  • синтез органических веществ (фитогормоны, алкалоиды);
  • втягивающая — затягивает семя в почву при прорастании.

Виды корней (рис. 1.7):

  • главный (развивается из зародышевого корешка семени);
  • придаточные (развиваются на подземных или надземных частях побега);
  • боковые (возникают при боковом ветвлении корней, т. е. они развиваются
    на главном, придаточных и боковых корнях).

По расположению в субстрате выделяют: подземные корни (находятся в почве,
у большинства растений), воздушные (орхидеи), подводные (ряска) и корни-паразиты или гаустории, развитые у растений, ведущих паразитический образ жизни (повилика).

Все корни растения образуют корневую систему. Типы корневых систем (рис. 1.8):

  • стержневая— главный корень четко выражен (фасоль, клен). Стержневая корневая система образована в основном главным и боковыми корнями;

Рис. 1.8. Типы корневых систем

  • мочковатая— главный корень развит слабо или отсутствует (пшеница, лук). Мочковатая корневая система в основном образована придаточными и боковыми корнями.

Ранее считалось, что у двудольных растений стержневая корневая система, у однодольных — мочковатая. В настоящее время установлено, что у многих двудольных растений мочковатая корневая система (лютик, мать-и-мачеха, земляника, подорожник большой и т. д.).

Строение корня на продольном срезе

Корень показан на рис. 1.9. Верхушка корня покрыта корневым чехликом (это
живые клетки, которые защищают верхушечную меристему корня). У паразитов и некоторых водных растений чехлик отсутствует. Начиная с верхушки, выделяют перечисленные далее зоны корня.

  • Зона деления— находится сразу под чехликом. В ней расположена верхушечная меристема корня, которая образует новые клетки.
  • Зона роста, в которой также происходит деление клеток, но несколько реже, и где начинается рост и дифференцировка клеток.
  • Зона всасывания, в которой клетки ризодермы имеют выросты — корневые во-
    лоски, через которые корни растений всасывают из почвы воду и минеральные
    вещества. Благодаря корневым волоскам поверхность всасывания увеличивается в 10 и более раз. В корневом волоске есть крупная вакуоль, ядро смещено на кончик волоска.
  • Зона проведения и ветвления, в которой происходит образование боковых корней, а также транспорт веществ в стебель и из стебля.
Строение корня на поперечном срезе

Первичное строение корня. В зоне деления располагаются клетки образовательной ткани, клетки которой интенсивно делятся. В зоне роста отдельные клетки продолжают делиться, а также начинается дифференцировка покровной, основной и проводящей тканей корня. Ризодерма достигает своего полного развития в зоне всасывания, где на ее клетках формируются корневые волоски. Под ризодермой расположена первичная кора, состоящая из тонкостенных живых паренхимных клеток.

Центральный цилиндр (осевой цилиндр или стела) начинает дифференцироваться
в зоне роста. Его самый наружный слой образует перицикл, который впоследствии будет участвовать во вторичном утолщении корня. Под перициклом расположены клетки прокамбия, которые дифференцируются в первичные проводящие ткани. Сначала формируется флоэма, затем ксилема (в центре корня). Ксилема образует звезду, между лучами которой расположены клетки флоэмы — так возникает радиальный проводящий пучок. Сердцевина в корне не образуется.

Первичное строение корня сохраняется в корне до начала утолщения с помощью вторичных боковых меристем — камбия и феллогена. У однодольных и папоротникообразных первичное строение сохраняется в течение всей жизни, т. к. вторичные меристемы у них в корне отсутствуют. У двудольных и голосеменных по мере роста корень утолщается и приобретает в конечном итоге вторичное строение. Между ксилемой и флоэмой возникает камбий, из клеток перицикла возникает феллоген. Ткани первичной коры не могут следовать за вторичным утолщением и погибают, а благодаря работе феллогена на поверхности корня появляется вторичная покровная ткань — перидерма. Вторичная структура корня сохраняется до конца жизни растения.

Рост корня

В длину рост осуществляется за счет работы верхушечной образовательной ткани корня, в толщину — работает камбий и феллоген.

Поглощение корнями воды и минеральных солей. Водные растения способны поглощать воду всей поверхностью тела, а у наземных растений главным органом поступления воды является корень. Всасывание воды происходит всеми зонами корня, но наиболее активно идет в зоне всасывания (рис. 1.10). Из корневых волосков вода и минеральные соли попадают в кору корня, а из нее в ксилему, по которой осуществляется дальнейший транспорт в стебель.

Рис. 1.10. Схема движения веществ по корню от ризодермы к древесине

Существуют два пути поступления воды и растворенных в ней веществ: через клеточные стенки (по апопласту) или через живое содержимое клеток по цитоплазматическим канальцам (по симпласту).

В симпласт вода и растворенные в ней вещества попадают через оболочку и мембрану. Поступление воды происходит по закону осмоса: вода двигается в сторону большей концентрации растворенных веществ. Так как концентрация солей в почве меньше, чем в клетках корня, вода двигается внутрь корня. Если же концентрация солей в почве становится больше, чем в корне, то растение будет неспособно поглощать почвенный раствор и погибнет.

Поступление воды в клетку не бесконечно: как только давление воды внутри клетки станет равным силе, способствующей поступлению молекул воды в клетку, возникает равновесие, во время которого скорость движения воды в/из клетки одинаково. Давление водного раствора изнутри клетки на клеточную стенку называют осмотическим давлением. Его величина зависит от концентрации растворенных веществ.

Благодаря осмосу создается корневое давление — сила, способствующая одностороннему движению воды по ксилеме снизу вверх (из корня в стебель). Вертикальное перемещение по сосудам возникает в результате совместного действия корневого давления, транспирации и силы сцепления между молекулами воды.

Если почва плохо снабжена воздухом, то большинство корней расположено в поверхностном слое почвы (10—15 см в глубину). У пустынных и полупустынных растений в связи с тем, что водоносный слой почвы располагается очень глубоко, развиваются либо очень длинные корни — до 20 м (например, верблюжья колючка), либо поверхностные корни, использующие весеннюю влагу и конденсат (кактусы). У водных растений также либо очень длинные, мощные корни, достигающие дна (например, у рогоза), либо тонкие, короткие и почти исчезнувшие (у ряски).

Дыхание корней

Корень поглощает кислород и выделяет углекислый газ в процессе дыхания. Это подтверждается следующим опытом: если в пробирку на некоторое время поместить корень растения, затем вынуть его и опустить в пробирку горящую спичку, то спичка практически мгновенно погаснет.

Видоизменения корней

Некоторые видоизменения корней показаны на рис. 1.11.

Рис. 1.11. Видоизменения корня

Корнеплод — это орган, в образовании которого участвует нижняя часть стебля и главный корень (морковь, свекла, репа, редис). Основная функция корнеплода — запасание питательных веществ.

Корневые клубни или корневые шишки — это утолщение придаточных корней (георгин, батат, чистяк). Основная функция — запас питательных веществ и вегетативное размножение.

Присасывающие корни (корни-присоски) — находятся в воздушной среде и обеспечивают растению возможность подниматься по вертикальным опорам, а также — дополнительное питание (плющ).

Бактериальные клубеньки (бобовые) — это утолщения на корнях, внутри которых находятся бактерии. Бактерии переводят азот из атмосферы в вещества, которые усваиваются растением; растение дает бактериям органические вещества, т. е. это пример симбиоза.

Воздушные корни — образуются у растений эпифитов (орхидеи). Эти корни свободно висят в воздухе и поглощают воду и минеральные вещества, попадающие на них в виде росы или после дождя. На их поверхности формируется своеобразная покровная ткань (веламен).

Дыхательные корни — хорошо развиты у растений, обитающих по болотистым
побережьям или в приливно-отливной зоне. Эти корни находятся в наземно-воздушной среде и поглощают из воздуха кислород (болотный кипарис, мангровые деревья).

Столбовидные корни или корни-подпорки — это придаточные корни, которые образуются на горизонтальных ветках дерева. Достигнув почвы, они утолщаются и выполняют роль подпорок (баньян).

Влияние человека на корневые системы растений

Рыхление — это один из видов обработки почвы, при котором землю не переворачивают, а только разрушают поверхностную корку, что уменьшает испарение воды из глубоких слоев почвы. После рыхления воздух легче проникает в почву, поэтому улучшается дыхание почвенных организмов и корней растений и ускоряется распад мертвых органических останков. Также при рыхлении уничтожаются всходы сорняков.

Полив. Должен быть равномерным и достаточным. Для каждого растения своя норма. В сельском хозяйстве есть направление — гидропоника, когда выращивание растений осуществляется в водных питательных растворах без почвы.

Удобрения. Бывают минеральные и органические удобрения. Минеральные подразделяются на азотные (селитра, мочевина), фосфорные (суперфосфат, двойной
суперфосфат), калийные (сульфат калия, хлорид калия), комплексные (содержат фосфор, азот и калий, например нитрофоска) и микроудобрения (содержат микроэлементы — цинк, железо, бор, молибден). К органическим относят навоз, торф, птичий помет (гуано).

Азотные удобрения отвечают за рост и более быстрое развитие растений (увеличение вегетативной массы). Калийные способствуют улучшению качества плодов, усиливают стойкость растений к некоторым заболеваниям, повышают морозостойкость и засухоустойчивость. Фосфорные улучшают рост корневой системы, увеличивают урожай и улучшают его качество, ускоряют созревание растений, повышают их устойчивость к засухе. Микроудобрения способствуют синтезу в растении необходимых для роста и развития веществ.

Все удобрения вносят в строго определенном количестве. Азотные удобрения вносят весной, калийные и фосфорные — обычно осенью. Применение удобрений возможно в сухом виде (весной перед посевом или осенью при перекопке) и в жидком виде — корневые и внекорневые подкормки во время вегетации.

Пикировка — это прищипывание кончика главного корня. Применяется при выращивании рассады томатов, капусты, астр и т. д. Вследствие этого главный корень прекращает рост, и растение начинает активно образовывать боковые корни. В целом корневая система такого растения становится более мощной и расположенной в наиболее плодородной части почвы.

Анатомическое строение корня может быть первичным и вторичным. Первичное строение возникает в результате дифференциации клеток – производных апикальной меристемы. Вторичное строение – результат деятельности камбия.

Первичное строение характерно для молодых корней всех высших растений. На протяжении всей жизни такое строение сохраняется у плаунов, хвощей, папоротников и однодольных покрытосеменных растений. У голосеменных и двудольных покрытосеменных растений за счет деятельное вторичных боковых меристем (камбия и феллогена) происходит утолщение корня и первичное строение сменяется вторичным.

Зоны молодого корня. У молодого корня выделяют несколько зон, которые отличаются своим строением и функциями (рис. 21).
Рис. 21. Зоны молодого корня: А — общий вид; Б — продольный разрез; I — корневой чехлик; II — зона деления; III — зона растяжения; IV — зона поглощения; V — зона проведения; 1 — эпиблема; 2 — корневые волоски; 3 — экзодерма; 4 — средний слой первичной коры; 5 — эндодерма; 6 — перицикл; 7 — закладка бокового корня; 8 — центральный осевой цилиндр; 9 — клетки корневого чехлика Корневой чехлик. Состоит из тонкостенных живых клеток, наружные из которых ослизняются и слущиваются. В средней части чехлика постоянно образуются новые клетки, которые, в свою очередь, смещаются к периферии. Ослизнение клеток облегчает рост и продвижение корня в почве. Размер корневого чехлика приблизительно одинаков у всех растений и равен 1 мм.

Функции зоны: защита апикальной меристемы; облегчение проникновения корня в почву.

Зона делении (по аналогии с побегом ее часто называют конусом нарастания). Расположена непосредственно по корневым чехликом. Это апикальная меристема, в которая может быть одна или несколько так называемых инициальных клеток, которые активно делятся и дают начало всем другим клеткам корня. Число и расположение инициальных клеток различаются у разных растений. Например, у большинства папоротников существует лишь одна инициальная клетка, имеющая вид тетраэдра, выпуклая стенка которого обращена наружу. У двудольных покрытосеменных растений инициальные клетки образуют три слоя. Из клеток нижнего слоя образуется корневой чехлик и эпиблема (ризодерма), из второго слоя формируется первичная кора, из третьего – осевой цилиндр. Размер зоны деления у двудольных покрытосеменных растений – около 1 мм.

Функции зоны: образование клеток корневого чехлика и всех остальных клеток корня.

Зона растяжения. В зоне растяжения клетки растут в длину, увеличивают свой объем, в них появляются вакуоли. В верхней части этой зоны начинает формироваться эпиблема – поглощающая ткань корня, т. е. начинается дифференциация клеток корня. Протяженность этой зоны – несколько миллиметров.

Функции зоны: увеличение длины корня.

Зона поглощения. В этой зоне образуются многочисленные корневые волоски, всасывающие растворы минеральных веществ из почвы. Волоски – это выросты клеток эпиблемы. Оболочка корневого волоска очень тонкая и снаружи покрыта слизью, что облегчает процесс всасывания. В клетках эпиблемы находится много митохондрий, что свидетельствует об их высокой активности. По мере роста корневого волоска в его верхушке сосредоточивается почти вся цитоплазма, и часто туда же перемещается и ядро. Остальную часть волоска занимает крупная длинная вакуоль.

Формируются корневые волоски очень быстро, в течение 1 – 3 дней, но функционируют и существуют обычно недолго. По мере роста корня волоски погибают, и зона всасывания образуется на новом участке корня. Степень развития корневых волосков зависит от состояния окружающей среды, например корни многих водных растений не имеют корневых волосков. Длина корневого волоска у разных растений колеблется от 0,1 до 10 мм, а суммарная длина всех корневых волосков одного растения может достигать нескольких километров.

В зоне всасывания активно идут процессы дифференциации клеток, образуются ткани и формируется первичное строение стебля. Первой появляется флоэма, позднее — ксилема. Размер зоны всасывания корня равен нескольким сантиметрам.

Функции зоны: всасывание; механическая опора верхушки корня и закрепление корневой системы в земле.

Зона проведения. Образуется по мере отмирания корневых волосков и составляет основную часть корня. В этой зоне полностью сформирована проводящая система. Здесь образуются боковые корни, и закладывается камбий, т. е. осуществляется рост корня в толщину и формируется его вторичное строение.

Первичное строение корня. Рассмотрим первичное строение корня на примере поперечного среза молодого корня в зоне всасывания (рис. 22). Все ткани этой зоны образованы из первичной апикальной меристемы. В первичной структуре корня различают три слоя: наружный – эпиблему, средний – первичную кору, внутренний – центральный осевой цилиндр.
Рис. 22. Первичное строение корня (поперечный разрез корня лука в зоне всасывания): I — эпиблема; II — первичная кора; III — центральный осевой цилиндр; 1 — эпиблема, формирующая корневые волоски; 2 — экзодерма; 3 — средний слой коры; 4 — эндодерма; 5 — перицикл; 6 — флоэма; 7 — ксилема; 8 — пропускная клетка Эпиблема. Образована одним слоем живых клеток, формирующих корневые волоски.

Первичная кора. Сложена живыми тонкостенными паренхимными клетками. Состоит из трех слоев: наружного (экзодермы), среднего и внутреннего (эндодермы).

Непосредственно под эпиблемой располагается экзодерма. По мере отмирания корневых волосков она оказывается на поверхности корня и начинает выполнять покровную функцию. При этом оболочки ее клеток утолщаются и пробковеют, а сами клетки умирают.

Средний слой первичной коры состоит из рыхло расположенных клеток с хорошо развитыми межклетниками. В этом слое накапливаются запасы питательных веществ, а у некоторых растений образуются млечники или крупные воздухоносные каналы.

Внутренний слой первичной коры – эндодерма – окружает центральный осевой цилиндр и состоит из плотно сомкнутых паренхимных клеток, имеющих характерное строение. Молодые клетки эндодермы на поперечных срезах имеют очертания прямоугольника с закругленными углами и тонкие оболочки. Со временем радиальные, а также верхняя и нижняя стенки клеток утолщаются, образуя так называемый поясок Каспари, проходящий непрерывно по четырем сторонам клетки (рис. 23). Пояски соседних клеток вплотную примыкают друг к другу На второй стадии дифференциации на стенки клеток эндодермы изнутри откладываются суберин и лигнин, что вызывает дополнительное утолщение стенок и придает клеткам водоотталкивающие и газонепроницаемые свойства. Меньше всего утолщаются стенки клеток, обращенные к периферии. Однако некоторые клетки во вторую стадию не вступают и становятся пропускными клетками (см. рис. 23). (Следует отметить, что пропускные клетки образуются только в эндодерме корней многолетних однодольных растений. У двудольных растений клетки эндодермы образуют только пояски Каспари и во вторую стадию дифференциации не вступают.)
Рис. 23. Эндодерма корня: А – молодой участок, поперечный срез и трехмерная схема эндодермальной клетки; Б – старый участок, поперечный срез и трехмерная схема трех соседних эндодермальных клеток; 1 – поясок Каспари; 2 – вторичное утолщение, содержащее дополнительный суберин; 3 – пропускная клетка; 4 – движение воды с растворенными минеральными солями

Эндодерма контролирует горизонтальный транспорт веществ из коры в осевой цилиндр и обратно. Сплошное водонепроницаемое кольцо вынуждает вещества, перемещающиеся в первичной коре в основном по межклетникам (по апопласту), переходить в протопласты клеток, соединенные между собой плазмодесмами, – в симпласт. После этого вода с растворенными в ней минеральными веществами через пропускные клетки попадает в осевой цилиндр и проникает в ксилему (древесину).

Центральный осевой цилиндр. Наружный слой осевого цилиндра, примыкающий к эндодерме, – перицикл. Обычно он состоит из одного слоя тонкостенных клеток, сохранивших способность к делению. В этом слое закладываются боковые корни, поэтому перицикл нередко называют корнеродным слоем. Перицикл также участвует в формировании вторичной структуры корня: его клетки, делясь, способны превращаться в камбий и феллоген.

Внутрь от перицикла располагается проводящая система корня в виде сложного радиального пучка. В молодом корне в процессе дифференциации клеток сначала закладывается флоэма (луб), а затем ксилема (древесина). Однако в дальнейшем ксилема развивается быстрее, приобретает звездчатые очертания и занимает центр молодого корня. Флоэма располагается между лучами ксилемы. Интересно, что пропускные клетки эндодермы располагаются напротив лучей ксилемы, что способствует оптимальному транспорту водного раствора в проводящую систему. В самом центре корня, кроме ксилемы, могут находиться механическая ткань и паренхима.

Вторичное строение корня. Образование вторичного строения корня начинается с появления камбия между ксилемой и флоэмой (рис. 24). Камбий образуется из слабо дифференцированных клеток паренхимы под внутренними слоями флоэмы. При делении камбия внутри откладываются клетки, которые становятся вторичной ксилемой (древесиной), наружу — вторичной флоэмой (лубом). Вначале прослойки камбия разобщены, но в дальнейшем, разрастаясь по направлению к внешним концам лучей ксилемы, они смыкаются с перициклом, в котором закладывается межпучковый камбий. Образуется сплошное камбиальное кольцо, которое сначала имеет неправильную извилистую форму. Однако довольно быстро камбий начинает активно откладывать элементы вторичной ксилемы напротив участков первичной флоэмы и кольцо расправляется. Образование вторичной флоэмы под первичной происходит медленнее. Постепенно и первичная, и вторичная флоэмы отодвигаются к периферии центрального цилиндра. В результате деятельности камбия между лучами первичной ксилемы формируются проводящие пучки открытого типа, похожие на коллатеральные, но без первичной ксилемы, которая остается в центре корня. (Открытыми называются пучки, содержащие камбий и способные к дальнейшему росту.) Между проводящими пучками напротив лучей первичной ксилемы располагаются широкие паренхимные лучи.
Рис. 24. Стадии вторичного утолщения корня двудольного растения (А – Д) (по Л. И. Лотовой): 1 – эпиблема; 2 – экзодерма; 3 – средний слой первичной коры; 4 – корневые волоски; 5 – эндодерма; б – перицикл; 7– камбий; 8 – перидерма; 9 – разрыв первичной коры; 10 – межпучковый камбий; 11 – первичный паренхимный луч; 12 – вторичный флоэмноксилемный луч

Вторичные изменения затрагивают и другие структуры корня,. В перицикле закладывается пробковый камбий – феллоген, клетки которого откладывают наружу клетки пробки – феллемы, а внутрь – клетки феллодермы, так образуется перидерма. Изолированная пробкой от внутренних живых тканей вся первичная кора постепенно оттесняется на периферию, отмирает и сбрасывается. Наружным слоем корня становится перидерма.

Итак, во вторичном строении корня выделяют следующие части:

  • перидерма, большую часть которой составляет пробка;
  • вторичная кора, состоящая из вторичной флоэмы, обеспечивающей нисходящий ток органических веществ, и паренхимы, запасающей питательные вещества (первичная флоэма постепенно разрушается);
  • камбий, обеспечивающий рост корня в толщину;
  • центральная часть, состоящая из вторичной ксилемы, по которой осуществляется восходящий ток воды с растворенными в ней минеральными веществами, остатков первичной ксилемы и лучей паренхимы.

Корень – осевой орган, обладающий способностью к неограниченному росту и свойством положительного геотропизма.

Функции корня. Корень выполняет несколько функций, остановимся на основных:

  1. Укрепление растения в почве и удержание надземной части растения;
  2. Поглощение воды и минеральных веществ;
  3. Проведение веществ;
  4. Может служить местом накопления запасных питательных веществ;
  5. Может служить органом вегетативного размножения.

Рис.8. Виды корней:
1 – главный корень; 2 – придаточные корни; 3 – боковые корни

Морфология корня. По происхождению корни делят на главный, боковые и придаточные (рис. ). Главный корень – корень, развивающийся из зародышевого корешка. Для него характерен неограниченный рост и положительный геотропизм. Главный корень обладает наиболее активной верхушечной меристемой.

Боковые корни – корни, развивающиеся на другом корне любого происхождения и являющиеся образованиями второго и последующих порядков ветвления. Образование этих корней начинается с деления клеток специальной меристемы – перицикла, расположенного на периферии центрального цилиндра корня.

Рис.9. Зоны корня

Придаточные корни – корни, развивающиеся от стеблей, листьев, старых корней. Появляются за счет деятельности вторичных меристем.

Зоны молодого корня. Зоны молодого корня – это разные части корня по длине, выполняющие неодинаковые функции и характеризующиеся определенными морфологическими особенностями. У молодого корня обычно различают 4 зоны (рис. 9):

Зона деления. Верхушка корня, длиной 1-2 мм и называется зоной деления. Здесь и находится первичная апикальная меристема корня. За счет деления клеток этой зоны происходит постоянное образование новых клеток.

Апикальная меристема корня защищена корневым чехликом. Он образован живыми клетками, постоянно образующимися за счет меристемы. Часто содержат зерна крахмала (обеспечивают положительный геотропизм). Наружные клетки продуцируют слизь, которая облегчает продвижение корня в почве.

Зона роста, или растяжения. Протяженность зоны – несколько миллиметров. В этой зоне клеточные деления практически отсутствуют, клетки максимально растягиваются за счет образования вакуолей.

Зона всасывания, или зона корневых волосков. Протяженность зоны – несколько сантиметров. Здесь происходит дифференциация и специализация клеток. Здесь уже различают наружный слой эпиблемы (ризодермы) с корневыми волосками, слой первичной коры и центральный цилиндр. Корневой волосок представляет собой боковой вырост клетки эпиблемы (ризодермы). Почти всю клетку занимает вакуоль, окруженная тонким слоем цитоплазмы. Вакуоль создает высокое осмотическое давление, за счет которого вода с растворенными солями поглощается клеткой. Длина корневых волосков до 8 мм. В среднем на 1 мм2 поверхности корня образуется от 100 до 300 корневых волосков. В результате суммарная площадь зоны всасывания больше площади поверхности надземных органов (у растения озимой пшеницы в 130 раз, например). Поверхность корневых волосков ослизняется и склеивается с частицами почвы, что облегчает поступление воды и минеральных веществ в растение. Поглощению способствует и выделение корневыми волосками кислот, растворяющих минеральные соли. Корневые волоски недолговечны, отмирают через 10-20 дней. На смену отмерших (в верхней части зоны) приходят новые (в нижней части зоны). За счет этого зона всасывания всегда находится на одинаковом расстоянии от кончика корня, и все время перемещается на новые участки почвы.

Зона проведения находится выше зоны всасывания. В этой зоне вода и минеральные соли, извлеченные из почвы, передвигаются от корней вверх к стеблю и листьям. Здесь же за счет образования боковых корней происходит ветвление корня.

Первичное и вторичное строение корня. Первичное строение корня формируется за счет первичных меристем, характерно для молодых корней всех групп растений. На поперечном срезе корня в зоне всасывания можно различить три части: эпиблему, первичную кору и центральный осевой цилиндр (стелу) (рис. 10). У плаунов, хвощей, папоротников и однодольных растений сохраняется в течение всей жизни.

Эпиблема, или кожица – первичная покровная ткань корня. Состоит из одного ряда плотно сомкнутых клеток, в зоне всасывания имеющих выросты – корневые волоски.

Первичная кора представлена тремя четко отличающимися друг от друга слоями: непосредственно под эпиблемой располагается экзодерма, наружная часть первичной коры. По мере отмирания эпиблемы оказывается на поверхности корня и в этом случае выполняет роль покровной ткани: происходит утолщение и опробковение клеточных оболочек, и отмирание содержимого клеток.

Под экзодермой располагается мезодерма, основной слой клеток первичной коры. Здесь происходит передвижение воды в осевой цилиндр корня, накапливаются питательные вещества.

Самый внутренний слой первичной коры – эндодерма, образованная одним слоем клеток. У двудольных растений клетки эндодермы имеют утолщения на радиальных стенках (пояски Каспари), пропитанные непроницаемым для воды жироподобным веществом – суберином.

У однодольных растений в клетках эндодермы образуются подковообразные утолщения клеточных стенок. Среди них встречаются живые тонкостенные клетки – пропускные клетки, также имеющие пояски Каспари. Клетки эндодермы с помощью живого протопласта контролируют поступление воды и растворенных в ней минеральных веществ из коры в центральный цилиндр и обратно органических веществ.

Центральный цилиндр, осевой цилиндр, или стела. Наружный слой стелы, примыкающий к эндодерме, называется перицикл. Его клетки долго сохраняют способность к делению. Здесь происходит заложение боковых корешков.

В центральной части осевого цилиндра находится сосудисто-волокнистый пучок. Ксилема образует звезду, а между ее лучами располагается флоэма. Количество лучей ксилемы различно – от двух нескольких десятков. У двудольных до пяти, у однодольных – пять и более пяти. В самом центре цилиндра могут находиться элементы ксилемы, склеренхима или тонкостенная паренхима.

Рис.10 . Внутреннее строение корня.
А – первичное и вторичное строение корня; Б – внутреннее строение корня однодольного растения; В – внутренне строение корня двудольного растения.
​1 – эпиблема; 2 – первичная кора; 3 – перицикл; 4 – флоэма; 5 – ксилема; 6 – камбий; 7 – стела; 8 – эндодерма; 9 – пропускные клетки эндодермы.

Вторичное строение корня. У двудольных и голосеменных растений первичное строение корня сохраняется недолго. В результате деятельности вторичных меристем формируется вторичное строение корня.

Процесс вторичных изменений начинается с появления прослоек камбия между флоэмой и ксилемой. Камбий возникает из слабо дифференцированной паренхимы центрального цилиндра. Внутрь он откладывает элементы вторичной ксилемы (древесины), наружу элементы вторичной флоэмы (луба). Сначала прослойки камбия разобщены, затем смыкаются, образуя сплошной слой. При делении клеток камбия исчезает радиальная симметрия, характерная для первичного строения корня.

В перицикле возникает пробковый камбий (феллоген). Он откладывает наружу слои клеток вторичной покровной ткани – пробки. Первичная кора постепенно отмирает и слущивается.

Рис. 11. Типы корневых систем.

Корневые системы. Корневая система – это совокупность всех корней растения. В образовании корневой системы участвуют главный корень, боковые и придаточные корни. По форме различают 2 основных типа корневых систем (рис. 11):

Стержневая корневая система – корневая система с хорошо выраженным главным корнем. Характерна для двудольных растений.

Мочковатая корневая система – корневая система, образованная боковыми и придаточными корнями. Главный корень растет слабо и рано прекращает свой рост. Типична для однодольных растений.

Физиология корня. Корень обладает неограниченным ростом. Растет он верхушкой, на которой располагается апикальная меристема. Возьмем 3-4 дневные проростки семян фасоли, нанесем на развивающийся корень тушью тонкие метки на расстоянии 1 мм друг от друга и поместим их во влажную камеру. Через несколько дней можно обнаружить, что расстояние между метками на кончике корня увеличилось, в то время как в более высоко расположенных участках корня оно не меняется. Этот опыт доказывает верхушечный рост корня (рис. 12).

Данный факт используется в практической деятельности человека. При пересадке рассады культурных растений проводят пикировку – удаление верхушки корня. Эта приводит к прекращению роста главного корня и вызывает усиленное развитие боковых корней. В результате всасывающая площадь корневой системы значительно увеличивается, все корни располагаются в верхних наиболее плодородных слоях почвы, что приводит к увеличению урожайности растений.

Рис.12 . Рост корней.
​А – рост корня в длину; Б – пикировка корня; В – развитие придаточных корней при окучивании.

Поглощение корнем и передвижение воды и минеральных веществ. Поглощение из почвы и передвижение к наземным органам воды и минеральных веществ – одна из важнейших функций корня. Эта функция возникла у растений в связи с выходом на сушу. Строение корня приспособлено для поглощения воды и элементов питания из почвы. Вода попадает в тело растения через ризодерму, поверхность которой сильно увеличена благодаря наличию корневых волосков. В этой зоне в стеле корня формируется проводящая система корня – ксилема, необходимая для обеспечения восходящего тока воды и минеральных веществ.

Поглощение воды и минеральных веществ растением происходит независимо друг от друга, так как эти процессы основаны на различных механизмах действия. Вода проходит в клетки корня пассивно, а минеральные вещества поступают в клетки корня в основном в результате активного транспорта, идущего с затратами энергии.

Рис.14. Горизонтальный транспорт воды.
1 – корневой волосок; 2 – апопластный путь; 3 – симпластный путь; 4 – эпиблема (ризодерма) 5 – эндодерма; 6 – перицикл; 7 – сосуды ксилемы; 8 – первичная кора; 9 – плазмодесмы; 10 – пояски Каспари.

Вода поступает в растение в основном по закону осмоса. Корневые волоски имеют огромную вакуоль, обладающую большим осмотическим потенциалом, который обеспечивает поступление воды из почвенного раствора в корневой волосок.

Горизонтальный транспорт веществ. В корне горизонтальное движение воды и минеральных веществ осуществляется в следующем порядке: корневой волосок, клетки первичной коры (экзодерма, мезодерма, эндодерма), клетки стелы – перицикл, паренхима осевого цилиндра, сосуды корня. Горизонтальный транспорт воды и минеральных веществ происходит по трем путям (рис. 14): путь через апопластный, симпластный и вакуолярный.

Апопластный путь включает в себя все межклеточные пространства и клеточные стенки. Данный путь является основным для транспорта воды и ионов неорганических веществ.

Путь через симпласт – систему протопластов клеток, соединенных посредством плазмодесм. Служит для транспортировки минеральных и органических веществ. Вакуолярный путь. Вода переходит из вакуоли в вакуоль через другие компоненты смежных клеток (плазматические мембраны, цитоплазма и тонопласт вакуолей). Этот путь используется исключительно для транспорта воды. Передвижение по вакуолярному пути в корне ничтожно мало.

В корне вода передвигается по апопласту до эндодермы. Здесь ее дальнейшему продвижению мешают водонепроницаемые клеточные стенки, пропитанные суберином (пояски Каспари). Поэтому вода попадает в стелу по симпласту через пропускные клетки (вода проходит через плазматическую мембрану под контролем цитоплазмы пропускных клеток эндодермы). Благодаря этому происходит регуляция движения воды и минеральных веществ из почвы в ксилему. В стеле вода уже не встречает сопротивления и поступает в проводящие элементы ксилемы.

Вертикальный транспорт веществ. Корни не только поглощают воду и минеральные вещества из почвы, но и подают их к надземным органам. Вертикальное перемещение воды происходит по мертвым клеткам, которые не способны толкать воду к листьям. Вертикальный транспорт воды и растворенных веществ обеспечивается деятельностью самого корня и листьев. Корень представляет собой нижний концевой двигатель, подающий воду в сосуды стебля под давлением, называемым корневым. Под корневым давлением понимают силу, с которой корень нагнетает воду в стебель. Корневое давление возникает главным образом в результате повышения осмотического давления в сосудах корня над осмотическим давлением почвенного раствора. Оно является следствием активного выделения клетками корня минеральных и органических веществ в сосуды. Величина корневого давления обычно – 1-3 атм. Доказательство наличия корневого давления служит гуттация и выделение пасоки.

Гуттация – это выделение воды у неповрежденного растения через водяные устьица – гидатоды, которые находятся на кончиках листьев. Пасока – это жидкость, которая выделяется из перерезанного стебля.

Верхний концевой двигатель, обеспечивающий вертикальный транспорт воды – присасывающая сила листьев. Она возникает в результате транспирации – испарения воды с поверхности листьев. При непрерывном испарении воды создается возможность для нового притока воды к листьям. Сосущая сила листьев у деревьев может достигать 15-20 атм. В сосудах ксилемы вода движется в виде непрерывных водяных нитей. При движении вверх молекулы воды сцепляются друг с другом (когезия), что заставляет их двигаться друг за другом. Кроме того, молекулы воды способны прилипать к стенкам сосудов (адгезия). Таким образом, поднятие воды по растению осуществляется благодаря верхнему и нижнему двигателям водного тока и силам сцепления молекул воды в сосудах. Основной движущей силой является транспирация.

Видоизменения корней. Часто корни выполняют и другие функции, при этом возникают различные видоизменения корней.

Запасающие корни. Часто корень выполняет функцию накопления запаса питательных веществ. Такие корни называют запасающими. От типичных корней они отличаются сильным развитием запасающей паренхимы, которая может находиться в первичной (у однодольных) или вторичной коре, а также в древесине или сердцевине (у двудольных). Среди запасающих корней различают корневые клубни и корнеплоды.

Корневые клубни характерны как для двудольных, так и для однодольных растений, и образуются в результате видоизменения боковых или придаточных корней (чистяк, ятрышник, любка). Вследствие ограниченного роста в длину они могут иметь овальную, веретеновидную форму и не ветвятся. У большинства видов двудольных и однодольных клубень является лишь частью корня, а на остальном протяжении корень имеет типичное строение и ветвится (батат, георгина, лилейник).

Корнеплод образуется, в основном, в результате утолщения главного корня, но его образовании принимает участие и стебель. Корнеплоды характерны и для многих культурных овощных, кормовых и технических двулетних растений, и для дикорастущих травянистых многолетних растений (цикорий, одуванчик, женьшень, хрен).

Чаще всего корнеплоды образуются в результате вторичного утолщения корней (морковь, пастернак, петрушка, сельдерей, репа, редька, редис). При этом запасающая ткань может развиваться как в ксилеме, так и в флоэме. В утолщении главного корня может принимать участие и перицикл, формируя добавочные камбиальные кольца (у свеклы).

Растения, растущие на болотах, часто образуют корни, растущие вверх – дыхательные корни, пневматофоры. В таких корнях хорошо развита воздухоносная паренхима. Таким образом, корни болотных растений получают достаточное количество кислорода.

Рис.15. Видоизменения корней.
​1 – опорные корни кукурузы; 2 – корни-зацепки плюща; 3 – корневая часть корнеплода; 4 – стеблевая часть корнеплода; 5 – воздушные корни орхидей; 6 – корнеклубни; 7 – клубеньки на корнях гороха; 8 – досковидные опорные корни; 9 – корни-подпорки баньяна; 10 – корни присоски полупаразита омелы.

Растения-эпифиты, произрастающие на других растениях высоко над землей (но не паразитирующие на них, например, многие виды орхидей) образуют воздушные корни, которые полностью находятся в воздухе.

Такие воздушные корни образуют на поверхности веламен – слой губчатой гигроскопической ткани, поглощающей влагу, находящейся в воздухе.

У индийского дерева баньян корни, которые образуются на ветвях, достигают земли и служат опорой ветвям, такие корни называют корнями-подпорками. У мангровых деревьев в связи с приливами и отливами сформировались ходульные корни. Интересны досковидные корни, выполняющие функцию опоры, корни-прицепки у плюща, с помощью которых это растение может подниматься по вертикальной стене. Корни-присоски растений паразитов и полупаразитов врастают в корни растения-хозяина. У многих луковичных растений корни способны сокращаться на 10-70% от первоначальной длины и осенью втягивать луковицу глубже в почву. Такие втягивающие корни спасают луковицу от промерзания в зимний период.

В корнях многих растений (бобовых, березовых, лоховых и др.) могут поселяться клубеньковые бактерии, которые вызывают разрастание клеток паренхимы и образование клубеньков. Эти бактерии – активные азотфиксаторы, они поглощают из воздуха атмосферный азот, который становится доступен растениям. В воздухе около 79% азота, но растения не способны его использовать для синтеза аминокислот, азотистых основания и поглощают азот из почвы. Растения, живущие в симбиозе с клубеньковыми бактериями не испытывают недостатка в азоте, содержат много белка и при отмирании обогащают почву азотом. Клевер или люцерна, например, накапливают в клубеньках до 300 кг/га азота в год.

Удобрения. Для улучшения роста растений в почву вносят минеральные вещества и органические соединения – удобрения. Удобрением называются органические или минеральные вещества, применяемые для улучшения условий питания растений.

К органическим удобрениям относят навоз, торф, птичий помет, фекалии, компосты. Достоинством органических удобрений является, прежде всего, их комплексность. Они соединяют в себе и минеральные соли и органические вещества, постепенно образующие при разложении минеральные соединений.

Одним из основных органических удобрений является навоз – отход животноводства, состоящий из выделений животных и подстилки. Органические вещества навоза становится доступным растениям лишь после минерализации. Этот процесс протекает медленно, поэтому в течение нескольких лет растения обеспечиваются необходимыми им веществами.

К минеральным удобрениям относятся азотные, фосфорные, калийные и другие промышленные удобрения, а из местных удобрений – зола. Минеральные удобрения в зависимости от содержания основных питательных элементов делятся на простые – удобрения, содержащие в своем составе лишь один из трех важнейших питательных элементов (N, P или K) – азотные, фосфорные, калийные и комплексные, или комбинированные – удобрения, содержащие в своем составе два или три элемента: азотно-калийные, азотно-фосфорные, азотно-фосфорно-калийные (нитрофоски).

Азотные удобрения – аммиачная селитра, карбамид (синтетическая мочевина), сульфат аммония, хлористый аммоний, натриевая селитра, кальциевая селитра – усиливают рост стеблей и листьев.

Фосфорные удобрения – суперфосфат, фосфоритная мука, костяная мука – продлевают цветение, ускоряют созревание плодов.

Калийные удобрения – сульфат калия, карбонат калия, сернокислый калий – усиливают рост подземных органов растений корней, луковиц, клубней.

Кроме N, P, K, требующихся растениям в значительных количествах, растениям необходимы и некоторые другие элементы, такие как бор, марганец, медь, молибден, цинк и другие. Эти элементы требуются в незначительных количествах и получили название микроэлементов, а удобрения, их содержащие – микроудобрениями.

Ключевые термины и понятия

1. Корень. 2. Главный корень, боковые и придаточные корни. 3. Первичное строение корня. 4. Вторичное строение корня. 5. Первичная кора. 6. Осевой цилиндр, стела корня. 7. Пояски Каспари. 8. Перицикл. 9. Корневая система. 10. Пикировка. 11. Апопластный, симпластный пути транспорта. 12. Корневое давление. 13. Гуттация. 14. Пасока. 15. Корнеплоды. 16. Корнеклубни. 17. Дыхательные корни. 18. Воздушные корни, веламен. 19. Клубеньковые бактерии.

Основные вопросы для повторения

  1. Что такое корень?
  2. Какие корни называются главными, придаточными, боковыми?
  3. Чем отличаются корневые системы двудольных и однодольных растений?
  4. Зоны корня.
  5. Три слоя первичной коры корня?
  6. Ткани осевого цилиндра корня.
  7. Пути горизонтального транспорта веществ по корню?
  8. Нижний и верхний двигатели водного тока по стеблю и листьям?
  9. Видоизменения корней.
  10. Значение азотных, калийных и фосфорных удобрений.

Автор: Пименов Анатолий Валентинович.
(Учитель биологии МОУ «Физико-технический лицей №1», г. Саратов)

Анатомическое строение корня.

У
молодого корня в продольном направлении
обычно различают 4 зоны:

Зона
деления
1 –
2 мм. Представлена верхушкой конуса
нарастания, где происходит активное
деление клеток. Состоит из клеток
апикальной меристемы, и прикрыта корневым
чехликом. Он выполняет защитную функцию.
При соприкосновении с почвой клетки
корневого чехлика разрушаются с
образованием слизистого чехла.
Восстанавливается он (корневой чехлик)
за счет первичной меристемы, а у злаков
– за счет особой меристемы – калиптрогена.

Зона
растяжения

составляет несколько мм. Клеточные
деления практически отсутствуют. Клетки
максимально растягиваются за счет
образования вакуолей.

Зона
всасывания

составляет несколько сантиметров. В
ней происходит дифференциация и
специализация клеток. Различают покровную
ткань – эпиблему с корневыми волосками.
Клетки эпиблемы (ризодермы) живые, с
тонкой целлюлозной стенкой. Из некоторых
клеток формируются длинные выросты —
корневые волоски. Их функция — поглощение
водных растворов всей поверхностью
наружных стенок. Поэтому длина волоска
0,15 – 8 мм. В среднем на 1 мм2
поверхности корня образуется от 100 до
300 корневых волосков. Они отмирают через
10 – 20 дней. играют
механическую (опорную) роль – служат
опорой кончику корня.

Зона
проведения

тянется вплоть до корневой шейки и
составляет большую часть протяженности
корня. В этой зоне идет интенсивное
ветвление главного корня и появление
боковых корней.

Поперечное строение корня.

На
поперечном срезе в зоне всасывания у
двудольных растений, а у однодольных –
и в зоне проведения выделяют три основные
части: покровно-всасывательная ткань,
первичная кора и центральный осевой
цилиндр.

Покровно-всасывательная
ткань – ризодерма выполняет покровную,
всасывательную, а также, частично,
опорную функции. Представлена одним
слоем клеток эпиблемы.

Первичная
кора корня наиболее мощно развита.
Состоит из экзодермы, мезодермы =
паренхимы первичной коры и эндодермы.
Клетки экзодермы многоугольные, плотно
прилегающие друг к другу, располагаются
в несколько рядов. Их клеточные стенки
пропитаны суберином (опробковение) и
лигнином (одревеснение). Суберин
обеспечивает непроницаемость клеток
для воды и газов. Лигнин придает ей
прочность. Поглощенные ризодермой вода
и минеральные соли проходят через
тонкостенные клетки экзодермы = пропускные
клетки. Они расположены под корневыми
волосками. По мере отмирания клеток
ризодермы эктодерма может выполнять и
покровную функцию.

Мезодерма
располагается под эктодермой и состоит
из живых паренхимных клеток. Они выполняют
запасающую функцию, а также функцию
проведения воды и растворенных в ней
солей от корневых волосков в центральный
осевой цилиндр.

Внутренний
однорядный слой первичной коры представлен
эндодермой. Выделяют эндодерму с поясками
Каспари и эндодерму с подковообразными
утолщениями.

Эндодерма с поясками
Каспари – начальный этап формирования
эндодермы, при котором утолщены только
радиальные стенки ее клеток за счет
пропитывания их лигнином и суберином.

У
однодольных растений в клетках эндодермы
происходит дальнейшее пропитывание
суберином клеточных стенок. В результате
неутолщенной остается только наружная
клеточная стенка. Среди этих клеток
наблюдаются клетки с тонкими целлюлозными
оболочками. Это пропускные клетки. Они
обычно располагаются напротив лучей
ксилемы пучка радиального типа.

Считают,
что эндодерма является гидравлическим
барьером, способствуя продвижению
минеральных веществ и воды из первичной
коры в центральный осевой цилиндр, и
препятствуя их обратному току.

Центральный
осевой цилиндр состоит из однорядного
перицикла и радиального сосудисто-волокнистого
пучка. Перицикл способен к меристематической
активности. Он образует боковые корни.
Сосудисто-волокнистый пучок является
проводящей системой корня. В корне
двудольных растений радиальный пучок
состоит из 1 – 5 лучей ксилемы. У однодольных
– от 6 и более лучей ксилемы. Сердцевины
корни не имеют.

У
однодольных растений строение корня в
течение жизни растения не претерпевает
значительных изменений.

Для
двудольных растений

на границе зоны всасывания и зоны
укрепления (проведения) происходит
переход от первичного ко вторичному
строению

корня. Процесс вторичных изменений
начинается с появления прослоек камбия
под участками первичной флоэмы, внутрь
от нее. Камбий возникает из слабо
дифференцированной паренхимы центрального
цилиндра (стелы).

Между
лучами первичной ксилемы из клеток
прокамбия (боковая меристема) образуются
дуги камбия, замыкающиеся на перицикле.
Перицикл частично формирует камбий и
феллоген. Камбиальные участки, возникшие
из перицикла, образуют только паренхимные
клетки сердцевинных лучей. Клетки камбия
к центру откладывают вторичную ксилему,
а кнаружи – вторичную флоэму. В результате
деятельности камбия между лучами
первичной ксилемы формируются открытые
коллатеральные сосудисто-волокнистые
пучки, число которых равно числу лучей
первичной ксилемы.

На
месте перицикла закладывается пробковый
камбий (феллоген), дающий начало перидерме
– вторичной покровной ткани. Пробка
изолирует первичную кору от центрального
осевого цилиндра. Кора отмирает и
сбрасывается. Покровной тканью становится
перидерма. И корень фактически представлен
центральным осевым цилиндром. В самом
центре осевого цилиндра сохранены лучи
первичной ксилемы, между ними располагаются
сосудисто-волокнистые пучки. Комплекс
тканей снаружи от камбия получил название
вторичной коры. Т.о. корень вторичного
строения состоит из ксилемы, камбия,
вторичной коры и пробки.

Соседние файлы в папке лекции биология

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Like this post? Please share to your friends:
  • Строение корня картинка егэ
  • Строение рака егэ
  • Строение корня егэ рисунок
  • Строение простейших егэ
  • Строение кожи человека егэ биология