Структура егэ физика 2022 по заданиям

1 августа 2021

В закладки

Обсудить

Жалоба

ЕГЭ 2022 по физике состоит из 30 заданий: 23 заданий тестовой, 7 заданий письменной части. Задания разные по уровням сложности: 19 заданий базовой, 7 заданий повышенной и 4 задания высокой сложности.

В тестовой части задания базовой и повышенной сложности: 15 заданий базовой сложности, 4 задания повышенной. В письменной части 3 задания повышенной сложности, 4 задания высокой сложности.

В письменной части номера заданий соответствуют конкретным разделам физики:

№3-8: кинематика
№9-13: термодинамика
№14-19: электродинамика
№20-21: квантовая физика
№1, 2, 22, 23: все разделы.

В письменной части разделение на темы не такое конкретное, но всё же есть структура:

№24 — качественная задача на все разделы физики;
№25 — простая (для письменной части) задача на механику или термодинамику;
№26 — простая задача на электродинамику или квантовую физику;
№27 — сложная задача на термодинамику с элементами из других разделов;
№28, 29 — сложная задача на электродинамику с элементами из других разделов. Задача №28 — на подраздел электричества: электрическое поле, законы постоянного тока. №29 — на подраздел электромагнетизма;
№30 — сложная задача на механику.

В таблице можно наглядно показано, сколько заданий на какой раздел и какие баллы можно за них получить.

Структура ЕГЭ по физике 2022

Источник: vk.com/lancmanschool_phys

Первая часть

Все темы

  1. Выбор всех верных утверждений — 2 балла
  2. Соотнести график и выражающую его зависимость — 2 балла

Механика

  1. Задача на кинематику/динамику — 1 балл
  2. Задача на законы сохранения — 1 балл
  3. Задача на статику/колебания и волны — 1 балл
  4. Выбор всех верных утверждений из пяти предложенных — 2 балла
  5. Изменение величин (увеличилось/уменьшилось/не изменилось) — 2 балла
  6. Установление соответствия (например, соотнести физическую величину и формулу) — 2 балла

МКТ и термодинамика

  1.  Задача на молекулярную физику — 1 балл
  2.  Задача на молекулярную физику — 1 балл
  3.  Задача на термодинамику — 1 балл
  4.  Выбор всех верных утверждений из пяти предложенных — 2 балла
  5.  Установление соответствия или изменение величин — 2 балла

Электричество, магнетизм и оптика

  1.  Задача на электрическое поле — 1 балл
  2.  Задача на магнитное поле/электромагнитную индукцию — 1 балл
  3.  Задача на оптику/электромагнитные колебания — 1 балл
  4.  Выбор всех верных утверждений из пяти предложенных — 2 балла
  5.  Изменение величин — 2 балла
  6.  Установление соответствия — 2 балла

Атомная и квантовая физика, СТО

  1. Задача на атомную/квантовую физику — 1 балл
  2. Установление соответствия или изменение величин — 2 балла

Все темы

  1.  Задача на погрешность — 1 балл
  2.  Методы научного познания — 1 балл

Вторая часть

  1.  Качественная задача — 3 балла
  2.  Расчётная задача (Механика, МКТ, термодинамика) — 2 балла
  3.  Расчётная задача (Электродинамика, оптика, атомная и квантовая   физика) — 2 балла
  4.  Задача с развернутым ответом (МКТ, термодинамика) — 3 балла
  5.  Задача с развернутым ответом (Электродинамика, оптика] — 3 балла
  6.  Задача с развернутым ответом (Электродинамика, оптика) — 3 балла
  7.  Качественная задача с вычислениями (Механика) — 4 балла

Максимум за первую часть — 34 первичных балла (23 задания)

Максимум за вторую часть —  20 первичных баллов (7 заданий)

Что изменилось?

  • Общее количество заданий уменьшилось с 32 до 30.
  • Максимальный первичный балл увеличился с 53 до 54.
  • Появились 1 и 2 задания нового типа:
    • в задании 1 нужно выбрать верные утверждения.
    • в задании 2 нужно соотнести график и физическую зависимость.
  • Задания сместились на +1 (Задание 2 2021 года = задание 3 в 2022 и т.д.).
  • Убрали задание на ядерную физику (бывшая 19-я задача).
  • Убрали задание на астрономию (бывшая 24-я задача).
  • В заданиях 6,12 и 17 теперь нужно выбрать все и нужные утверждения, а не два, как это было ранее.
  • Появилась 30-я задача нового типа, которая оценивается в 4 балла

СКАЧАТЬ Структура ЕГЭ по физике 2022

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter. Мы обязательно поправим!

Привет! На связи методический отдел федеральной сети курсов ЕГЭ и ОГЭ Lancman School («Ланцман скул»). Сегодня мы расскажем о том, как выглядит структура КИМ ЕГЭ по физике 2022 года.

Структура ЕГЭ по физике 

ЕГЭ 2022 по физике состоит из 30 заданий: 23 заданий тестовой, 7 заданий письменной части. Задания разные по уровням сложности: 19 заданий базовой, 7 заданий повышенной и 4 задания высокой сложности. 

В тестовой части задания базовой и повышенной сложности: 15 заданий базовой сложности, 4 задания повышенной. В письменной части 3 задания повышенной сложности, 4 задания высокой сложности. 

В письменной части номера заданий соответствуют конкретным разделам физики: 

№3-8: кинематика
№9-13: термодинамика
№14-19: электродинамика
№20-21: квантовая физика
№1, 2, 22, 23: все разделы.

В письменной части разделение на темы не такое конкретное, но всё же есть структура: 

№24 — качественная задача на все разделы физики;
№25 — простая (для письменной части) задача на механику или термодинамику;
№26 — простая задача на электродинамику или квантовую физику;
№27 — сложная задача на термодинамику с элементами из других разделов;
№28, 29 — сложная задача на электродинамику с элементами из других разделов. Задача №28 — на подраздел электричества: электрическое поле, законы постоянного тока. №29 — на подраздел электромагнетизма;
№30 — сложная задача на механику.

В таблице можно наглядно показано, сколько заданий на какой раздел и какие баллы можно за них получить.

ЕГЭ физика 2022

Хочешь БЕСПЛАТНО разобрать с опытным преподавателем все детали новых усложнённых вариантов ЕГЭ по физике 2022 года — приходи на пробное занятие в Lancman School. Мы 13 лет готовим к ЕГЭ на высокие баллы и знаем об экзаменах и поступлении в хорошие вузы буквально всё. Решишь продолжить готовиться к ЕГЭ вместе с нами весь год — дадим скидку после бесплатного пробного занятия. Любой вопрос смело пиши сюда.

Если ты живешь не в Москве, но хочешь заниматься с лучшими столичными репетиторами и сдать ЕГЭ на 80+ баллов, то регистрируйся на наши онлайн-курсы. В этом году мы включили в договор пункт, гарантирующий поступление на бюджет в любой вуз страны. Если ученик будет соблюдать все обговоренные условия, он обязательно поступит. В противном случае мы вернём деньги. Первое пробное занятие БЕСПЛАТНО.


Если материал показался интересным – ставь лайк, делись с друзьями в соцсетях и подписывайся на обновления нашего блога. Кнопку подписки ты найдёшь сразу под постом. Мы пишем о ЕГЭ много (а главное, интересно).

ЕГЭ по физике пугает многих выпускников. На деле он не такой сложный, главное — разобраться со структурой. В этой статье поговорим о том, как подготовиться к ЕГЭ по физике 2023, из каких разделов состоит экзамен и какие темы нужно изучить, чтобы сдать его.

Как подготовиться к егэ по физике

Как подготовиться к ЕГЭ по физике 2023? Структура экзамена

Изменения в ЕГЭ по физике 2023

В 2023 году ЕГЭ по физике обновился незначительно: 

  1. Изменилось расположение заданий в части с кратким ответом: теперь задания 1 и 2 перешли на позицию 20 и 21. Однако есть сами формулировки и проверяемые темы в части 1 остались прежними.  
  2. В части 2 изменения коснулись только задания 30 — расчетной задачи по механике, оцениваемой в 4 первичных балла (самый высокий балл за задачу). В прошлом году на этой позиции необходимо было применять законы Ньютона, знать тонкости для решения задач со связанными телами, а также использовать законы сохранения энергии импульса. В 2023 здесь также могут встретиться задачи по статике. То есть теперь нужно знать, что такое плечо силы, момент и условие равновесия рычага, чтобы получить максимальный балл на экзамене. Но не забывайте проработать и те законы, которые встречались в прошлом году.

Коротко о структуре ЕГЭ по физике 2023

Экзамен состоит из 2 частей: I часть с кратким ответом и II часть с развернутым ответом. Всего в ЕГЭ 30 заданий, которые разделены на 4 раздела. Чтобы хорошо подготовиться к экзамену, важно ориентироваться в том, как он устроен: какие темы входят в  каждый раздел, каких заданий больше, а каких меньше.

Давайте взглянем на таблицу и сделаем выводы:

как подготовиться к егэ по физике

Количество заданий по блокам физики, ЕГЭ по физике 2023

Максимальное количество первичных баллов — 54

I часть

  • Приносит 34 балла, то есть  ⅔  баллов всего экзамена.
  • 23 задания с кратким ответом
  • В ответе нужно указать лишь число

II часть

  • Приносит 20 баллов, что составляет ⅓ баллов экзамена
  • 7 заданий с развернутым ответом
  • Решения нужно подробно расписать по критериям ЕГЭ

Разделы ЕГЭ по физике 2023

  • Механика — один из самых больших разделов на ЕГЭ. Он составляет около трети всего экзамена.
  • Электродинамика — еще один большой раздел по количеству баллов. Она также составляет около трети всего экзамена.
  • Молекулярная физика занимает третье место. Около 25% баллов на ЕГЭ можно получить именно за нее.
  • Квантовая физика замыкает наш список. В сумме все задания по квантовой физике могут принести около 10% баллов.

Иными словами, чтобы сдать ЕГЭ по физике на высокий балл, нужно хорошо разбираться и в структуре экзамена, и в каждом из разделов, которые в него входят. Если не знать, как все устроено и что именно требуется для решения заданий, то можно завалить ЕГЭ и не поступить на бюджет.

Чтобы этого не произошло, на своих занятиях по подготовке к ЕГЭ я разбираю с учениками каждый раздел экзамена и все критерии. Мы разбираемся, какие знания проверяют составители в каждом из заданий и учимся правильно оформлять ответы. Очень важная часть подготовки — научиться внимательно читать формулировки заданий и правильно их понимать. Это одна из ловушек экзаменаторов, на которые попадаются очень многие.

Если вы хотите подготовиться к ЕГЭ по физике 2023 на высокий балл, записывайтесь на мои занятия. Мы вместе разберемся со всеми непонятными заданиями, и я сделаю так, что все задачки по физике вы будете щелкать как орешки 😉💪

Какие задания входят в ЕГЭ по физике?

Здесь вам на помощь приходят документы с официального сайта ФИПИ: кодификатор, демоверсия и спецификация. 

Кодификатор — это краткий перечень всех тем, законов и формул, которые включены в экзамен. В формулах важно ориентироваться и понимать, какие формулы, в каком разделе и когда используются.

Все формулы из кодификатора нужно знать наизусть.

Демоверсия — типовой вариант ЕГЭ. Он показывает уровень экзамена и ориентировочную сложность заданий.

Спецификация — это документ, описывающий структуру экзамена и разбалловку.

Какие темы на ЕГЭ по физике 2023 самые важные?

В физике есть темы, которые встречаются на каждом шагу. Это тот необходимый минимум знаний, который будет применяться в каждом разделе. Для всех моих учеников, отлично освоивших эти темы, изучение физики стало гораздо легче и приятнее. 

1. Силы

В самом начале подготовки к ЕГЭ по физике важно научиться правильно расставлять силы, записывать второй закон Ньютона в векторном виде, а потом проецировать силы на оси и записывать второй закон Ньютона в скалярном виде. 

2. Второй закон Ньютона

Без этого закона мы на ЕГЭ по физике будем как без рук. Он будет применяться почти в каждой второй задаче.

3. Энергия и закон сохранения энергии (ЗСЭ)

Перераспределение энергии и закон сохранения энергии встречаются в каждом разделе. Сначала мы знакомимся с ними в механике, а потом встречаем почти в каждой теме.

Приведу примеры:

  1. I начало термодинамики в молекулярной физике — это вид ЗСЭ
  2. ЗСЭ встречается в электродинамике в задачах на электрические цепи
  3. Уравнение Эйнштейна для фотоэффекта в квантовой физике — это тип ЗСЭ

4. Работа

Работа — это форма энергии. Она вам понадобится:

  1. В механике (механическая работа)
  2. В молекулярной физике (работа газа и работа над газом)
  3. В электродинамике (работа электрического поля)

Поэтому советую вам основательно разобраться с этим понятием. 

5. Движение по окружности

На эту тему стоит обратить особое внимание. Она появляется в задачах:

  1. На магнетизм и силу Лоренца
  2. На гравитацию
  3. На астрофизику

Есть частый тип задания с развернутым ответом на фотоэффект. В такой задаче электрон попадает в магнитное поле и начинает двигаться по окружности.

План успешной подготовки к ЕГЭ по физике

При подготовке к экзамену не пренебрегайте ничем. Решайте и первую часть, и вторую. 

Двигайтесь по материалу в соответствие с кодификатором:

  • Механика
  • Молекулярная физика
  • Электродинамика
  • Квантовая физика

Одновременно с изучением теории. Как только вы выучили одну тему, сразу же начинайте тренироваться на задачах. Именно так вы запоминаете формулы и законы.

ЕГЭ — это сугубо практический экзамен, поэтому важно практиковаться, практиковаться и еще раз практиковаться. Всю теорию нужно уметь применять на практике.

I часть ЕГЭ по физике

Многие школьники готовятся только ко второй части экзамена. Думают, если вторую часть они могут решать, то и первая просто решится… Такие ученики ошибаются в простых заданиях, а для поступления в вуз мечты важен каждый балл! Ни в коем случае не стоит недооценивать первую часть.

Не стоит считать, что первая часть слишком простая и к ней можно не готовиться. Если пренебрежительно относиться к первой части, экзамен можно завалить, даже если вы решите всю вторую часть. Помните, что первая тестовая часть — это ⅔ всего экзамена.

В этой статье мы уже рассказывали, что можно набрать 80+ баллов, если сделать полностью первую часть, а вторую решить лишь на 40%.

Первую часть нужно атаковать постепенно. Начать с изучения механики, потом приниматься за молекулярную физику, за электродинамику, и в последнюю очередь за квантовую физику.

В первой части есть задания базового уровня на 1 балл и повышенного уровня на 2 балла.

Задания базового уровня на 1 балл

Обычно такие задания решаются применением 1-2 физических законов и формул. Именно с заданий базового уровня я советую начинать. Как только вы прошли одну тему по физике, сразу же приступайте к решению задач формата ЕГЭ по этой теме!

Задания повышенного уровня на 2 балла

Первая часть ЕГЭ по физике включает в себя задания трех типов:

  • Выбор 2 из 5 утверждений
  • Анализ изменения величин
  • Установление соответствия

Подробные разборы каждого типа заданий читайте в нашей предыдущей статье.

Стоит отметить, что в ЕГЭ можно все аргументировать, объяснить или опровергнуть. Как на дебатах. Только способ объяснения — это формулы и математические вычисления.

II часть ЕГЭ по физике

Распространенный миф: «II часть ЕГЭ по физике очень сложная, и у меня не получится к ней подготовиться». Часто мои новые ученики думают именно так, и я всегда развеиваю этот миф. 

В задачах с развернутым ответом есть приемы и алгоритмы, которые часто встречаются. Побольше практикуйтесь и запоминайте эти приемы. Задачи второй части можно и нужно решать.

Когда начать решать задачи с развернутым ответом из II части? После освоения теории. Чем раньше — тем лучше. Сначала отработайте знания на более легких заданиях. Как только научитесь применять формулы в задачах на 1 балл, сразу же переходите ко второй части.

Обычно при решении задач с развернутым ответом нужно применить от 2 до 4 формул и законов. Каждый из этих законов по отдельности использовать просто, но применить их в комбинации — это уже довольно сложная задача для учеников. 

Лайфхаки решения II части

Во второй части ЕГЭ по физике есть стандартных приемов к решению задач, которые нужно знать каждому. Если вы их поймете и запомните, то будете решать часть КИМа стабильно хорошо.

1. Закон сохранения импульса + закон сохранения энергии

В механике эти два закона часто применяются вместе. Эти законы помогают решить задачи на соударения, на слипание и на взрывы тел. Пример:

2. Закон сохранения энергии + второй закон Ньютона

Эта связка особенно часто встречается. Например, она помогает решать задачи на аттракционы трюк «мертвую петлю». Еще понадобятся знания движения по окружности. Пример:

егэ по физике 2023

3. Второй закон Ньютона + уравнение Менделеева-Клапейрона

Эти законы связывают механику и молекулярную физику. Они помогают решать задачи на цилиндры с поршнями. Пример:

как подготовиться к егэ по физике

4. Уравнение Менделеева-Клапейрона + сила Архимеда + второй закон Ньютона

С помощью этой связки решаются задачки на воздушные шарики. Пример:

как подготовиться к ЕГЭ по физике

5. Фотоэффект + сила Лоренца в магнитном поле + движение по окружности

Обычно задания на электродинамику и квантовую физику пугают школьников, поэтому рекомендую прочитать статью, где мы подробно разбираем этот тип задач.

На самом деле, все это — лишь малая часть лайфхаков, которые нужно знать, чтобы сдать ЕГЭ по физике 2023 на высокий балл.

Когда я готовлю своих учеников к ЕГЭ, мы разбираем все из них. Причем сюда можно отнести не только лайфхаки по решению заданий, но и лучшие способы оформления решений. Часто бывает, что формулировка ответов может стоить выпускнику нескольких баллов — а все из-за того, что он или она недостаточно четко сформулировал(а) мысль.

Чтобы этого не случилось с вами, приходите на мои занятия по подготовке к ЕГЭ по физике 2023. Мы еще подробнее разберем структуру экзамена и научимся быстро и правильно решать все задачи. Жду вас!

ЕГЭ 2022 по физике покажется не таким уж и сложным для тех, кто разберется в его структуре, содержании и требованиях. Подробно рассмотрим изменения экзамена, его темы и разделы, а также как эффективно подготовиться к успешной сдаче.

Содержание

  • 1 Изменения на ЕГЭ 2022 по физике
  • 2 Структура экзамена
  • 3 Сколько времени дается на экзамен
  • 4 Темы ЕГЭ по физике
  • 5 Вспомогательные материалы
  • 6 Баллы ЕГЭ по физике
  • 7 Как готовиться к ЕГЭ 2022 по физике
    • 7.1 Первая часть ЕГЭ по физике
    • 7.2 Вторая часть ЕГЭ по физике
  • 8 Полезные советы

Изменения на ЕГЭ 2022 по физике


По сравнению с прошлыми годами, новый ЕГЭ по физике 2022 претерпел некоторые изменения:

  • из 32 заданий осталось 30, полностью убрали астрономию;
  • сменились блоки заданий, вместо конкретных разделов и тем они стали делиться на типы: теория по всем разделам физики, задачи с кратким числовым ответом, соответствие, выбор и изменение величин, погрешности и эксперименты;
  • в задания включили больше теории, оставив максимум формул;
  • все задания требуют подробных решений, из них 2 качественных и 6 вычислительных задач.

Структура экзамена

ЕГЭ по физике в 2022 году состоит из двух частей: в первой части необходимо дать краткие ответы, а во второй — написать развернутые решения.

Всего ученику предлагаются 30 заданий из 4 тематических разделов: механика, молекулярная физика, электродинамика и квантовая физика. При подготовке упор лучше делать на механику и электродинамику, так как именно по этим блокам заданий встречается больше всего.

Также полезно опираться на документы с официального сайта ФИПИ: кодификатор, демоверсия и спецификация.

В кодификаторе содержится весь перечень тем, формул и законов, которые могут быть включены в экзамен. Это поможет ориентироваться, где, в каком разделе и какие формулы используются. Знать их нужно наизусть.

Демоверсия — типовой вариант ЕГЭ. По нему учащиеся оценивают общую сложность ЕГЭ.

Спецификация — документ, в котором описана структура и разбалловка экзамена.

Сколько времени дается на экзамен

На написание всей экзаменационной работы по физике отводится 3 часа 55 минут (235 минут). Из них на 23 задания с кратким ответом уходит, в среднем, от 2 до 5 минут, а на оставшиеся 7 с развернутым — от 5 до 20 минут.

Темы ЕГЭ по физике

Задания ЕГЭ-2022 по физике предполагают проверку усвоения содержания следующих больших разделов и тем по предмету:

  1. Механика: движение тел и взаимодействие между ними, динамика и кинематика, статика, законы сохранения в механике, механические колебания и волны.
  2. Молекулярная физика: термодинамика и молекулярно-кинетическая теория.
  3. Электродинамика и основы СТО: оптика, основы СТО, электрическое и магнитное поле, постоянный ток, электромагнитная индукция, колебания и волны.
  4. Квантовая физика: физика атома и атомного ядра, астрофизика и корпускулярно-волновой дуализм.


Все задания экзаменационной работы делятся на два объемных блока. Первый состоит из 23 заданий, каждое из которых проверяет освоение понятийного аппарата. Важно знать минимум теории, которая поможет решить большую часть заданий. К ней относятся такие темы, как:

  • Силы (записи законов как в векторном, так и в скалярном виде);
  • Второй закон Ньютона (применяется в каждой второй задаче);
  • Энергия и закон сохранения энергии;
  • Работа (потребуется в трех из четырех разделов экзаменационной работы);
  • Движение по окружности (особенно часто встречается в заданиях на фотоэффект).

Вспомогательные материалы

Начинать подготовку к ЕГЭ по физике лучше заблаговременно, начиная с 9 или 10 класса. У будущего абитуриента останется достаточно времени и сил, чтобы прорешать пробные варианты, выявить пробелы в знаниях, наметить план подготовки к ЕГЭ по физике 2022, а также отработать необходимые типы задач и их правильное оформление.

Опытные преподаватели советуют выпускникам готовиться с помощью следующих пособий и вспомогательных материалов для подготовки:

  • демоверсии экзамена прошлых лет, КИМы;
  • задачник Рымкевича, который полезен для решения задач первой части;
  • Бендриков Г. А., Буховцев Б. Б., Керженцев В. В., Мякишев Г. Я. Задачи по физике для поступающих в ВУЗы;
  • Баканина Л. П., Белонучкин В. Е., Козел С. М. Сборник задач по физике: Для 10–11 классов с углубленным изучением физики;
  • Парфентьева Н. А. Сборник задач по физике. 10–11 класс.

Баллы ЕГЭ по физике

Все экзаменационные задания ЕГЭ 2022 по физике распределяются по уровню сложности следующим образом. Базовый уровень состоит из 19 заданий, за которые можно набрать 26 первичных баллов. В повышенном уровне 7 заданий, которые принесут ученику максимум 15 первичных баллов. На высокий уровень остается 4 задания, которые позволяют набрать еще 13 первичных баллов.

Максимальное количество первичных баллов по физике ЕГЭ 2022, которые можно набрать, — 54.

Правильно выполнив первую часть ЕГЭ по физике, где нужно указать лишь число или набор цифр, ученик может набрать 34 балла, т.е. две трети баллов всего экзамена. Вторая часть с развернутыми заданиями может принести 20 баллов, что составляет треть от максимального количества. Но важно, чтобы решения были записаны в соответствии со всеми критериями, иначе оценивание ЕГЭ по физике 2022 может срезать баллы.


Как в первую, так и во вторую часть экзамена включены задания разного уровня сложности. Например, первое рассчитано на базовый уровень, а второе — на повышенный.

Во вторую часть включены задания повышенного и высокого уровня сложности. За 25 и 26 можно получить по 2 балла, за последнее 30 — максимум 4 при соблюдении всех критериев, а правильно выполненные 23, 27, 28 и 29 задания принесут выпускнику по три балла.

Чтобы получить аттестат, экзаменуемый должен достичь минимальный порог по физике — 11 первичных или 36 тестовых баллов. Для поступления в вуз следует ориентироваться на минимальный проходной балл в конкретном образовательном учреждении.

Как готовиться к ЕГЭ 2022 по физике

Для успешной подготовки к ЕГЭ по физике 2022 важно отработать решение обеих частей экзамена. Он требует не просто знания теории, а умения применить ее на практике.

Одновременно с изучением теории каждого раздела (Механика, Молекулярная физика, Электродинамика, Квантовая физика) важно отрабатывать и практику. Сразу же начинайте решать задачи — это поможет запомнить формулы и законы.

Первая часть ЕГЭ по физике

Не стоит считать, что 1-ая часть экзаменационной работы простая и достаточно натренироваться на решении второй. Именно в заданиях тестовой части большинство выпускников совершают досадные ошибки. А ведь чтобы набрать 80+ баллов за всю работу, достаточно сделать именно ее, решив вторую лишь на 40%.

Помните, что задания базового и повышенного уровня — это ⅔ всего экзамена по физике. Сразу начинайте их отработку, после того, как изучили соответствующую тему. Для решения обычно требуется сделать вычисления по одной-двум формулам, выбрать 2 из 5 утверждений, установить соответствие или проанализировать изменения величин.

Тренируйте не только знание формул, но и математические вычисления. Без них решение задач ЕГЭ по физике будет мало успешным.

Вторая часть ЕГЭ по физике

Многие выпускники не готовятся к решению задач второй части ЕГЭ по физике, считая, что она слишком сложная и практика не даст нужных результатов.


Но в задачах с развернутым ответом почти всегда повторяются определенные алгоритмы и приемы. Отработав их, аналогичные задания вы научитесь решать стабильно хорошо.

Запомните, что для решения каждого задания второй части требуется применить от 2 до 4 формул и законов физики. Важно понять именно их связки, чтобы составлять правильные комбинации. Но для этого требуется разбираться, прежде всего, в теории.
Например, в механике обычно вместе применяются законы сохранения импульса и сохранения энергии. С их помощью легко решаются задачи на соударение, слипание и взрывы тел. Задания про цилиндры с поршнями помогают решить Второй закон Ньютона и уравнение Менделеева-Клайперона. А в связке с силой Архимеда они помогают справиться с задачами про воздушные шарики.

Но даже таких лайфхаков может оказаться недостаточно, если вы неправильно оформите решение или недостаточно четко сформулируете мысль. Поэтому обращайте внимание на выставленные критерии ЕГЭ по физике, разбирайте ошибки других выпускников и отрабатывайте лаконичное оформление.

Полезные советы

  1. Внимательно читайте каждое задание. В заданиях первой части могут попадаться избыточные данные, использоваться разные единицы измерения в условиях и ответе.
  2. При выполнении второй части используйте только формулы из кодификатора. Например, для расчета радиуса движения частицы в магнитном поле нельзя использовать формулу в готовом виде. Из-за такой оплошности вы рискуете потерять до двух баллов даже при верном решении.
  3. В 22 задании с указанием значения прибора следует указывать только значащие цифры. Например, при переносе из черновика записи типа «3, 00 ± 0, 35» знак ± и пробел не указываются.
  4. В решении задач важно указывать величины, так как их принято обозначать. В случае, когда необходимо написать другое, делайте расшифровку в условии, на чертеже или в самом решении.
  5. Если не сделать чертеж в том задании, где это требуется, вы рискуете потерять 1 балл. Также это касается ошибок и неточностей в нем. Зато за правильное построение можно заработать балл, даже если само решение задачи окажется неверным.
  6. Названия законов писать обычно не нужно, но если такая необходимость появилась, то его запись должна быть верной и точной.
  7. Новости ЕГЭ по физике 2022 сообщают о требованиях к 30 заданию, где теперь нужно письменно обосновать условие применимости закона. Например, при взаимодействии пули и пружины на пулю действуют силы тяжести и упругости, не действуют сила сопротивления воздуха и сила трения. За малый промежуток времени, в течение которого происходило взаимодействие, потенциальная энергия пули практически не изменилась. На основании этого можно применять закон превращения потенциальной энергии пружины в кинетическую энергию пули.
  8. Держите в голове вопросы, которые помогут разобраться с условием: «Что?», «Почему?», «Чем это подтверждается?».
  9. В решении 30 задачи проверяются не только навыки применения законов и математических вычислений, но и умения объяснять, делать выводы и умозаключения. В решении двигайтесь последовательно, выделяя и описывая каждый шаг и не разрывая логическую цепочку.

ЕГЭ по физике в 2022 году сократилось на пару заданий, но по-прежнему пугает многих выпускников. Чтобы успешно подготовиться к его сдаче, необходимо подойти к этому процессу серьезно и заранее. Если вы разберетесь в структуре, содержании ЕГЭ и требованиях к оформлению решений, то сможете сформировать необходимые навыки, натренироваться и достичь запланированных результатов.

Читайте также:

  • Расписание экзаменов ЕГЭ в 2022 году
  • План сочинения ЕГЭ по русскому языку 2022: примеры
  • Отменят ли ЕГЭ и ОГЭ в 2022 году в России
  • Паронимы ЕГЭ 2022 от ФИПИ со значениями
  • Школьные каникулы в 2021-2022 учебном году

Слайд 1

Изменения в структуре ЕГЭ по физике 2022г. Практикум по Решению задач. Составила учитель физики МКОУ СОШ № 2 Шашанова Татьяна Васильевна

Слайд 2

Изменения в КИМ ЕГЭ 2022 года в сравнении с КИМ 2021 В 2022 г. изменена структура КИМ ЕГЭ, общее количество заданий уменьшилось и стало равным 30. Максимальный балл увеличился до 54. В части 1 работы введены две новые линии заданий (линия 1 и линия 2) базового уровня сложности, которые имеют интегрированный характер и включают в себя элементы содержания не менее чем из трёх разделов курса физики. 3. Изменена форма заданий на множественный выбор (линии 6, 12 и 17). Если ранее предлагалось выбрать два верных ответа, то в 2022 г. в этих заданиях предлагается выбрать все верные ответы из пяти предложенных утверждений.

Слайд 3

4. В части 2 увеличено количество заданий с развёрнутым ответом и исключены расчётные задачи повышенного уровня сложности с кратким ответом. Добавлена одна расчётная задача повышенного уровня сложности с развёрнутым ответом и изменены требования к решению задачи высокого уровня по механике. Теперь дополнительно к решению необходимо представить обоснование использования законов и формул для условия задачи. Данная задача оценивается максимально 4 баллами, при этом выделено два критерия оценивания: для обоснования использования законов и для математического решения задачи.

Слайд 4

На выполнение всей экзаменационной работы отводится 235 минут. Примерное время на выполнение заданий экзаменационной работы составляет: − для каждого задания с кратким ответом – 2–5 минут; − для каждого задания с развёрнутым ответом – от 5 до 20 минут.

Слайд 5

ПОДРОБНОЕ РЕШЕНИЕ НЕКОТОРЫХ ЗАДАНИЙ 1. Выберите все верные утверждения о физических явлениях, величинах и закономерностях. Запишите в ответе их номера. 1) При равномерном движении материальной точки по окружности сила, действующая на неё, всегда направлена по радиусу к центру дуги окружности и сонаправлена ускорению, ею сообщаемому. 2) Если два газа находятся в тепловом равновесии, то это означает равенство средних кинетических энергий их молекул. 3) Сила тока короткого замыкания определяется только величиной ЭДС источника. 4) Энергия от Солнца на Землю поступает за счёт высокой теплопроводности вакуума. 5) Ядро любого атома состоит из положительно заряженных протонов и незаряженных нейтронов, при этом ядро атома заряжено положительно.

Слайд 6

Решение. 1) Верно. При равномерном движении тела по окружности сила становится причиной центростремительного ускорения, сонаправленного с этой силой. Поэтому направлено к центру окружности. 2) Верно. Если тела находятся в тепловом равновесии, значит, их средние кинетические энергии равны. 3) Неверно. Сила тока при коротком замыкании зависит от ЭДС источника тока и его внутреннего сопротивления. 4) Неверно. Вакуум не обладает теплопроводностью, т.к. при теплопроводностиэнергия передается частицами вещества. 5) Верно. Ядро атома имеет положительный заряд и состоит из положительно заряженных протонов и незаряженных нейтронов. Ответ: 1 2 5.

Слайд 7

2 . Материальная точка движется прямолинейно с постоянным ускорением вдоль оси О х Ох. График зависимости её координаты от времени x=x ( t ) изображён на рисунке. Определите проекцию a x ускорения этого тела.

Слайд 8

Решение: Графиком зависимости x ( t ) является парабола, так как прямолинейное движение тела равноускоренное. Уравнение равноускоренного движения имеет вид В начальный момент времени координата тела равна нулю, поэтому x 0 = 0 м. Вершины параболы находится в начале координат, поэтому в начальный момент времени υ 0 x = 0 м/с. Следовательно, а так как координата тела в момент времени t = 2 c равна х = 2 м, для проекции ускорения находим Значит, модуль ускорения равен 1 м/с 2 .

Слайд 9

. 3. Точечное тело начинает движется равноускоренно вдоль оси Оx по гладкой горизонтальной поверхности. Используя таблицу, определите значение проекции на ось Оx ускорения этого тела. (Ответ дайте в метрах в секунду в квадрате.) Момент времени t, c Координата тела x, м 0 2 3 6.5 4 10

Слайд 10

Решение. При равноускоренном движении с нулевой начальной скоростью, зависимость координаты тела от времени дается выражением: где начальная координата. Из первой строки таблицы ясно, что начальная координата равна 2 м. Используя любую другую строку, например третью, для величины проекции ускорения имеем: Ответ: 1.

Слайд 11

4 . Деревянный шарик плавает в стакане с водой. Как изменятся сила тяжести, действующая на шарик, и глубина погружения шарика в жидкость, если он будет плавать в подсолнечном масле? Для каждой величины определите соответствующий характер изменения: 1) увеличится 2) уменьшится 3) не изменится Запишите в таблицу выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться. Сила тяжести, действующая на шарик Глубина погружения шарика в жидкость

Слайд 12

Решение: Масса шарика не изменяется, следовательно, не изменяется и сила тяжести, действующая на него. Шарик будет плавать и в воде, и в подсолнечном масле, потому что плотность дерева меньше плотности и воды, и масла, также заметим, что при этом сила Архимеда будет равна силе тяжести, действующей на шарик. Сила Архимеда вычисляется по формуле: где — это плотность жидкости, а — объём погруженной части шарика. Чем больше объём погруженной части, тем больше глубина погружения шарика в жидкость. Плотность масла меньше плотности воды, сила Архимеда не изменяется, следовательно, при уменьшении плотности жидкости, увеличится объём погруженной части, а значит, увеличится и глубина погружения шарика. Ответ: 31

Слайд 13

5 . Тело свободно падает без начальной скорости. Изменение модуля импульса этого тела за промежуток времени 2 с равно 10 кг·м/с. Чему равна масса тела? Сопротивлением воздуха можно пренебречь. Ответ выразите в килограммах.

Слайд 14

Решение: Так как тело свободно падает и сопротивления воздуха нет, то второй закон Ньютона может быть записан в следующей форме: Ответ: 0,5.

Слайд 15

6. В результате торможения в верхних слоях атмосферы высота полёта искусственного спутника над Землёй уменьшилась с 400 до 300 км. Как изменились в результате этого скорость спутника, его кинетическая энергия и период обращения? Для каждой величины определите соответствующий характер изменения: 1) увеличилась 2) уменьшилась 3) не изменилась Запишите в таблицу выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться. Скорость Кинетическая энергия Период обращения

Слайд 16

Решение: Спутник движется вокруг Земли по круговой орбите с постоянным центростремительным под действием силы притяжения со стороны Земли Откуда следует формула для скорости спутника Следовательно, при уменьшении расстояния до центра Земли скорость спутника и его кинетическая энергия возрастут. При этом длина орбиты уменьшится, а значит, период обращения также уменьшится. Ответ: 112.

Слайд 17

7. На рисунке показан график зависимости магнитного потока, пронизывающего контур, от времени. На каком из участков графика (1, 2, 3 или 4) в контуре возникает максимальная по модулю ЭДС индукции?

Слайд 18

Решение: ЭДС по модулю равна скорости изменения магнитного потока. Чем больше скорость изменения магнитного потока, тем больше ЭДС индукции. Модуль скорости изменения магнитного потока максимален на участке 2. Ответ: 2.

Слайд 19

8. Давление идеального газа при постоянной концентрации увеличилось в 2 раза. Во сколько раз изменилась его абсолютная температура?

Слайд 20

Решение: Давление идеального газа связано с концентрацией молекул газа и абсолютной температурой соотношением: Следовательно, при постоянной концентрации увеличение давления в 2 раза приводит к увеличению абсолютной температуры также в 2 раза. Ответ: 2.

Слайд 21

10. На рисунке приведен график зависимости температуры твердого тела от отданного им количества теплоты. Масса тела 4 кг. Какова удельная теплоемкость вещества этого тела? Ответ дайте в джоулях на килограмм на градус Кельвина

Слайд 22

Из графика видно, что, отдав тело охладилось на Следовательно, удельная теплоемкость вещества этого тела равна .

Слайд 23

11 .Какую работу совершает газ при переходе из состояния 1 в состояние 3? (Ответ дайте в килоджоулях.)

Слайд 24

Решение : На диаграмме p —V работе, совершаемой газом при переходе из начального состояния в конечное, соответствует площадь под линией, изображающей процесс перехода. Для процесса 1—2—3 эта площадь показана на рисунке штриховкой. Таким образом, при переходе из состояния 1 в состояние 3 газ совершает работу

Слайд 25

11. Пять одинаковых резисторов с сопротивлением r = 1 Ом соединены в электрическую цепь, схема которой представлена на рисунке. По участку AB идёт ток I = 4 А. Какое напряжение показывает идеальный вольтметр? (Ответ дайте в вольтах.)

Слайд 26

Решение. На параллельном участке имеем: Тогда: Вольтметр покажет напряжение Ответ: 7.

Слайд 27

12. Энергия ионизации атома кислорода равна 14 эВ. Найдите максимальную длину волны света, которая может вызвать ионизацию атома кислорода. Ответ приведите в нанометрах, округлив до целых. Справочные данные: постоянная Планка

Слайд 28

Решение. Длина волны связана с частотой и скоростью света соотношением: Следовательно, максимально возможной длине волны, соответствует минимально возможная частота. Согласно постулатам Бора, для перехода электрона на более высокий уровень необходимо, чтобы атом поглотил квант энергии, равный по величине разности энергий конечного и начального состояний. Для ионизации атома необходимо, чтобы энергия поглощаемого фотона была не меньше энергии ионизации: Энергия фотона пропорциональна частоте света: Таким образом, максимальная длина волны света, которая может вызвать ионизацию атома кислорода равна:

Слайд 29

13. Точка B находится в середине отрезка AC. Неподвижные точечные заряды – q и –2 q ( q = 2 нКл) расположены в точках A и C соответственно (см. рисунок). Какой положительный заряд надо поместить в точку C взамен заряда –2 q , чтобы модуль напряжённости электрического поля в точке B увеличился в 4 раза? (Ответ дайте в нКл.)

Слайд 30

Решение. Обозначим длину отрезка AB. Для исходных зарядов напряжённость в точке B равна После замены заряда на положительный заряд напряжённость в точке B станет равной По условию значит: Ответ: 6.

Слайд 31

14. Дифракционная решётка с периодом 10 −5 м расположена параллельно экрану на расстоянии 0,75 м от него. На решётку по нормали к ней падает пучок света с длиной волны 0,4 мкм. Максимум какого порядка будет наблюдаться на экране на расстоянии 3 см от центра дифракционной картины? Считать sinα ≈ tgα .

Слайд 32

Решение: Условие интерференционных максимумов дифракционной решётки: Из рисунка видим, что Найдём номер дифракционного максимума, который будет наблюдаться на экране на расстоянии 3 см от центра дифракционной картины: Таким образом, будет наблюдаться максимум первого порядка.

Слайд 33

15 . Альфа-частица движется по окружности в однородном магнитном поле. Как изменятся ускорение альфа-частицы и частота её обращения, если уменьшить её кинетическую энергию? Для каждой величины определите соответствующий характер изменения: 1) увеличится 2) уменьшится 3) не изменится Запишите в таблицу выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться. Ускорение альфа-частицы Частота обращения альфа-частицы

Слайд 34

При движении заряженной частицы в однородном магнитном поле по окружности параметры системы связаны между собой соотношениями При уменьшении кинетической энергии уменьшается и скорость частицы. Если скорость частицы уменьшится, то ускорение частицы тоже уменьшится. Рассмотрим второе уравнение ещё раз и выразим из него радиус обращения частицы: Частота обращения частицы обратно пропорциональна периоду: Радиус обращения частицы прямо пропорционален её скорости, следовательно, при изменении скорости отношение скорости и радиуса остаётся неизменным, то есть частота обращения частицы не изменяется. Ответ: 23.

Слайд 35

16. Исследуется электрическая цепь, собранная по схеме, представленной на рисунке. Определите формулы, которые можно использовать для расчётов показаний амперметра и вольтметра. Измерительные приборы считать идеальными. К каждой позиции первого столбца подберите соответствующую позицию из второго столбца и запишите в таблицу выбранные цифры под соответствующими буквами. ПОКАЗАНИЯ ПРИБОРОВ ФОРМУЛЫ А) показания амперметра Б) показания вольтметра 1) 2) 3) 4)

Слайд 36

Решение: Амперметр показывает ток в цепи. По закону Ома для полной цепи: Вольтметр показывает напряжение на сопротивлении и переменном сопротивлении. Найдём это напряжение: Ответ 2; 4

Слайд 37

17.На рисунке представлен фрагмент Периодической системы элементов Д.И. Менделеева. Под названием каждого элемента приведены массовые числа его основных стабильных изотопов. При этом нижний индекс около массового числа указывает (в процентах) распространённость изотопа в природе. Укажите число протонов и число нейтронов в ядре самого распространённого стабильного изотопа лития.

Слайд 38

Число протонов в ядре самого распространённого стабильного изотопа лития равно 3. Массовое число этого изотопа равно 7, поэтому число нейтронов в ядре равно 7 − 3 = 4. Ответ: 34

Слайд 39

18. Квадратная проволочная рамка со стороной l = 10 см находится в однородном магнитном поле с индукцией На рисунке изображена зависимость проекции вектора на перпендикуляр к плоскости рамки от времени. Какое количество теплоты выделится в рамке за время t = 10 с, если сопротивление рамки R = 0,2 Ом?

Слайд 40

При изменении магнитного поля изменяется поток вектора магнитной индукции через рамку площадью что создаёт в ней ЭДС индукции В соответствии с законом индукции Фарадея : Эта ЭДС вызывает в рамке ток, сила которого определяется законом Ома для замкнутой цепи: Согласно закону Джоуля — Ленца за время Δ t в рамке выделится количество теплоты На первом участке графика и на втором участке и поэтому суммарное количество выделившейся теплоты Подставляя сюда значения физических величин, получим: Ответ: 0,155 мДж.

Слайд 41

Основные ошибки при подготовке к экзамену: 1) Начинать с решения тестов. Как ни странно, но я считаю это главной ошибкой при подготовке. Да, многие сразу покупают книжки с тестами или открывают сайты и начинают решать. При таком подходе уже через месяц у вас будет такая каша в голове, что ваш мозг просто не будет способен к восприятию новой информации. Но самое главное, вы будете запоминать образцы решения этих тестовых задач, не запоминая главного – физического смысла того или иного закона! И помните, что никто не гарантирует, что именно такие задачи будут на экзамене.

Слайд 42

2) Готовиться только по тестам ЕГЭ. Эта ошибка перекликается с первой. Если вы даже выучите и поймете всю теорию, но зациклитесь на тестах ЕГЭ, то вы сильно рискуете наработать шаблонность в решении задач и уже в первой не совсем стандартной задаче на экзамене сделаете ошибку или вообще не будете знать как ее решать. И поверьте, такое часто бывает на экзамене. 3) Зубрить формулы. Некоторые формулы, конечно, нужно просто выучить, но большинство формул легко запомнить, если вы понимаете физический смысл того или иного закона. Кроме того, понимание физического смысла поможет вам и в решении, и в понимании задач.

Слайд 43

4) Смотреть обучающие ролики на ютубе . Именно смотреть (!) – в этом ошибка. Да, вы найдете толковые объяснения задач, но будете только смотреть их решения. У вас будет складываться ощущение что все понятно и легко. И самостоятельно прорешать заново эту задачу вы уже не захотите (ведь и так все понятно и легко). Но именно повторить решение самостоятельно (а лучше еще и на следующей день после просмотра ролика) – это будет самым важным в процессе подготовки!

Like this post? Please share to your friends:
  • Структура егэ профиль математика 2023
  • Строение сочинения 11 класс егэ
  • Структура егэ профиль математика 2022
  • Строение сосудов человека егэ биология
  • Структура егэ по химии 2023