Сульфат меди применение егэ

Версия для печати и копирования в MS Word

Сложные неорганические вещества можно классифицировать по четырём группам, как показано на схеме. В эту схему для каждой из четырёх групп впишите по одной химической формуле веществ из числа тех, о которых говорится в приведённом тексте.

Сложные вещества

оксид основание кислота соль

Химические формулы запишите в таблицу в следующем формате: Al2(SO4)3.

1

1)  Составьте уравнение реакции прокаливания меди на воздухе;

2)  Укажите, к какому типу (соединения, разложения, замещения, обмена) относится эта реакция.

Источник: ВПР 2018 г. Химия. 11 класс. Вариант 7, ВПР 2019 г. Химия. 11 класс. Вариант 7.


2

1)  Составьте молекулярное уравнение реакции гидроксида меди (II) с серной кислотой, о которой говорилось в тексте;

2)  Укажите признак(-и), который(-ые) наблюдается(-ются) при протекании этой реакции.

Источник: ВПР 2018 г. Химия. 11 класс. Вариант 7, ВПР 2019 г. Химия. 11 класс. Вариант 7.

Спрятать решение

Решение.

1.  CuO  — бинарное соединение, в котором один из атомов является кислородом, что говорит о его принадлежности к классу оксидов.

2.  NaOH  — является основанием, так как это основный гидроксид.

3.  Кислота должна иметь ион водорода, примером может служить серная кислота H_2$SO_4$.

4.  Соль состоит из иона металла и иона кислотного остатка, известным примером является сульфат меди (II) CuSO_4$.

Ответ: Оксид  — CuO, основание  — NaOH, кислота  — H_2$SO_4$, соль  — CuSO_4$.

Также для графы «основание» возможен ответ Cu левая круглая скобка OH правая круглая скобка _2$.

Источник: ВПР 2018 г. Химия. 11 класс. Вариант 7, ВПР 2019 г. Химия. 11 класс. Вариант 7.

Сульфат меди и медный купорос, характеристика, свойства и химические реакции.

Сульфат меди – неорганическое вещество, имеет химическую формулу CuSO4.

Краткая характеристика сульфата меди

Краткая характеристика медного купороса

Физические свойства сульфата меди

Физические свойства медного купороса

Химические свойства сульфата меди

Химические реакции сульфата меди и кристаллогидратов меди

Применение и использование сульфата меди и медного купороса

Краткая характеристика сульфата меди:

Сульфат меди – неорганическое вещество белого цвета.

Химическая формула сульфата меди CuSO4.

Сульфат меди  – неорганическое химическое соединение, соль серной кислоты и меди.

Хорошо растворяется в воде. Растворение сульфата меди проходит со значительным выделением тепла.  Сульфат меди гидролизуется и даёт кислую среду.

С водой сульфат меди образует кристаллогидраты: пентагидрат сульфата меди CuSO4·5H2O, именуемый также медный купорос, тетрагидрат сульфата меди CuSO4·4H2O, тригидрат сульфата меди CuSO4·3H2O, гидрат сульфата меди CuSO4·H2O.

Растворим также в глицерине, метаноле, этиленгликоле. Не растворим в ацетоне, этаноле.

Гигроскопичен.

Сульфат меди негорюч, пожаро- и взрывобезопасен.

Сульфат меди является пищевой добавкой Е519.

В природе сульфат меди встречается в виде минералов халькантита (CuSO4·5H2O), халькокианита (CuSO4), бонаттита (CuSO4·3H2O), бутита (CuSO4·7H2O) и в составе некоторых других минералов.

Краткая характеристика медного купороса:

Медный купорос – неорганическое вещество синего цвета различных оттенков.

Химическая формула медного купороса CuSO4·5H2O.

Медный купорос – пентагидрат сульфата меди.

Хорошо растворяется в воде. Растворим также в глицерине, метаноле, этаноле, этиленгликоле.

На воздухе постепенно выветривается (теряет кристаллизационную воду).

Медный купорос негорюч, пожаро- и взрывобезопасен.

Медный купорос относится к веществам 2-го класса опасности в соответствии с ГОСТ 12.1.007.

Физические свойства сульфата меди:

Наименование параметра: Значение:
Химическая формула CuSO4
Синонимы и названия иностранном языке copper(II) sulphate (сopper(II) sulfate (англ.)

халькокианит (рус.)

Тип вещества неорганическое
Внешний вид бесцветные ромбические кристаллы
Цвет бесцветный, белый
Вкус —*
Запах без запаха
Агрегатное состояние (при 20 °C и атмосферном давлении 1 атм.) твердое вещество
Плотность (состояние вещества – твердое вещество, при 20 °C), кг/м3 3640
Плотность (состояние вещества – твердое вещество, при 20 °C), г/см3 3,64
Температура кипения, °C
Температура плавления, °C
Температура разложения, °C 650
Гигроскопичность гигроскопичен
Молярная масса, г/моль 159,609
Растворимость в воде (25 oС), г/100 г 20,5

* Примечание:

— нет данных.

Физические свойства медного купороса:

Наименование параметра: Значение:
Химическая формула CuSO4·5H2O
Синонимы и названия иностранном языке sodium sulfate (англ.)

copper(II) sulfate pentahydrate (англ.)

меди(II) сульфат пентагидрат (рус.)

медный купорос (рус.)

медь сернокислая пятиводная (рус.)

халькантит (рус.)

Тип вещества неорганическое
Внешний вид синие триклинные кристаллы
Цвет синий
Вкус горьковато-металлический вяжущий
Запах без запаха
Агрегатное состояние (при 20 °C и атмосферном давлении 1 атм.) твердое вещество
Плотность (состояние вещества – твердое вещество, при 20 °C), кг/м3 2286
Плотность (состояние вещества – твердое вещество, при 20 °C), г/см3 2,286
Температура кипения, °C —*
Температура плавления, °C
Температура разложения, °C 100-250
Гигроскопичность гигроскопичен
Молярная масса, г/моль 249,685
Растворимость в воде (25 oС), г/100 г 35,6

* Примечание:

— нет данных.

Химические свойства сульфата меди. Химические реакции сульфата меди и кристаллогидратов меди:

Химические свойства сульфата меди аналогичны свойствам сульфатов других металлов. Поэтому для него характерны следующие химические реакции:

1. реакция сульфата меди и железа:

Fe + CuSO4 → FeSO4 + Cu.

В результате реакции образуются сульфат железа и медь.

2. реакция сульфата меди и цинка:

Zn + CuSO4 → ZnSO4 + Cu.

В результате реакции образуются сульфат цинка и медь.

3. реакция сульфата меди и олова:

Sn + CuSO4 → SnSO4 + Cu.

В результате реакции образуются сульфат олова и медь.

4. реакция взаимодействия сульфата меди, меди и хлорида натрия:

CuSO4 + Cu + 2NaCl → 2CuCl + Na2SO4 (t =  70 °C).

В результате реакции образуются хлорид меди и сульфат натрия.

5. реакция взаимодействия сульфата меди и аммиака:

CuSO4 + 4NH3 → [Cu(NH3)4]SO4.

В результате реакции образуется сульфат тетраамминмеди (II).

6. реакция взаимодействия сульфата меди и гидроксида натрия:

CuSO4 + 2NaOH → Cu(OH)2 + Na2SO4.

В результате реакции образуются сульфат натрия и гидроксид меди. В ходе реакции используется разбавленный раствор гидроксида натрия.

7. реакция взаимодействия сульфата меди и гидроксида калия:

CuSO4 + 2KOH → Cu(OH)2 + K2SO4.

В результате реакции образуются сульфат калия и гидроксид меди.

8. реакция взаимодействия сульфата меди и гидроксида лития:

CuSO4 + 2LiOH → Cu(OH)2 + Li2SO4.

В результате реакции образуются сульфат лития и гидроксид меди.

9. реакция взаимодействия сульфата меди и гидроксида кальция:

Ca(OH)2 + CuSO4 → Cu(OH)2 + CaSO4.

В результате реакции образуются сульфат кальция и гидроксид меди.

10. реакция взаимодействия сульфата меди и сульфида калия:

K2S + CuSO4 → K2SO4 + CuS.

В результате реакции образуются сульфат калия и сульфид меди.

11. реакция взаимодействия сульфата меди и хлорида бария:

CuSO4 + BaCl2 → BaSO4 + CuCl2.

В результате реакции образуются сульфат бария и хлорид меди.

12. реакция взаимодействия сульфата меди и сульфита натрия:

Na2SO3 + CuSO4 → CuSO3 + Na2SO4.

В результате реакции образуются сульфат натрия и сульфит меди.

13. реакция взаимодействия сульфата меди и сульфата железа (II) :

2FeSO4 + CuSO4 → Cu + Fe2(SO4)3.

В результате реакции образуются медь и сульфат железа (III). В ходе реакции используется концентрированный раствор сульфата железа (II).

14. реакция термического разложения сульфата меди:

2CuSO4 → 2CuO + 2SO2 + O2 (t =  653-720 °C).

В результате реакции образуются оксид меди, оксид серы и кислород.

15. реакция термического разложения кристаллогидратов сульфата меди:

CuSO4•5H2O → CuSO4•4H2O + H2O (t =  105-111 °C).

Пентагидрат сульфата меди CuSO4·5H2O разлагается на тетрагидрат сульфата меди CuSO4·4H2O и воду.

CuSO4•4H2O → CuSO4•H2O + 3H2O (t =  150-190 °C).

Тетрагидрат сульфата меди CuSO4·4H2O разлагается на гидрат сульфата меди CuSO4·H2O и воду.

CuSO4•H2O → CuSO4 + H2O (t =  220-250 °C).

Гидрат сульфата меди CuSO4·H2O разлагается на сульфат меди CuSO4 и воду.

Применение и использование сульфата меди и медного купороса:

Сульфат меди и медный купорос используется во множестве отраслей промышленности и для бытовых нужд:

– в химической промышленности как исходное сырьё для получения других соединений меди;

– используется для осушения газов, в т.ч. воздуха;

– в строительстве водный раствор сульфата меди применяется для нейтрализации последствий протечек, для ликвидации пятен ржавчины, для удаления выделений солей («высолов») с кирпичных, бетонных и оштукатуренных поверхностей, а также как антисептическое и фунгицидное средство для предотвращения гниения древесины;

– в сельском хозяйстве медный купорос применяется как антисептик, фунгицид и медно-серное удобрение;

– в пищевой промышленности в качестве пищевой добавки 519 как фиксатор окраски и консервант;

– в быту для выведения пятен ржавчины на потолке после затоплений.

Примечание: © Фото //www.pexels.com, //pixabay.com

сульфат меди реагирует кислота 1 2 3 4 5 вода
уравнение реакций соединения масса взаимодействие сульфата меди 
реакции

Коэффициент востребованности
10 742

Медь

1. Положение меди в периодической системе химических элементов
2. Электронное строение меди
3. Физические свойства
4. Нахождение в природе
5. Способы получения
6. Качественные реакции
7. Химические свойства

Оксид меди (II)

  • Способы получения
  • Химические свойства

Оксид меди (I)

  • Химические свойства

Гидроксид меди (II)

  • Химические свойства

Соли меди

Медь

Положение в периодической системе химических элементов

Медь расположена в 11 группе  (или в  побочной подгруппе II группы в короткопериодной  ПСХЭ) и в четвертом периоде периодической системы химических элементов Д.И. Менделеева.

Электронное строение меди

Электронная конфигурация  меди в основном состоянии:

+29Cu 1s22s22p63s23p63d104s1 1s  2s 2p

3s   3p    4s     3d

У атома меди уже в основном энергетическом состоянии происходит провал (проскок) электрона с 4s-подуровня на 3d-подуровень.

Физические свойства 

Медь – твердый металл золотисто-розового цвета (розового цвета при отсутствии оксидной плёнки). Медь относительно легко поддается механической обработке.  В природе встречается в том числе в чистом виде и широко применяется в различных отраслях науки, техники и производства.

Изображение с портала zen.yandex.com/media/id/5d426107ae56cc00ad977411/uralskaia-boginia-liubvi-5d6bcceda660d700b075a12d

Температура плавления 1083,4оС, температура кипения 2567оС, плотность меди 8,92 г/см3.

Медь — ценный металл в сфере вторичной переработки. Сдав лом меди в пункт приема, Вы можете получить хорошее денежное вознаграждение. Подробнее про прием лома меди.

Нахождение в природе

Медь встречается в земной коре (0,0047-0,0055 масс.%), в речной и морской воде. В природе медь встречается как в соединениях, так и в самородном виде. В промышленности используют халькопирит CuFeS2, также известный как медный колчедан, халькозин Cu2S и борнит Cu5FeS4. Также распространены и другие минералы меди: ковеллин CuS, куприт Cu2O, азурит Cu3(CO3)2(OH)2, малахит Cu2(OH)2CO3. Иногда медь встречается в самородном виде, масса которых может достигать 400 тонн.

Способы получения меди

Медь получают из медных руд и минералов. Основные методы получения меди — электролиз, пирометаллургический и гидрометаллургический.

  • Гидрометаллургический метод: растворение медных минералов в разбавленных растворах серной кислоты, с последующим вытеснением металлическим железом.

Например, вытеснение меди из сульфата железом:

CuSO4 + Fe = Cu + FeSO4

Видеоопыт взаимодействия сульфата меди (II) с железом можно посмотреть здесь.

  • Пирометаллургический метод: получение меди из сульфидных руд. Это сложный процесс, который включает большое количество реакций. Основные стадии процесса:

1) Обжиг сульфидов:

2CuS + 3O2 = 2CuO + 2SO2

2) восстановление меди из оксида, например, водородом:

CuO + H2 = Cu + H2O

  • Электролиз растворов солей меди:

2CuSO4 + 2H2O → 2Cu + O2 + 2H2SO4

Качественные реакции на ионы меди (II)

Качественная реакция на ионы меди +2 – взаимодействие солей меди (II) с щелочами. При этом образуется голубой осадок гидроксида меди(II).

Например, сульфат меди (II) взаимодействует с гидроксидом натрия:

CuSO4   +   2NaOH   →   Cu(OH)2   +  Na2SO4

Соли меди (II) окрашивают пламя в зеленый цвет.

Химические свойства меди

В соединениях медь может проявлять степени окисления +1 и +2.

1. Медь — химически малоактивный металл. При нагревании медь может реагировать с некоторыми неметаллами: кислородом, серой, галогенами.

1.1. При нагревании медь реагирует с достаточно сильными окислителями, например, с кислородом, образуя CuО, Cu2О в зависимости от условий:

4Cu  +  О2 → 2Cu2О

2Cu  +  О2 → 2CuО

1.2. Медь реагирует с серой с образованием сульфида меди (II):

Cu  +  S  → CuS

Видеоопыт взаимодействия меди с серой можно посмотреть здесь.

1.3. Медь взаимодействует с галогенами. При этом образуются галогениды меди (II):

Cu  +  Cl2  =  CuCl2

Сu  +  Br2  =  CuBr2

Но, обратите внимание: 

2Cu + I2 = 2CuI

Видеоопыт взаимодействия меди с хлором можно посмотреть здесь.

1.4. С азотом, углеродом и кремнием медь не реагирует:

Cu   +  N2    ≠  

Cu   +  C    ≠  

Cu   +  Si    ≠  

1.5. Медь не взаимодействует с водородом.

Cu   +  H2    ≠  

1.6. Медь взаимодействует с кислородом с образованием оксида:

2Cu  +  O2  →  2CuO

2. Медь взаимодействует и со сложными веществами:

2.1. Медь в сухом воздухе и при комнатной температуре не окисляется, но во влажном воздухе, в присутствии оксида углерода (IV) покрывается зеленым налетом карбоната гидроксомеди (II):

2Cu   +  H2O  +  CO2  + O2 =  (CuOH)2CO3

2.2. В ряду напряжений медь находится правее водорода и поэтому не может вытеснить водород из растворов минеральных кислот (разбавленной серной кислоты и др.).

Например, медь не реагирует с разбавленной серной кислотой:

Cu   +  H2SO4 (разб.)    ≠  

Видеоопыт взаимодействия меди с соляной кислотой можно посмотреть здесь.

2.3. При этом медь реагирует при нагревании с концентрированной серной кислотой. При нагревании реакция идет, образуются оксид серы (IV), сульфат меди (II) и вода:

Cu  +  2H2SO4(конц.) →  CuSO4  +  SO2  +  2H2O

2.4. Медь реагирует даже при обычных условиях с азотной кислотой.

С концентрированной азотной кислотой:

Cu  +  4HNO3(конц.)  =  Cu(NO3)2  +  2NO2  +  2H2O

С разбавленной азотной кислотой:

3Cu  +  8HNO3(разб.)  =  3Cu(NO3)2  +  2NO  +  4H2O

Реакция меди с азотной кислотой

2.5. Растворы щелочей на медь практически не действуют.

2.6. Медь вытесняет металлы, стоящие правее в ряду напряжений, из растворов их солей.

Например, медь реагирует с нитратом ртути (II) с образованием нитрата меди (II) и ртути:

Hg(NO3)2   +  Cu  =   Cu(NO3)2   +  Hg

2.7. Медь окисляется оксидом азота (IV) и солями  железа (III)

2Cu   +   NO2   =   Cu2O   +  NO

2FeCl  +   Cu  =  2FeCl2  +  CuCl2

Оксид меди (II)

Оксид меди (II) CuO – твердое кристаллическое вещество черного цвета.

Способы получения оксида меди (II)

Оксид меди (II) можно получить различными методами:

1. Термическим разложением гидроксида меди (II) при 200°С: 

Cu(OH)2   →   CuO   +  H2O

2. В лаборатории оксид меди (II) получают окислением меди при нагревании на воздухе при 400–500°С:

2Cu   +   O2      2CuO           

 3. В лаборатории оксид меди (II) также получают прокаливанием солей (CuOH)2CO3, Cu(NO3)2:

(CuOH)2CO3     2CuO   +   CO2   +   H2O

2Cu(NO3)2       2CuO    +   4NO2   +   O2

Химические свойства оксида меди (II)

Оксид меди (II) – основный оксид (при этом у него есть слабо выраженные амфотерные свойства). При этом он является довольно сильным окислителем.

1. При взаимодействии оксида меди (II) с сильными и растворимыми кислотами образуются соли.

Например, оксид меди (II) взаимодействует с соляной кислотой:

СuO  +  2HBr  =  CuBr2  +  H2O

CuO  +  2HCl  =  CuCl2  +  H2O

Видеоопыт взаимодействия оксида меди (II) с серной кислотой можно посмотреть здесь.

2. Оксид меди (II) вступает в реакцию с кислотными оксидами. 

Например, оксид меди (II) взаимодействует с оксидом серы (VI) с образованием сульфата меди (II):

CuO  + SO3  → CuSO4

3. Оксид меди (II) не взаимодействует с водой.

4. В окислительно-восстановительных реакциях соединения меди (II) проявляют окислительные свойства:

Например, оксид меди (II) окисляет аммиак:

3CuO + 2NH3 → 3Cu + N2 + 3H2O

Оксид меди (II) можно восстановить углеродом, водородом или угарным газом при нагревании:

СuO + C  → Cu + CO

Видеоопыт взаимодействия оксида меди (II) с водородом можно посмотреть здесь.

Более активные металлы вытесняют медь из оксида.

Например, алюминий восстанавливает оксид меди (II):

3CuO + 2Al = 3Cu + Al2O3

Оксид меди (I)

Оксид меди (I) Cu2O – твердое кристаллическое вещество коричнево-красного цвета.

Способы получения оксида меди (I)

В лаборатории оксид меди (I) получают восстановлением свежеосажденного гидроксида меди (II), например, альдегидами или глюкозой:

CH3CHO   +  2Cu(OH)2  → CH3COOH   +   Cu2O↓   +   2H2O

CH2ОН(CHOН)4СНО   +  2Cu(OH)2   →  CH2ОН(CHOН)4СООН  +   Cu2O↓   +   2H2O

Химические свойства оксида меди (I)

1. Оксид меди (I) обладает основными свойствами.

При действии на оксид меди (I) галогеноводородных кислот получают галогениды меди (I) и воду:

Например, соляная кислота с оксидом меди (I) образует хлорид меди (I):

Cu2O  +  2HCl   =   2CuCl↓   +  H2O

2. При растворении Cu2O в концентрированной серной, азотной кислотах образуются только соли меди (II):

Cu2O  +  3H2SO4(конц.)   =  2CuSO4  +  SO2  + 3H2O

Cu2O  +  6HNO3(конц.)  =  2Cu(NO3)2  +  2NO2  +  3H2O

5Cu2O  +  13H2SO4   +  2KMnO4   =  10CuSO4  +  2MnSO4  +   K2SO4  + 13H2O

3. Устойчивыми соединениями меди (I) являются нерастворимые соединения (CuCl, Cu2S) или комплексные соединения [Cu(NH3)2]+. Последние получают растворением в концентрированном растворе аммиака оксида меди (I), хлорида меди (I):

Cu2O  +  4NH3  +  H2O  =  2[Cu(NH3)2]OH

CuCl   +  2NH3   =  [Cu(NH3)2]Cl

Аммиачные растворы солей меди (I) взаимодействуют с ацетиленом:

СH ≡ CH + 2[Cu(NH3)2]Cl    →   СuC ≡ CCu  +  2NH4Cl + 2NH3

4. В окислительно-восстановительных реакциях соединения меди (I) проявляют окислительно-восстановительную двойственность:

Например, при взаимодействии с угарным газом, более активными металлами или водородом оксид меди (II) проявляет свойства окислителя:

Cu2O  +  CO  =  2Cu  +  CO2

Cu2O  +  H2  =  2Cu  + H2O

 3Cu2O  +  2Al  =  6Cu  +  Al2O3

А под действием окислителей, например, кислорода свойства восстановителя:

2Cu2O  +  O=  4CuO

Гидроксид меди (II)

Способы получения гидроксида меди (II)

1. Гидроксид меди (II) можно получить действием раствора щелочи на соли меди (II).

Например, хлорид меди (II) реагирует с водным раствором гидроксида натрия с образованием гидроксида меди (II) и хлорида натрия:

CuCl +  2NaOH   →   Cu(OH)2  +  2NaCl

Химические свойства

Гидроксид меди (II) Сu(OН)2 проявляет слабо выраженные амфотерные свойства (с преобладанием основных).

1. Взаимодействует с кислотами.

Например, взаимодействует с бромоводородной кислотой с образованием бромида меди (II) и воды:

Сu(OН)2  +  2HBr  =  CuBr2  +  2H2O

Cu(OН)2  +  2HCl  =  CuCl2  +  2H2O

2. Гидроксид меди (II) легко взаимодействует с раствором аммиака, образуя сине-фиолетовое комплексное соединение:

Сu(OH)2  +  4(NH3 · H2O)   =  [Cu(NH3)4](OH)2   +  4H2O

Cu(OH)2  +  4NH3  =  [Cu(NH3)4](OH)2

3. При взаимодействии гидроксида меди (II) с концентрированными (более 40%) растворами щелочей образуется комплексное соединение:

Cu(OH)2  + 2NaOH(конц.)  =  Na2[Cu(OH)4]

Но этой реакции в ЕГЭ по химии пока нет!

4. При нагревании гидроксид меди (II) разлагается:

Сu(OH)2 → CuO  +  H2O

Соли меди

Соли меди (I)

В окислительно-восстановительных реакциях соединения меди (I) проявляют окислительно-восстановительную двойственность. Как восстановители они реагируют с окислителями.

Например, хлорид меди (I) окисляется концентрированной азотной кислотой:

CuCl  +  3HNO3(конц.)  =  Cu(NO3)2  +  HCl  +  NO2  +  H2O

Также хлорид меди (I) реагирует с хлором:

2CuCl   +  Cl2   =  2CuCl2

 Хлорид меди (I) окисляется кислородом в присутствии соляной кислоты:

4CuCl   +  O2  +  4HCl   =   4CuCl2   +  2H2O

Прочие галогениды меди (I) также легко окисляются другими сильными окислителями:

2CuI  +  4H2SO4  +  2MnO2  =  2CuSO4  +  2MnSO4  +  I2  +  4H2O

Иодид меди (I)  реагирует с концентрированной серной кислотой:

4CuI   +   5H2SO4(конц.гор.)  =  4CuSO4   +  2I2   +   H2S   +  4H2O

Сульфид меди (I) реагирует с азотной кислотой. При этом образуются различные продукты окисления серы на холоде и при нагревании:

Cu2S  +  8HNO3(конц.хол.)   =  2Cu(NO3)2  +  S  +  4NO2  +  4H2O

Cu2S  +  12HNO3(конц.гор.)   =  Cu(NO3)2  +  CuSO4   +  10NO2  +  6H2O

Для соединений меди (I) возможна реакция диспропорционирования:

2CuCl  =  Cu   +  CuCl2

Комплексные соединения типа [Cu(NH3)2]+ получают растворением в концентрированном растворе аммиака:

CuCl  +  3NH3  +  H2O  →   [Cu(NH3)2]OH  +  NH4Cl

Соли меди (II)

В окислительно-восстановительных реакциях соединения меди (II) проявляют окислительные свойства.

Например, соли меди (II) окисляют иодиды и сульфиты:

2CuCl2  +  4KI = 2CuI  +  I2  +  4KCl

2CuCl+  Na2SO3  +  2NaOH  =  2CuCl  +  Na2SO4  +  2NaCl  +  H2O

Бромиды и иодиды меди (II) можно окислить перманганатом калия:

5CuBr2  +  2KMnO4  +  8H2SO4  =  5CuSO4  +  K2SO4  +  2MnSO4  +  5Br2  +  8H2O

Соли меди (II) также окисляют сульфиты:

2CuSO4  +  Na2SO3   +  2H2O   =  Cu2O   +  Na2SO4     +  2H2SO4

 Более активные металлы вытесняют медь из солей.

Например, сульфат меди (II) реагирует с железом:

CuSO4  +  Fe  =  FeSO4  +  Cu

Cu(NO3) + Fe  =  Fe(NO3) +  Cu

Сульфид меди (II) можно окислить концентрированной азотной кислотой. При нагревании возможно образование сульфата меди (II):

CuS  +  8HNO3(конц.гор.)   =   CuSO4   +   8NO2   +  4H2O

Еще одна форма этой реакции:

CuS  +  10HNO3(конц.)     =  Cu(NO3)2  +  H2SO4  +    8NO2↑ +  4H2O

При горении сульфида меди (II) образуется оксид меди (II)  и диоксид серы:

2CuS  +  3O2    2CuO  +  2SO2

Соли меди (II) вступают в обменные реакции, как и все соли.

Например, растворимые соли меди (II) реагируют с сульфидами:

CuBr2  +  Na2S  =  CuS↓  +  2NaBr

 При взаимодействии солей меди (II) с щелочами образуется голубой осадок гидроксида меди (II):

CuSO4  +  2NaOH  =  Cu(OH)2↓  +  Na2SO4

Электролиз раствора нитрата меди (II):

2Cu(NO3)2    +   2Н2О →  2Cu   +   O2  +  4HNO3

Некоторые соли меди при нагревании разлагаются, например, нитрат меди (II):

2Cu(NO3)2 → 2CuO  +  4NO2  +  O2

Основный карбонат меди разлагается на оксид меди (II), углекислый газ и воду:

(CuOH)2CO3 →  2CuO  +  CO2  +  H2O

При взаимодействии солей меди (II) с избытком аммиака образуются аммиачные комплексы:

CuCl2  + 4NH3  =   [Cu(NH3)4]Cl2

При смешивании растворов солей меди (II) и карбонатов происходит гидролиз и по катиону слабого основания, и по аниону слабой кислоты:

2CuSO4  +  2Na2CO3  +  H2O  =  (CuOH)2CO3↓  +  2Na2SO4  +  CO2

Медь и соединения меди

1) Через раствор хлорида меди (II) с помощью графитовых электродов пропускали постоянный электрический ток. Выделившийся на катоде продукт электролиза растворили в концентрированной  азотной кислоте. Образовавшийся при этом газ собрали  и пропустили через раствор гидроксида натрия. Выделившийся на аноде газообразный продукт электролиза пропустили через горячий раствор гидроксида натрия. Напишите уравнения описанных реакций.

2) Вещество, полученное на катоде при электролизе расплава хлорида меди (II), реагирует с серой. Полученный продукт обработали концентрированной азотной кислотой, и выделившийся газ пропустили  через раствор гидроксида бария. Напишите уравнения описанных реакций.

3) Неизвестная соль бесцветна и окрашивает пламя в желтый цвет. При легком нагревании этой соли с концентрированной серной кислотой отгоняется жидкость, в которой растворяется медь; последнее превращение сопровождается выделением бурого газа и образованием соли меди. При термическом распаде обеих солей одним из продуктов разложения является кислород. Напишите уравнения описанных реакций.

4) При взаимодействии раствора соли А со щелочью было получено студенистое нерастворимое в воде вещество голубого цвета, которое растворили в бесцветной жидкости Б с образованием раствора синего цвета. Твердый продукт, оставшийся после осторожного выпаривания раствора, прокалили; при этом выделились два газа, один из которых бурого цвета, а второй входит в состав атмосферного воздуха, и осталось твердое вещество черного цвета, которое растворяется в жидкости Б с образованием вещества А. Напишите уравнения описанных реакций.

5) Медную стружку растворили в разбавленной азотной кислоте, и раствор нейтрализовали едким кали. Выделившееся вещество голубого цвета отделили, прокалили (цвет вещества изменился на черный), смешали с коксом и повторно прокалили. Напишите уравнения описанных реакций.

6) В раствор нитрата ртути (II) добавили медную стружку. После окончания реакции раствор профильтровали, и фильтрат по каплям прибавляли к раствору, содержащему едкий натр и гидроксид аммония. При этом наблюдали кратковременное образование осадка, который растворился с образованием раствора ярко-синего цвета. При добавлении в полученный раствор избытка раствора серной кислоты происходило изменение цвета. Напишите уравнения описанных реакций.

7) Оксид меди (I) обработали концентрированной азотной кислотой, раствор осторожно выпарили и твердый остаток прокалили. Газообразные продукты реакции пропустили через большое количество воды и в образовавшийся раствор добавили магниевую стружку, в результате выделился газ, используемый в медицине. Напишите уравнения описанных реакций.

8) Твердое вещество, образующееся при нагревании малахита, нагрели в атмосфере водорода. Продукт реакции обработали концентрированной серной кислотой, внесли в раствор хлорида натрия, содержащий медные опилки, в результате образовался осадок. Напишите уравнения описанных реакций.

9) Соль, полученную при растворении меди в разбавленной азотной кислоте, подвергли электролизу, используя графитовые электроды. Вещество, выделившееся на аноде, ввели во взаимодействие с натрием, а полученный продукт реакции поместили в сосуд с углекислым газом. Напишите уравнения описанных реакций.

10) Твердый продукт термического разложения малахита растворили при нагревании в концентрированной азотной кислоте. Раствор осторожно выпарили, и твердый остаток прокалили, получив вещество черного цвета, которое нагрели в избытке аммиака (газ). Напишите уравнения описанных реакций.

11) К порошкообразному веществу черного цвета добавили раствор разбавленной серной кислоты и нагрели. В полученный раствор голубого цвета приливали раствор едкого натра до прекращения выделения осадка. Осадок отфильтровали и нагрели. Продукт реакции нагревали в атмосфере водорода, в результате чего получилось вещество красного цвета. Напишите уравнения описанных реакций.

12) Неизвестное вещество красного цвета нагрели в хлоре, и продукт реакции растворили в воде. В полученный раствор добавили щелочь, выпавший осадок голубого цвета отфильтровали и прокалили. При нагревании продукта прокаливании, который имеет черный цвет, с коксом было получено исходное вещество красного цвета. Напишите уравнения описанных реакций.

13) Раствор, полученный при взаимодействии меди с концентрированной азотной кислотой, выпарили и осадок прокалили. Газообразные продукты полностью поглощены водой, а над твердым остатком пропустили водород. Напишите уравнения описанных реакций.

14) Черный порошок, который образовался при сжигании металла красного цвета в избытке воздуха, растворили в 10%-серной кислоте. В полученный раствор добавили щелочь, и выпавший осадок голубого цвета отделили и растворили в избытке раствора аммиака. Напишите уравнения описанных реакций.

15) Вещество черного цвета получили, прокаливая осадок, который образуется при взаимодействии гидроксида натрия и сульфата меди (II). При нагревании этого вещества с углем получают металл красного цвета, который растворяется в концентрированной серной кислоте. Напишите уравнения описанных реакций.

16) Металлическую медь обработали при нагревании йодом. Полученный продукт растворили в концентрированной серной кислоте при нагревании. Образовавшийся раствор обработали раствором гидроксидом калия. Выпавший осадок прокалили. Напишите уравнения описанных реакций.

17) К раствору хлорида меди (II) добавили избыток раствора соды. Выпавший осадок прокалили, а полученный продукт нагрели в атмосфере водорода. Полученный порошок растворили в разбавленной азотной кислоте. Напишите уравнения описанных реакций.

18)  Медь растворили в разбавленной азотной кислоте. К полученному раствору добавили избыток раствора аммиака, наблюдая сначала образование осадка, а затем – его полное растворение с образованием темно-синего раствора. Полученный раствор обработали серной кислотой до появления характерной голубой окраски солей меди. Напишите уравнения описанных реакций.

19) Медь растворили в концентрированной азотной кислоте. К полученному раствору добавили избыток раствора аммиака, наблюдая сначала образование осадка, а затем – его полное растворение с образованием темно-синего раствора. Полученный раствор обработали избытком соляной кислоты. Напишите уравнения описанных реакций.

20) Газ, полученный при взаимодействии железных опилок с раствором соляной кислоты, пропустили над нагретым оксидом меди (II) до полного восстановления металла. полученный металл растворили в концентрированной азотной кислоте. Образовавшийся раствор подвергли электролизу с инертными электродами. Напишите уравнения описанных реакций.

21)  Йод поместили в пробирку с концентрированной горячей азотной кислотой. Выделившийся газ пропустили через воду в присутствии кислорода. В полученный раствор добавили гидроксид меди (II). Образовавшийся раствор выпарили и сухой твердый остаток прокалили. Напишите уравнения описанных реакций.

22)  Оранжевый оксид меди поместили в концентрированную серную кислоту и нагрели. К полученному голубому раствору прилили избыток раствора гидроксида калия. выпавший синий осадок отфильтровали, просушили и прокалили. Полученное при этом твердое черное вещество в стеклянную трубку, нагрели и пропустили над ним аммиак. Напишите уравнения описанных реакций.

23) Оксид меди (II) обработали раствором серной кислоты. При электролизе образующегося раствора на инертном аноде выделяется газ. Газ смешали с оксидом азота (IV) и поглотили с водой. К разбавленному раствору полученной кислоты добавили магний, в результате чего в растворе образовалось две соли, а выделение газообразного продукта не происходило. Напишите уравнения описанных реакций.

24)  Оксид меди (II) нагрели в токе угарного газа. Полученное вещество сожгли в атмосфере хлора. Продукт реакции растворили в в воде. Полученный раствор разделили на две части. К одной части добавили раствор иодида калия, ко второй – раствор нитрата серебра. И в том, и в другом случае наблюдали образование осадка. Напишите уравнения описанных реакций.

25) Нитрат меди (II) прокалили, образовавшееся твердое вещество растворили в разбавленной серной кислоте. Раствор полученной соли подвергли электролизу. Выделившееся на катоде вещество растворили в концентрированной азотной кислоте. Растворение протекает с выделением бурого газа. Напишите уравнения описанных реакций.

26) Щавелевую кислоту нагрели с небольшим количеством концентрированной серной кислоты. Выделившийся газ пропустили через раствор гидроксида кальция. В котором выпал осадок. Часть газа не поглотилась, его пропустили над твердым веществом черного цвета, полученным при прокаливании нитрата меди (II). В результате образовалось твердое вещество темно-красного цвета. Напишите уравнения описанных реакций.

27)   Концентрированная серная кислота прореагировала с медью. Выделившийся при газ полностью поглотили избытком раствора гидроксида калия. Продукт окисления меди смешали с расчетным количеством гидроксида натрия до прекращения выпадения осадка. Последний растворили в избытке соляной кислоты. Напишите уравнения описанных реакций.

Ответы и решения

1.

CuCl2       Cu      +      Сl2

           на катоде    на аноде

Cu   +   4HNO3(конц.)   =  Cu(NO3)2  +  2NO2↑  +  2H2O

2Cu(NO3)2  =2CuO   +  4NO2   +  O2

6NaOH(гор.)  +  3Cl2  =  NaClO3  +  5NaCl  +  3H2O

2.

CuCl2  = Cu        +       Сl2

           на катоде        на аноде

Cu   +   S  =  CuS

CuS  +  8HNO3(конц.гор.)     =  CuSO4  +  8NO2↑  +  4H2O

или CuS  +  10HNO3(конц.)     =  Cu(NO3)2  +  H2SO4  +    8NO2↑ +  4H2O

4NO2  +  2Ba(OH)2  =  Ba(NO3)2  +  Ba(NO2)2  +  2H2O

3.

NaNO3(тв.)  +  H2SO4(конц.)  =  HNO3  +  NaHSO4

Cu   +   4HNO3(конц.)   =  Cu(NO3)2  +  2NO2↑  +  2H2O

2Cu(NO3)2  = 2CuO   +  4NO2↑ +  O2

2NaNO3  = 2NaNO2  +  O2

4.

Cu(NO3)2 +  2NaOH  =  Cu(OH)2↓  +  2NaNO3

Cu(OH)2  +  2HNO3  =  Cu(NO3)2  +  2H2O

2Cu(NO3)2  = 2CuO   +  4NO2   +  O2

CuO  +  2HNO3  =  Cu(NO3)2  +  H2O

5. 3Cu   +   8HNO3(разб.)   =  3Cu(NO3)2  +  2NO2↑  +  4H2O

Cu(NO3)2  +  2КOH  =  Cu(OH)2↓  +  2КNO3

Cu(OH)2 =  CuO   +  H2O

CuO  +  C  Cu  +  CO

6. Hg(NO3)2 +  Cu  =   Cu(NO3)2   +  Hg

Cu(NO3)2   +  2NaOH  =  Cu(OH)2↓ +  2NaNO3

Сu(OH)2  +  4(NH3 · H2O)   =  [Cu(NH3)4](OH)2   +  4H2O

[Cu(NH3)4](OH)2   +  5H2SO4   =   CuSO4   +  4NH4HSO4  +  2H2O

7. Cu2O +  6HNO3(конц.)  =  2Cu(NO3)2  +  2NO2  +  3H2O

2Cu(NO3)2  = 2CuO   +  4NO2   +  O2

4NO2   +  O2  +   2H2O  =  4HNO3

10HNO3  +  4Mg  =  4Mg(NO3)2  +  N2O  +  5H2O

8. (CuOH)2CO3  =  2CuO  +  CO2  +  H2O

CuO  +  H2  = Cu  +  H2O

Cu  +  2H2SO4(конц.)  =  CuSO4  +  SO2  +  2H2O

CuSO4  +  Cu  +  2NaCl  =  2CuCl↓  +  Na2SO4

9.

3Cu   +   8HNO3(разб.)   =  3Cu(NO3)2  +  2NO2↑  +  4H2O

2Cu(NO3)2     +  2H2O  =   2Cu           +   O2          +     4HNO3

                                        на катоде        на аноде

2Na  +  O2  =  Na2O2

2Na2O2  +  CO2  =  2Na2CO3  +  O2

10.

(CuOH)2CO3  = 2CuO  +  CO2  +  H2O

CuO  +  2HNO3   =  Cu(NO3)2  +  H2O

2Cu(NO3)2  = 2CuO   +  4NO2   +  O2

3CuO  +  2NH3 = 3Cu  +  N2  +  3H2O

11.

CuO  +  H2SO4  = CuSO4  +  H2O

CuSO4  +  2NaOH  =  Cu(OH)2  +  Na2SO4

Cu(OH)2  = CuO  +  H2O

CuO  +  H2  =  Cu  +  H2O

12.

Cu  +  Cl2  = CuCl2

CuCl2  +  2NaOH  =  Cu(OH)2↓  +  2NaCl

Cu(OH)2  = CuO  +  H2O

CuO  +  C  = Cu  +  CO

13.

Cu +   4HNO3(конц.)   =  Cu(NO3)2  +  2NO2↑  +  2H2O

2Cu(NO3)2  = 2CuO   +  4NO2   +  O2

4NO2  +  O2  +  2H2O  =  4HNO3

CuO  +  H2  = Cu  +  H2O

14.

2Cu   +   O2   =   2CuO

CuO    +    H2SO4   =   CuSO4  +  H2O

CuSO4    +   NaOH    =    Cu(OH)2↓  +  Na2SO4

Сu(OH)2   +  4(NH3 · H2O)   =  [Cu(NH3)4](OH)2   +  4H2O

15.

СuSO4 +  2NaOH  =  Cu(OH)2  +  Na2SO4

Cu(OH)2  = CuO  +  H2O

CuO  +  C =  Cu  +  CO

Cu  +  2H2SO4(конц.)  =  CuSO4  +  SO2  +  2H2O

16.      

2Cu  +  I2   =  2CuI

2CuI   +  4H2SO4   =  2CuSO4  +  I2  +  2SO2  +  4H2O

СuSO4  +  2KOH  =  Cu(OH)2  +  K2SO4

Cu(OH)2 = CuO  +  H2O

17.

 2CuCl2  +  2Na2CO3  +  H2O  =  (CuOH)2CO3  +  CO2  +  4NaCl

(CuOH)2CO3   =  2CuO   +  CO2  +  H2O

CuO  +  H2  = Cu  +  H2O

3Cu   +   8HNO3(разб.)   =  3Cu(NO3)2  +  2NO2↑  +  4H2O

18.

 3Cu   +   8HNO3(разб.)   =  3Cu(NO3)2  +  2NO2↑  +  4H2O

Сu(NO3)2  +  2NH3· H2O   =  Cu(OH)2↓  +  2NH4NO3

Cu(OH)2   +   4NH3· H2O   =  [Cu(NH3)4](OH)2   +  4H2O

[Cu(NH3)4](OH)2   +   3H2SO4    =  CuSO4   +   2(NH4)2SO4    +  2H2O

19)       Cu   +   4HNO3(конц.)   =  Cu(NO3)2  +  2NO2↑  +  2H2O

Сu(NO3)2  +  2NH3· H2O   =  Cu(OH)2↓  +  2NH4NO3

Cu(OH)2   +   4NH3· H2O   =  [Cu(NH3)4](OH)2   +  4H2O

[Cu(NH3)4](OH)2   +   6HCl    =  CuCl2   +   4NH4Cl    +  2H2O

20.

Fe   +   2HCl    =    FeCl2   +   H2

CuO    +  H2   =   Cu   +   H2O

Cu   +   4HNO3(конц.)   =  Cu(NO3)2  +  2NO2↑  +  2H2O

2Cu(NO3)2     +  2H2O  =     2Cu   +   O2  +  4HNO3

21.

 I2   +   10HNO3    =   2HIO3   +   10NO2   +   4H2O

4NO2   +   2H2O  +  O2    =    4HNO3

Cu(OH)2  +  2HNO3  = Cu(NO3)2  +  2H2O

2Cu(NO3)2  = 2CuO   +  4NO2   +  O2

22.       

Cu2O   +  3H2SO4   =  2CuSO4   +   SO2   +   3H2O

СuSO4  +  2KOH  =  Cu(OH)2  +  K2SO4

Cu(OH)2  = CuO  +  H2O

3CuO  +  2NH3 = 3Cu  +  N2  +  3H2O

23.

CuO   +  H2SO4  =  CuSO4  +  H2O

2CuSO4    +   2H2O =  2Cu   +   O2  +  2H2SO4

4NO2   +  O2   +   2H2O  =  4HNO3

10HNO3   +   4Mg    =    4Mg(NO3)2   +   NH4NO3  +   3H2O

24.      

CuO    +   CO =  Cu   +   CO2

Cu   +   Cl2   =  CuCl2

2CuCl2   +   2KI   =   2CuCl↓   +   I2   +   2KCl

CuCl2    +   2AgNO3   =   2AgCl↓    +   Cu(NO3)2

.

25.      

2Cu(NO3)2  = 2CuO   +  4NO2   +  O2

CuO   +  H2SO4  =  CuSO4  +  H2O

2CuSO4    +   2H2O =  2Cu   +   O2  +  2H2SO4

Cu   +   4HNO3(конц.)   =  Cu(NO3)2  +  2NO2↑  +  2H2O

26.     

 H2C2O  =   CO↑   +   CO2↑   +   H2O

CO2   +   Ca(OH)2   =   CaCO3  +  H2O

2Cu(NO3)2  =2CuO   +  4NO2   +  O2

CuO    +   CO  = Cu   +   CO2

27.      

Cu  +  2H2SO4(конц.)  =  CuSO4  +  SO2  +  2H2O

SO2   +   2KOH   =   K2SO3   +   H2O

СuSO4  +  2NaOH  =  Cu(OH)2  +  Na2SO4

Cu(OH)2  +  2HCl = CuCl2  +  2H2O

1

H

1,008

1s1

2,2

Бесцветный газ

пл=-259°C

кип=-253°C

2

He

4,0026

1s2

Бесцветный газ

кип=-269°C

3

Li

6,941

2s1

0,99

Мягкий серебристо-белый металл

пл=180°C

кип=1317°C

4

Be

9,0122

2s2

1,57

Светло-серый металл

пл=1278°C

кип=2970°C

5

B

10,811

2s2 2p1

2,04

Темно-коричневое аморфное вещество

пл=2300°C

кип=2550°C

6

C

12,011

2s2 2p2

2,55

Прозрачный (алмаз) / черный (графит) минерал

пл=3550°C

кип=4830°C

7

N

14,007

2s2 2p3

3,04

Бесцветный газ

пл=-210°C

кип=-196°C

8

O

15,999

2s2 2p4

3,44

Бесцветный газ

пл=-218°C

кип=-183°C

9

F

18,998

2s2 2p5

4,0

Бледно-желтый газ

пл=-220°C

кип=-188°C

10

Ne

20,180

2s2 2p6

Бесцветный газ

пл=-249°C

кип=-246°C

11

Na

22,990

3s1

0,93

Мягкий серебристо-белый металл

пл=98°C

кип=892°C

12

Mg

24,305

3s2

1,31

Серебристо-белый металл

пл=649°C

кип=1107°C

13

Al

26,982

3s2 3p1

1,61

Серебристо-белый металл

пл=660°C

кип=2467°C

14

Si

28,086

3s2 3p2

1,9

Коричневый порошок / минерал

пл=1410°C

кип=2355°C

15

P

30,974

3s2 3p3

2,2

Белый минерал / красный порошок

пл=44°C

кип=280°C

16

S

32,065

3s2 3p4

2,58

Светло-желтый порошок

пл=113°C

кип=445°C

17

Cl

35,453

3s2 3p5

3,16

Желтовато-зеленый газ

пл=-101°C

кип=-35°C

18

Ar

39,948

3s2 3p6

Бесцветный газ

пл=-189°C

кип=-186°C

19

K

39,098

4s1

0,82

Мягкий серебристо-белый металл

пл=64°C

кип=774°C

20

Ca

40,078

4s2

1,0

Серебристо-белый металл

пл=839°C

кип=1487°C

21

Sc

44,956

3d1 4s2

1,36

Серебристый металл с желтым отливом

пл=1539°C

кип=2832°C

22

Ti

47,867

3d2 4s2

1,54

Серебристо-белый металл

пл=1660°C

кип=3260°C

23

V

50,942

3d3 4s2

1,63

Серебристо-белый металл

пл=1890°C

кип=3380°C

24

Cr

51,996

3d5 4s1

1,66

Голубовато-белый металл

пл=1857°C

кип=2482°C

25

Mn

54,938

3d5 4s2

1,55

Хрупкий серебристо-белый металл

пл=1244°C

кип=2097°C

26

Fe

55,845

3d6 4s2

1,83

Серебристо-белый металл

пл=1535°C

кип=2750°C

27

Co

58,933

3d7 4s2

1,88

Серебристо-белый металл

пл=1495°C

кип=2870°C

28

Ni

58,693

3d8 4s2

1,91

Серебристо-белый металл

пл=1453°C

кип=2732°C

29

Cu

63,546

3d10 4s1

1,9

Золотисто-розовый металл

пл=1084°C

кип=2595°C

30

Zn

65,409

3d10 4s2

1,65

Голубовато-белый металл

пл=420°C

кип=907°C

31

Ga

69,723

4s2 4p1

1,81

Белый металл с голубоватым оттенком

пл=30°C

кип=2403°C

32

Ge

72,64

4s2 4p2

2,0

Светло-серый полуметалл

пл=937°C

кип=2830°C

33

As

74,922

4s2 4p3

2,18

Зеленоватый полуметалл

субл=613°C

(сублимация)

34

Se

78,96

4s2 4p4

2,55

Хрупкий черный минерал

пл=217°C

кип=685°C

35

Br

79,904

4s2 4p5

2,96

Красно-бурая едкая жидкость

пл=-7°C

кип=59°C

36

Kr

83,798

4s2 4p6

3,0

Бесцветный газ

пл=-157°C

кип=-152°C

37

Rb

85,468

5s1

0,82

Серебристо-белый металл

пл=39°C

кип=688°C

38

Sr

87,62

5s2

0,95

Серебристо-белый металл

пл=769°C

кип=1384°C

39

Y

88,906

4d1 5s2

1,22

Серебристо-белый металл

пл=1523°C

кип=3337°C

40

Zr

91,224

4d2 5s2

1,33

Серебристо-белый металл

пл=1852°C

кип=4377°C

41

Nb

92,906

4d4 5s1

1,6

Блестящий серебристый металл

пл=2468°C

кип=4927°C

42

Mo

95,94

4d5 5s1

2,16

Блестящий серебристый металл

пл=2617°C

кип=5560°C

43

Tc

98,906

4d6 5s1

1,9

Синтетический радиоактивный металл

пл=2172°C

кип=5030°C

44

Ru

101,07

4d7 5s1

2,2

Серебристо-белый металл

пл=2310°C

кип=3900°C

45

Rh

102,91

4d8 5s1

2,28

Серебристо-белый металл

пл=1966°C

кип=3727°C

46

Pd

106,42

4d10

2,2

Мягкий серебристо-белый металл

пл=1552°C

кип=3140°C

47

Ag

107,87

4d10 5s1

1,93

Серебристо-белый металл

пл=962°C

кип=2212°C

48

Cd

112,41

4d10 5s2

1,69

Серебристо-серый металл

пл=321°C

кип=765°C

49

In

114,82

5s2 5p1

1,78

Мягкий серебристо-белый металл

пл=156°C

кип=2080°C

50

Sn

118,71

5s2 5p2

1,96

Мягкий серебристо-белый металл

пл=232°C

кип=2270°C

51

Sb

121,76

5s2 5p3

2,05

Серебристо-белый полуметалл

пл=631°C

кип=1750°C

52

Te

127,60

5s2 5p4

2,1

Серебристый блестящий полуметалл

пл=450°C

кип=990°C

53

I

126,90

5s2 5p5

2,66

Черно-серые кристаллы

пл=114°C

кип=184°C

54

Xe

131,29

5s2 5p6

2,6

Бесцветный газ

пл=-112°C

кип=-107°C

55

Cs

132,91

6s1

0,79

Мягкий серебристо-желтый металл

пл=28°C

кип=690°C

56

Ba

137,33

6s2

0,89

Серебристо-белый металл

пл=725°C

кип=1640°C

57

La

138,91

5d1 6s2

1,1

Серебристый металл

пл=920°C

кип=3454°C

58

Ce

140,12

f-элемент

Серебристый металл

пл=798°C

кип=3257°C

59

Pr

140,91

f-элемент

Серебристый металл

пл=931°C

кип=3212°C

60

Nd

144,24

f-элемент

Серебристый металл

пл=1010°C

кип=3127°C

61

Pm

146,92

f-элемент

Светло-серый радиоактивный металл

пл=1080°C

кип=2730°C

62

Sm

150,36

f-элемент

Серебристый металл

пл=1072°C

кип=1778°C

63

Eu

151,96

f-элемент

Серебристый металл

пл=822°C

кип=1597°C

64

Gd

157,25

f-элемент

Серебристый металл

пл=1311°C

кип=3233°C

65

Tb

158,93

f-элемент

Серебристый металл

пл=1360°C

кип=3041°C

66

Dy

162,50

f-элемент

Серебристый металл

пл=1409°C

кип=2335°C

67

Ho

164,93

f-элемент

Серебристый металл

пл=1470°C

кип=2720°C

68

Er

167,26

f-элемент

Серебристый металл

пл=1522°C

кип=2510°C

69

Tm

168,93

f-элемент

Серебристый металл

пл=1545°C

кип=1727°C

70

Yb

173,04

f-элемент

Серебристый металл

пл=824°C

кип=1193°C

71

Lu

174,96

f-элемент

Серебристый металл

пл=1656°C

кип=3315°C

72

Hf

178,49

5d2 6s2

Серебристый металл

пл=2150°C

кип=5400°C

73

Ta

180,95

5d3 6s2

Серый металл

пл=2996°C

кип=5425°C

74

W

183,84

5d4 6s2

2,36

Серый металл

пл=3407°C

кип=5927°C

75

Re

186,21

5d5 6s2

Серебристо-белый металл

пл=3180°C

кип=5873°C

76

Os

190,23

5d6 6s2

Серебристый металл с голубоватым оттенком

пл=3045°C

кип=5027°C

77

Ir

192,22

5d7 6s2

Серебристый металл

пл=2410°C

кип=4130°C

78

Pt

195,08

5d9 6s1

2,28

Мягкий серебристо-белый металл

пл=1772°C

кип=3827°C

79

Au

196,97

5d10 6s1

2,54

Мягкий блестящий желтый металл

пл=1064°C

кип=2940°C

80

Hg

200,59

5d10 6s2

2,0

Жидкий серебристо-белый металл

пл=-39°C

кип=357°C

81

Tl

204,38

6s2 6p1

Серебристый металл

пл=304°C

кип=1457°C

82

Pb

207,2

6s2 6p2

2,33

Серый металл с синеватым оттенком

пл=328°C

кип=1740°C

83

Bi

208,98

6s2 6p3

Блестящий серебристый металл

пл=271°C

кип=1560°C

84

Po

208,98

6s2 6p4

Мягкий серебристо-белый металл

пл=254°C

кип=962°C

85

At

209,98

6s2 6p5

2,2

Нестабильный элемент, отсутствует в природе

пл=302°C

кип=337°C

86

Rn

222,02

6s2 6p6

2,2

Радиоактивный газ

пл=-71°C

кип=-62°C

87

Fr

223,02

7s1

0,7

Нестабильный элемент, отсутствует в природе

пл=27°C

кип=677°C

88

Ra

226,03

7s2

0,9

Серебристо-белый радиоактивный металл

пл=700°C

кип=1140°C

89

Ac

227,03

6d1 7s2

1,1

Серебристо-белый радиоактивный металл

пл=1047°C

кип=3197°C

90

Th

232,04

f-элемент

Серый мягкий металл

91

Pa

231,04

f-элемент

Серебристо-белый радиоактивный металл

92

U

238,03

f-элемент

1,38

Серебристо-белый металл

пл=1132°C

кип=3818°C

93

Np

237,05

f-элемент

Серебристо-белый радиоактивный металл

94

Pu

244,06

f-элемент

Серебристо-белый радиоактивный металл

95

Am

243,06

f-элемент

Серебристо-белый радиоактивный металл

96

Cm

247,07

f-элемент

Серебристо-белый радиоактивный металл

97

Bk

247,07

f-элемент

Серебристо-белый радиоактивный металл

98

Cf

251,08

f-элемент

Нестабильный элемент, отсутствует в природе

99

Es

252,08

f-элемент

Нестабильный элемент, отсутствует в природе

100

Fm

257,10

f-элемент

Нестабильный элемент, отсутствует в природе

101

Md

258,10

f-элемент

Нестабильный элемент, отсутствует в природе

102

No

259,10

f-элемент

Нестабильный элемент, отсутствует в природе

103

Lr

266

f-элемент

Нестабильный элемент, отсутствует в природе

104

Rf

267

6d2 7s2

Нестабильный элемент, отсутствует в природе

105

Db

268

6d3 7s2

Нестабильный элемент, отсутствует в природе

106

Sg

269

6d4 7s2

Нестабильный элемент, отсутствует в природе

107

Bh

270

6d5 7s2

Нестабильный элемент, отсутствует в природе

108

Hs

277

6d6 7s2

Нестабильный элемент, отсутствует в природе

109

Mt

278

6d7 7s2

Нестабильный элемент, отсутствует в природе

110

Ds

281

6d9 7s1

Нестабильный элемент, отсутствует в природе

Металлы

Неметаллы

Щелочные

Щелоч-зем

Благородные

Галогены

Халькогены

Полуметаллы

s-элементы

p-элементы

d-элементы

f-элементы

Наведите курсор на ячейку элемента, чтобы получить его краткое описание.

Чтобы получить подробное описание элемента, кликните по его названию.

From Wikipedia, the free encyclopedia

Copper(II) sulfate

Copper sulfate.jpg

Crystals of CuSO4·5H2O

Copper(II)-sulfate-pentahydrate-xtal-1985-Cu-coord-3D-bs-17.png

Portion of the structure of the pentahydrate
(sulfate links

Cu(H2O)2+4 centers)

Copper(II)-sulfate-pentahydrate-unit-cell-1985-3D-bs-17.png

Unit cell of the crystal structure of

CuSO4·5H2O
with hydrogen bonds in black[1]

Names
IUPAC name

Copper(II) sulfate

Other names

  • Cupric sulphate
  • Blue vitriol (pentahydrate)
  • Bluestone (pentahydrate)
  • Bonattite (trihydrate mineral)
  • Boothite (heptahydrate mineral)
  • Chalcanthite (pentahydrate mineral)
  • Chalcocyanite (mineral)

Copper Sulphate pentahydrate

Identifiers

CAS Number

  • 7758-98-7 (anhydrous) check
  • 7758-99-8 (pentahydrate) check
  • 16448-28-5 (trihydrate) ☒
  • 19086-18-1 (heptahydrate) ☒

3D model (JSmol)

  • Interactive image
ChEBI
  • CHEBI:23414 check
ChEMBL
  • ChEMBL604 check
ChemSpider
  • 22870 check
ECHA InfoCard 100.028.952 Edit this at Wikidata
EC Number
  • 231-847-6

Gmelin Reference

8294
KEGG
  • C18713 check

PubChem CID

  • 24462
RTECS number
  • GL8800000 (anhydrous)
    GL8900000 (pentahydrate)
UNII
  • KUW2Q3U1VV (anhydrous) check
  • LRX7AJ16DT (pentahydrate) check

CompTox Dashboard (EPA)

  • DTXSID6034479 Edit this at Wikidata

InChI

  • InChI=1S/Cu.H2O4S/c;1-5(2,3)4/h;(H2,1,2,3,4)/q+2;/p-2 check

    Key: ARUVKPQLZAKDPS-UHFFFAOYSA-L check

  • InChI=1/Cu.H2O4S/c;1-5(2,3)4/h;(H2,1,2,3,4)/q+2;/p-2

    Key: ARUVKPQLZAKDPS-NUQVWONBAI

SMILES

  • [O-]S(=O)(=O)[O-].[Cu+2]

Properties

Chemical formula

CuSO4 (anhydrous)
CuSO4·5H2O (pentahydrate)
Molar mass 159.60 g/mol (anhydrous)[2]
249.685 g/mol (pentahydrate)[2]
Appearance gray-white (anhydrous)
blue (pentahydrate)
Density 3.60 g/cm3 (anhydrous)[2]
2.286 g/cm3 (pentahydrate)[2]
Melting point 110 °C (230 °F; 383 K) decomposes

560 °C decomposes[2](pentahydrate)

Fully decomposes at 590 °C (anhydrous)

Boiling point decomposes to cupric oxide at 650 °C

Solubility in water

1.055 molal (10 °C)
1.26 molal (20 °C)
1.502 molal (30 °C)[3]
Solubility anhydrous
insoluble in ethanol[2]


pentahydrate
soluble in methanol[2]
10.4 g/L (18 °C)
insoluble in ethanol and acetone

Magnetic susceptibility (χ)

1330·10−6 cm3/mol

Refractive index (nD)

1.724–1.739 (anhydrous)[4]
1.514–1.544 (pentahydrate)[5]
Structure

Crystal structure

Orthorhombic (anhydrous, chalcocyanite), space group Pnma, oP24, a = 0.839 nm, b = 0.669 nm, c = 0.483 nm.[6]
Triclinic (pentahydrate), space group P1, aP22, a = 0.5986 nm, b = 0.6141 nm, c = 1.0736 nm, α = 77.333°, β = 82.267°, γ = 72.567°[7]
Thermochemistry

Std molar
entropy (S298)

5 J/(K·mol)

Std enthalpy of
formation fH298)

−769.98 kJ/mol
Pharmacology

ATC code

V03AB20 (WHO)
Hazards
GHS labelling:

Pictograms

GHS07: Exclamation markGHS09: Environmental hazard
NFPA 704 (fire diamond)

NFPA 704 four-colored diamond

2

0

1

Flash point Non-flammable
Lethal dose or concentration (LD, LC):

LD50 (median dose)

300 mg/kg (oral, rat)[9]

87 mg/kg (oral, mouse)

NIOSH (US health exposure limits):

PEL (Permissible)

TWA 1 mg/m3 (as Cu)[8]

REL (Recommended)

TWA 1 mg/m3 (as Cu)[8]

IDLH (Immediate danger)

TWA 100 mg/m3 (as Cu)[8]
Safety data sheet (SDS) anhydrous
pentahydrate
Related compounds

Other cations

  • Iron(II) sulfate
  • Manganese(II) sulfate
  • Nickel(II) sulfate
  • Zinc sulfate

Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

☒ verify (what is check☒ ?)

Infobox references

Copper(II) sulfate, also known as copper sulphate, is an inorganic compound with the chemical formula CuSO4. It forms hydrates CuSO4·nH2O, where n can range from 1 to 7. The pentahydrate (n = 5), a bright blue crystal, is the most commonly encountered hydrate of copper(II) sulfate. Older names for the pentahydrate include blue vitriol, bluestone,[10] vitriol of copper,[11] and Roman vitriol.[12] It exothermically dissolves in water to give the aquo complex [Cu(H2O)6]2+, which has octahedral molecular geometry. The structure of the solid pentahydrate reveals a polymeric structure wherein copper is again octahedral but bound to four water ligands. The Cu(II)(H2O)4 centers are interconnected by sulfate anions to form chains.[13] Anhydrous copper sulfate is a light grey powder.

Preparation and occurrence[edit]

Preparation of copper(II) sulfate by electrolyzing sulfuric acid, using copper electrodes

Copper sulfate is produced industrially by treating copper metal with hot concentrated sulfuric acid or copper oxides with dilute sulfuric acid. For laboratory use, copper sulfate is usually purchased. Copper sulfate can also be produced by slowly leaching low-grade copper ore in air; bacteria may be used to hasten the process.[14]

Commercial copper sulfate is usually about 98% pure copper sulfate, and may contain traces of water. Anhydrous copper sulfate is 39.81 percent copper and 60.19 percent sulfate by mass, and in its blue, hydrous form, it is 25.47% copper, 38.47% sulfate (12.82% sulfur) and 36.06% water by mass. Four types of crystal size are provided based on its usage: large crystals (10–40 mm), small crystals (2–10 mm), snow crystals (less than 2 mm), and windswept powder (less than 0.15 mm).[14]

Chemical properties[edit]

Copper(II) sulfate pentahydrate decomposes before melting. It loses two water molecules upon heating at 63 °C (145 °F), followed by two more at 109 °C (228 °F) and the final water molecule at 200 °C (392 °F).[15][16]

The chemistry of aqueous copper sulfate is simply that of copper aquo complex, since the sulfate is not bound to copper in such solutions. Thus, such solutions react with concentrated hydrochloric acid to give tetrachlorocuprate(II):

Cu2+ + 4 Cl → [CuCl4]2−

Similarly treatment of such solutions with zinc gives metallic copper, as described by this simplified equation:[17]

CuSO4 + Zn → Cu + ZnSO4

A further illustration of such «single metal replacement reactions» occurs when a piece of iron is submerged in a solution of copper sulfate:

Fe + CuSO4 → FeSO4 + Cu

In high school and general chemistry education, copper sulfate is used as an electrolyte for galvanic cells, usually as a cathode solution. For example, in a zinc/copper cell, copper ion in copper sulfate solution absorbs electron from zinc and forms metallic copper.[18]

Cu2+ + 2e → Cu (cathode), E°cell = 0.34 V

Copper sulfate is commonly included in teenager chemistry sets and undergraduate experiments.[19] It is often used to grow crystals in schools and in copper plating experiments, despite its toxicity. Copper sulfate is often used to demonstrate an exothermic reaction, in which steel wool or magnesium ribbon is placed in an aqueous solution of CuSO4. It is used to demonstrate the principle of mineral hydration. The pentahydrate form, which is blue, is heated, turning the copper sulfate into the anhydrous form which is white, while the water that was present in the pentahydrate form evaporates. When water is then added to the anhydrous compound, it turns back into the pentahydrate form, regaining its blue color.[20] Copper(II) sulfate pentahydrate can easily be produced by crystallization from solution as copper(II) sulfate, which is hygroscopic.

Uses[edit]

As a fungicide and herbicide[edit]

Copper sulfate has been used for control of algae in lakes and related fresh waters subject to eutrophication. It «remains the most effective algicidal treatment».[21][22]

Bordeaux mixture, a suspension of copper(II) sulfate (CuSO4) and calcium hydroxide (Ca(OH)2), is used to control fungus on grapes, melons, and other berries.[23] It is produced by mixing a water solution of copper sulfate and a suspension of slaked lime.

A dilute solution of copper sulfate is used to treat aquarium fishes for parasitic infections,[24] and is also used to remove snails from aquariums and zebra mussels from water pipes.[25] Copper ions are highly toxic to fish, however. Most species of algae can be controlled with very low concentrations of copper sulfate.

Analytical reagent[edit]

Several chemical tests utilize copper sulfate. It is used in Fehling’s solution and Benedict’s solution to test for reducing sugars, which reduce the soluble blue copper(II) sulfate to insoluble red copper(I) oxide. Copper(II) sulfate is also used in the Biuret reagent to test for proteins.

Copper sulfate is used to test blood for anemia. The blood is dropped into a solution of copper sulfate of known specific gravity—blood with sufficient hemoglobin sinks rapidly due to its density, whereas blood which sinks slowly or not at all has an insufficient amount of hemoglobin.[26] Clincally relevant, however, modern laboratories utilize automated blood analyzers for accurate quantitative hemoglobin determinations, as opposed to older qualitative means.[citation needed]

In a flame test, the copper ions of copper sulfate emit a deep green light, a much deeper green than the flame test for barium.

Organic synthesis[edit]

Copper sulfate is employed at a limited level in organic synthesis.[27] The anhydrous salt is used as a dehydrating agent for forming and manipulating acetal groups.[28] The hydrated salt can be intimately mingled with potassium permanganate to give an oxidant for the conversion of primary alcohols.[29]

Rayon production[edit]

Reaction with ammonium hydroxide yields tetraamminecopper(II) sulfate or Schweizer’s reagent which was used to dissolve cellulose in the industrial production of Rayon.

Niche uses[edit]

Copper(II) sulfate has attracted many niche applications over the centuries. In industry copper sulfate has multiple applications. In printing it is an additive to book-binding pastes and glues to protect paper from insect bites; in building it is used as an additive to concrete to improve water resistance and discourage anything from growing on it. Copper sulfate can be used as a coloring ingredient in artworks, especially glasses and potteries.[30] Copper sulfate is also used in firework manufacture as a blue coloring agent, but it is not safe to mix copper sulfate with chlorates when mixing firework powders.[31]

Lowering a copper etching plate into the copper sulfate solution

Copper sulfate was once used to kill bromeliads, which serve as mosquito breeding sites.[32] Copper sulfate is used as a molluscicide to treat bilharzia in tropical countries.[30]

Art[edit]

In 2008, the artist Roger Hiorns filled an abandoned waterproofed council flat in London with 75,000 liters of copper(II) sulfate water solution. The solution was left to crystallize for several weeks before the flat was drained, leaving crystal-covered walls, floors and ceilings. The work is titled Seizure.[33] Since 2011, it has been on exhibition at the Yorkshire Sculpture Park.[34]

Etching[edit]

Copper(II) sulfate is used to etch zinc or copper plates for intaglio printmaking.[35][36]
It is also used to etch designs into copper for jewelry, such as for Champlevé.[37]

Dyeing[edit]

Copper(II) sulfate can be used as a mordant in vegetable dyeing. It often highlights the green tints of the specific dyes.[citation needed]

Electronics[edit]

An aqueous solution of copper(II) sulfate is often used as the resistive element in liquid resistors.[citation needed]

Other forms of copper sulfate[edit]

Anhydrous copper(II) sulfate can be produced by dehydration of the commonly available pentahydrate copper sulfate. In nature, it is found as the very rare mineral known as chalcocyanite.[38] The pentahydrate also occurs in nature as chalcanthite. Other rare copper sulfate minerals include bonattite (trihydrate),[39] boothite (heptahydrate),[40] and the monohydrate compound poitevinite.[41][42] There are numerous other, more complex, copper(II) sulfate minerals known, with environmentally important basic copper(II) sulfates like langite and posnjakite.[42][43][44]

Forms of copper(II) sulfate

  • Anhydrous CuSO4

    Anhydrous CuSO4

  • Copper(II) sulfate monohydrate

    Copper(II) sulfate monohydrate

  • Copper(II) sulfate pentahydrate

    Copper(II) sulfate pentahydrate

  • The rare mineral boothite (CuSO4·7H2O)

    The rare mineral boothite (CuSO4·7H2O)

Toxicological effects[edit]

Copper(II) salts have an LD50 of 100 mg/kg.[45][46] It is harmless enough to be a routine component of high school experiments and to be used widely in swimming lakes to control algae.

Copper(II) sulfate was used in the past as an emetic.[47] It is now considered too toxic for this use.[48] It is still listed as an antidote in the World Health Organization’s Anatomical Therapeutic Chemical Classification System.[49]

See also[edit]

  • Chalcanthum
  • Vitriol

References[edit]

  1. ^ Varghese, J. N.; Maslen, E. N. (1985). «Electron density in non-ideal metal complexes. I. Copper sulphate pentahydrate». Acta Crystallogr. B. 41: 184–190. doi:10.1107/S0108768185001914.
  2. ^ a b c d e f g Haynes, p. 4.62
  3. ^ Haynes, p. 5.199
  4. ^ Anthony, John W.; Bideaux, Richard A.; Bladh, Kenneth W.; Nichols, Monte C., eds. (2003). «Chalcocyanite» (PDF). Handbook of Mineralogy. Vol. V. Borates, Carbonates, Sulfates. Chantilly, VA, US: Mineralogical Society of America. ISBN 978-0962209741.
  5. ^ Haynes, p. 10.240
  6. ^ Kokkoros, P. A.; Rentzeperis, P. J. (1958). «The crystal structure of the anhydrous sulphates of copper and zinc». Acta Crystallographica. 11 (5): 361–364. doi:10.1107/S0365110X58000955.
  7. ^ Bacon, G. E.; Titterton, D. H. (1975). «Neutron-diffraction studies of CuSO4 · 5H2O and CuSO4 · 5D2O». Z. Kristallogr. 141 (5–6): 330–341. Bibcode:1975ZK….141..330B. doi:10.1524/zkri.1975.141.5-6.330.
  8. ^ a b c NIOSH Pocket Guide to Chemical Hazards. «#0150». National Institute for Occupational Safety and Health (NIOSH).
  9. ^ Cupric sulfate. US National Institutes of Health
  10. ^ «Copper (II) sulfate MSDS». Oxford University. Archived from the original on 2007-10-11. Retrieved 2007-12-31.
  11. ^ Antoine-François de Fourcroy, tr. by Robert Heron (1796) «Elements of Chemistry, and Natural History: To which is Prefixed the Philosophy of Chemistry». J. Murray and others, Edinburgh. Page 348.
  12. ^ Oxford University Press, «Roman vitriol», Oxford Living Dictionaries. Accessed on 2016-11-13
  13. ^ Ting, V. P.; Henry, P. F.; Schmidtmann, M.; Wilson, C. C.; Weller, M. T. (2009). «In situ neutron powder diffraction and structure determination in controlled humidities». Chem. Commun. 2009 (48): 7527–7529. doi:10.1039/B918702B. PMID 20024268.
  14. ^ a b «Uses of Copper Compounds: Copper Sulphate». copper.org. Copper Development Association Inc. Retrieved 10 May 2015.
  15. ^ Andrew Knox Galwey; Michael E. Green (1999). Thermal decomposition of ionic solids. Elsevier. pp. 228–229. ISBN 978-0-444-82437-0.
  16. ^ Wiberg, Egon; Nils Wiberg; Arnold Frederick Holleman (2001). Inorganic chemistry. Academic Press. p. 1263. ISBN 978-0-12-352651-9.
  17. ^ Ray Q. Brewster, Theodore Groening (1934). «P-Nitrophenyl Ether». Organic Syntheses. 14: 66. doi:10.15227/orgsyn.014.0066.
  18. ^ Zumdahl, Steven; DeCoste, Donald (2013). Chemical Principles. Cengage Learning. pp. 506–507. ISBN 978-1-285-13370-6.
  19. ^ Rodríguez, Emilio; Vicente, Miguel Angel (2002). «A Copper-Sulfate-Based Inorganic Chemistry Laboratory for First-Year University Students That Teaches Basic Operations and Concepts». Journal of Chemical Education. 79 (4): 486. Bibcode:2002JChEd..79..486R. doi:10.1021/ed079p486.
  20. ^ «Process for the preparation of stable copper(II) sulfate monohydrate applicable as trace element additive in animal fodders». Retrieved 2009-07-07.
  21. ^ Van Hullebusch, E.; Chatenet, P.; Deluchat, V.; Chazal, P. M.; Froissard, D.; Lens, P. N.L.; Baudu, M. (2003). «Fate and forms of Cu in a reservoir ecosystem following copper sulfate treatment (Saint Germain les Belles, France)». Journal de Physique IV (Proceedings). 107: 1333–1336. doi:10.1051/jp4:20030547.
  22. ^ Haughey, M. (2000). «Forms and fate of Cu in a source drinking water reservoir following CuSO4 treatment». Water Research. 34 (13): 3440–3452. doi:10.1016/S0043-1354(00)00054-3.
  23. ^ Martin, Hubert (1933). «Uses of Copper Compounds: Copper Sulfate’s Role in Agriculture». Annals of Applied Biology. 20 (2): 342–363. doi:10.1111/j.1744-7348.1933.tb07770.x. Retrieved 2007-12-31.
  24. ^ «All About Copper Sulfate». National Fish Pharmaceuticals. Retrieved 2007-12-31.
  25. ^ «With Zebra mussels here to stay, Austin has a plan to avoid stinky drinking water». KXAN Austin. 2020-10-26. Retrieved 2020-10-28.
  26. ^ Estridge, Barbara H.; Anna P. Reynolds; Norma J. Walters (2000). Basic Medical Laboratory Techniques. Thomson Delmar Learning. p. 166. ISBN 978-0-7668-1206-2.
  27. ^ Hoffman, R. V. (2001). «Copper(II) Sulfate». Copper(II) Sulfate, in Encyclopedia of Reagents for Organic Synthesis. John Wiley & Sons. doi:10.1002/047084289X.rc247. ISBN 978-0471936237.
  28. ^ Philip J. Kocienski (2005). Protecting Groups. Thieme. p. 58. ISBN 978-1-58890-376-1.
  29. ^ Jefford, C. W.; Li, Y.; Wang, Y. «A Selective, Heterogeneous Oxidation using a Mixture of Potassium Permanganate and Cupric Sulfate: (3aS,7aR)-Hexahydro-(3S,6R)-Dimethyl-2(3H)-Benzofuranone». Organic Syntheses.; Collective Volume, vol. 9, p. 462
  30. ^ a b Copper Development Association. «Uses of Copper Compounds: Table A — Uses of Copper Sulphate». copper. Copper Development Association Inc. Retrieved 12 May 2015.
  31. ^ Partin, Lee. «The Blues: Part 2». skylighter. Skylighter.Inc. Archived from the original on 21 December 2010. Retrieved 12 May 2015.
  32. ^ Despommier; Gwadz; Hotez; Knirsch (June 2005). Parasitic Disease (5 ed.). NY: Apple Tree Production L.L.C. pp. Section 4.2. ISBN 978-0970002778. Retrieved 12 May 2015.
  33. ^ «Seizure». Artangel.org.uk. Retrieved 2021-10-05.
  34. ^ «Roger Hiorns: Seizure». Yorkshire Sculpture Park. Archived from the original on 2015-02-22. Retrieved 2015-02-22.
  35. ^ greenart.info, Bordeau etch, 2009-01-18, retrieved 2011-06-02.
  36. ^ ndiprintmaking.ca, The Chemistry of using Copper Sulfate Mordant, 2009-04-12, retrieved 2011-06-02.
  37. ^ http://mordent.com/etch-howto/, How to Electrolytically etch in copper, brass, steel, nickel silver or silver, retrieved 2015-05-2015.
  38. ^ «Chalcocyanite». www.mindat.org.
  39. ^ «Bonattite». www.mindat.org.
  40. ^ «Boothite». www.mindat.org.
  41. ^ «Poitevinite». www.mindat.org.
  42. ^ a b «List of Minerals». www.ima-mineralogy.org. March 21, 2011.
  43. ^ «Langite». www.mindat.org.
  44. ^ «Posnjakite». www.mindat.org.
  45. ^ Windholz, M., ed. 1983. The Merck Index. Tenth edition. Rahway, NJ: Merck and Company.
  46. ^ Guidance for reregistration of pesticide products containing copper sulfate. Fact sheet no. 100., Washington, DC: U.S. Environmental Protection Agency, Office of Pesticide Programs, 1986
  47. ^ Holtzmann, N. A.; Haslam, R. H. (July 1968). «Elevation of serum copper following copper sulfate as an emetic». Pediatrics. 42 (1): 189–93. doi:10.1542/peds.42.1.189. PMID 4385403. S2CID 32740524.
  48. ^ Olson, Kent C. (2004). Poisoning & drug overdose. New York: Lange Medical Mooks/McGraw-Hill. p. 175. ISBN 978-0-8385-8172-8.
  49. ^ V03AB20 (WHO)

Bibliography[edit]

  • Haynes, William M., ed. (2011). CRC Handbook of Chemistry and Physics (92nd ed.). Boca Raton, FL: CRC Press. ISBN 978-1439855119.

External links[edit]

  • Media related to Copper(II) sulfate at Wikimedia Commons
  • International Chemical Safety Card 0751
  • International Chemical Safety Card 1416
  • National Pollutant Inventory – Copper and compounds fact sheet

From Wikipedia, the free encyclopedia

Copper(II) sulfate

Copper sulfate.jpg

Crystals of CuSO4·5H2O

Copper(II)-sulfate-pentahydrate-xtal-1985-Cu-coord-3D-bs-17.png

Portion of the structure of the pentahydrate
(sulfate links

Cu(H2O)2+4 centers)

Copper(II)-sulfate-pentahydrate-unit-cell-1985-3D-bs-17.png

Unit cell of the crystal structure of

CuSO4·5H2O
with hydrogen bonds in black[1]

Names
IUPAC name

Copper(II) sulfate

Other names

  • Cupric sulphate
  • Blue vitriol (pentahydrate)
  • Bluestone (pentahydrate)
  • Bonattite (trihydrate mineral)
  • Boothite (heptahydrate mineral)
  • Chalcanthite (pentahydrate mineral)
  • Chalcocyanite (mineral)

Copper Sulphate pentahydrate

Identifiers

CAS Number

  • 7758-98-7 (anhydrous) check
  • 7758-99-8 (pentahydrate) check
  • 16448-28-5 (trihydrate) ☒
  • 19086-18-1 (heptahydrate) ☒

3D model (JSmol)

  • Interactive image
ChEBI
  • CHEBI:23414 check
ChEMBL
  • ChEMBL604 check
ChemSpider
  • 22870 check
ECHA InfoCard 100.028.952 Edit this at Wikidata
EC Number
  • 231-847-6

Gmelin Reference

8294
KEGG
  • C18713 check

PubChem CID

  • 24462
RTECS number
  • GL8800000 (anhydrous)
    GL8900000 (pentahydrate)
UNII
  • KUW2Q3U1VV (anhydrous) check
  • LRX7AJ16DT (pentahydrate) check

CompTox Dashboard (EPA)

  • DTXSID6034479 Edit this at Wikidata

InChI

  • InChI=1S/Cu.H2O4S/c;1-5(2,3)4/h;(H2,1,2,3,4)/q+2;/p-2 check

    Key: ARUVKPQLZAKDPS-UHFFFAOYSA-L check

  • InChI=1/Cu.H2O4S/c;1-5(2,3)4/h;(H2,1,2,3,4)/q+2;/p-2

    Key: ARUVKPQLZAKDPS-NUQVWONBAI

SMILES

  • [O-]S(=O)(=O)[O-].[Cu+2]

Properties

Chemical formula

CuSO4 (anhydrous)
CuSO4·5H2O (pentahydrate)
Molar mass 159.60 g/mol (anhydrous)[2]
249.685 g/mol (pentahydrate)[2]
Appearance gray-white (anhydrous)
blue (pentahydrate)
Density 3.60 g/cm3 (anhydrous)[2]
2.286 g/cm3 (pentahydrate)[2]
Melting point 110 °C (230 °F; 383 K) decomposes

560 °C decomposes[2](pentahydrate)

Fully decomposes at 590 °C (anhydrous)

Boiling point decomposes to cupric oxide at 650 °C

Solubility in water

1.055 molal (10 °C)
1.26 molal (20 °C)
1.502 molal (30 °C)[3]
Solubility anhydrous
insoluble in ethanol[2]


pentahydrate
soluble in methanol[2]
10.4 g/L (18 °C)
insoluble in ethanol and acetone

Magnetic susceptibility (χ)

1330·10−6 cm3/mol

Refractive index (nD)

1.724–1.739 (anhydrous)[4]
1.514–1.544 (pentahydrate)[5]
Structure

Crystal structure

Orthorhombic (anhydrous, chalcocyanite), space group Pnma, oP24, a = 0.839 nm, b = 0.669 nm, c = 0.483 nm.[6]
Triclinic (pentahydrate), space group P1, aP22, a = 0.5986 nm, b = 0.6141 nm, c = 1.0736 nm, α = 77.333°, β = 82.267°, γ = 72.567°[7]
Thermochemistry

Std molar
entropy (S298)

5 J/(K·mol)

Std enthalpy of
formation fH298)

−769.98 kJ/mol
Pharmacology

ATC code

V03AB20 (WHO)
Hazards
GHS labelling:

Pictograms

GHS07: Exclamation markGHS09: Environmental hazard
NFPA 704 (fire diamond)

NFPA 704 four-colored diamond

2

0

1

Flash point Non-flammable
Lethal dose or concentration (LD, LC):

LD50 (median dose)

300 mg/kg (oral, rat)[9]

87 mg/kg (oral, mouse)

NIOSH (US health exposure limits):

PEL (Permissible)

TWA 1 mg/m3 (as Cu)[8]

REL (Recommended)

TWA 1 mg/m3 (as Cu)[8]

IDLH (Immediate danger)

TWA 100 mg/m3 (as Cu)[8]
Safety data sheet (SDS) anhydrous
pentahydrate
Related compounds

Other cations

  • Iron(II) sulfate
  • Manganese(II) sulfate
  • Nickel(II) sulfate
  • Zinc sulfate

Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

☒ verify (what is check☒ ?)

Infobox references

Copper(II) sulfate, also known as copper sulphate, is an inorganic compound with the chemical formula CuSO4. It forms hydrates CuSO4·nH2O, where n can range from 1 to 7. The pentahydrate (n = 5), a bright blue crystal, is the most commonly encountered hydrate of copper(II) sulfate. Older names for the pentahydrate include blue vitriol, bluestone,[10] vitriol of copper,[11] and Roman vitriol.[12] It exothermically dissolves in water to give the aquo complex [Cu(H2O)6]2+, which has octahedral molecular geometry. The structure of the solid pentahydrate reveals a polymeric structure wherein copper is again octahedral but bound to four water ligands. The Cu(II)(H2O)4 centers are interconnected by sulfate anions to form chains.[13] Anhydrous copper sulfate is a light grey powder.

Preparation and occurrence[edit]

Preparation of copper(II) sulfate by electrolyzing sulfuric acid, using copper electrodes

Copper sulfate is produced industrially by treating copper metal with hot concentrated sulfuric acid or copper oxides with dilute sulfuric acid. For laboratory use, copper sulfate is usually purchased. Copper sulfate can also be produced by slowly leaching low-grade copper ore in air; bacteria may be used to hasten the process.[14]

Commercial copper sulfate is usually about 98% pure copper sulfate, and may contain traces of water. Anhydrous copper sulfate is 39.81 percent copper and 60.19 percent sulfate by mass, and in its blue, hydrous form, it is 25.47% copper, 38.47% sulfate (12.82% sulfur) and 36.06% water by mass. Four types of crystal size are provided based on its usage: large crystals (10–40 mm), small crystals (2–10 mm), snow crystals (less than 2 mm), and windswept powder (less than 0.15 mm).[14]

Chemical properties[edit]

Copper(II) sulfate pentahydrate decomposes before melting. It loses two water molecules upon heating at 63 °C (145 °F), followed by two more at 109 °C (228 °F) and the final water molecule at 200 °C (392 °F).[15][16]

The chemistry of aqueous copper sulfate is simply that of copper aquo complex, since the sulfate is not bound to copper in such solutions. Thus, such solutions react with concentrated hydrochloric acid to give tetrachlorocuprate(II):

Cu2+ + 4 Cl → [CuCl4]2−

Similarly treatment of such solutions with zinc gives metallic copper, as described by this simplified equation:[17]

CuSO4 + Zn → Cu + ZnSO4

A further illustration of such «single metal replacement reactions» occurs when a piece of iron is submerged in a solution of copper sulfate:

Fe + CuSO4 → FeSO4 + Cu

In high school and general chemistry education, copper sulfate is used as an electrolyte for galvanic cells, usually as a cathode solution. For example, in a zinc/copper cell, copper ion in copper sulfate solution absorbs electron from zinc and forms metallic copper.[18]

Cu2+ + 2e → Cu (cathode), E°cell = 0.34 V

Copper sulfate is commonly included in teenager chemistry sets and undergraduate experiments.[19] It is often used to grow crystals in schools and in copper plating experiments, despite its toxicity. Copper sulfate is often used to demonstrate an exothermic reaction, in which steel wool or magnesium ribbon is placed in an aqueous solution of CuSO4. It is used to demonstrate the principle of mineral hydration. The pentahydrate form, which is blue, is heated, turning the copper sulfate into the anhydrous form which is white, while the water that was present in the pentahydrate form evaporates. When water is then added to the anhydrous compound, it turns back into the pentahydrate form, regaining its blue color.[20] Copper(II) sulfate pentahydrate can easily be produced by crystallization from solution as copper(II) sulfate, which is hygroscopic.

Uses[edit]

As a fungicide and herbicide[edit]

Copper sulfate has been used for control of algae in lakes and related fresh waters subject to eutrophication. It «remains the most effective algicidal treatment».[21][22]

Bordeaux mixture, a suspension of copper(II) sulfate (CuSO4) and calcium hydroxide (Ca(OH)2), is used to control fungus on grapes, melons, and other berries.[23] It is produced by mixing a water solution of copper sulfate and a suspension of slaked lime.

A dilute solution of copper sulfate is used to treat aquarium fishes for parasitic infections,[24] and is also used to remove snails from aquariums and zebra mussels from water pipes.[25] Copper ions are highly toxic to fish, however. Most species of algae can be controlled with very low concentrations of copper sulfate.

Analytical reagent[edit]

Several chemical tests utilize copper sulfate. It is used in Fehling’s solution and Benedict’s solution to test for reducing sugars, which reduce the soluble blue copper(II) sulfate to insoluble red copper(I) oxide. Copper(II) sulfate is also used in the Biuret reagent to test for proteins.

Copper sulfate is used to test blood for anemia. The blood is dropped into a solution of copper sulfate of known specific gravity—blood with sufficient hemoglobin sinks rapidly due to its density, whereas blood which sinks slowly or not at all has an insufficient amount of hemoglobin.[26] Clincally relevant, however, modern laboratories utilize automated blood analyzers for accurate quantitative hemoglobin determinations, as opposed to older qualitative means.[citation needed]

In a flame test, the copper ions of copper sulfate emit a deep green light, a much deeper green than the flame test for barium.

Organic synthesis[edit]

Copper sulfate is employed at a limited level in organic synthesis.[27] The anhydrous salt is used as a dehydrating agent for forming and manipulating acetal groups.[28] The hydrated salt can be intimately mingled with potassium permanganate to give an oxidant for the conversion of primary alcohols.[29]

Rayon production[edit]

Reaction with ammonium hydroxide yields tetraamminecopper(II) sulfate or Schweizer’s reagent which was used to dissolve cellulose in the industrial production of Rayon.

Niche uses[edit]

Copper(II) sulfate has attracted many niche applications over the centuries. In industry copper sulfate has multiple applications. In printing it is an additive to book-binding pastes and glues to protect paper from insect bites; in building it is used as an additive to concrete to improve water resistance and discourage anything from growing on it. Copper sulfate can be used as a coloring ingredient in artworks, especially glasses and potteries.[30] Copper sulfate is also used in firework manufacture as a blue coloring agent, but it is not safe to mix copper sulfate with chlorates when mixing firework powders.[31]

Lowering a copper etching plate into the copper sulfate solution

Copper sulfate was once used to kill bromeliads, which serve as mosquito breeding sites.[32] Copper sulfate is used as a molluscicide to treat bilharzia in tropical countries.[30]

Art[edit]

In 2008, the artist Roger Hiorns filled an abandoned waterproofed council flat in London with 75,000 liters of copper(II) sulfate water solution. The solution was left to crystallize for several weeks before the flat was drained, leaving crystal-covered walls, floors and ceilings. The work is titled Seizure.[33] Since 2011, it has been on exhibition at the Yorkshire Sculpture Park.[34]

Etching[edit]

Copper(II) sulfate is used to etch zinc or copper plates for intaglio printmaking.[35][36]
It is also used to etch designs into copper for jewelry, such as for Champlevé.[37]

Dyeing[edit]

Copper(II) sulfate can be used as a mordant in vegetable dyeing. It often highlights the green tints of the specific dyes.[citation needed]

Electronics[edit]

An aqueous solution of copper(II) sulfate is often used as the resistive element in liquid resistors.[citation needed]

Other forms of copper sulfate[edit]

Anhydrous copper(II) sulfate can be produced by dehydration of the commonly available pentahydrate copper sulfate. In nature, it is found as the very rare mineral known as chalcocyanite.[38] The pentahydrate also occurs in nature as chalcanthite. Other rare copper sulfate minerals include bonattite (trihydrate),[39] boothite (heptahydrate),[40] and the monohydrate compound poitevinite.[41][42] There are numerous other, more complex, copper(II) sulfate minerals known, with environmentally important basic copper(II) sulfates like langite and posnjakite.[42][43][44]

Forms of copper(II) sulfate

  • Anhydrous CuSO4

    Anhydrous CuSO4

  • Copper(II) sulfate monohydrate

    Copper(II) sulfate monohydrate

  • Copper(II) sulfate pentahydrate

    Copper(II) sulfate pentahydrate

  • The rare mineral boothite (CuSO4·7H2O)

    The rare mineral boothite (CuSO4·7H2O)

Toxicological effects[edit]

Copper(II) salts have an LD50 of 100 mg/kg.[45][46] It is harmless enough to be a routine component of high school experiments and to be used widely in swimming lakes to control algae.

Copper(II) sulfate was used in the past as an emetic.[47] It is now considered too toxic for this use.[48] It is still listed as an antidote in the World Health Organization’s Anatomical Therapeutic Chemical Classification System.[49]

See also[edit]

  • Chalcanthum
  • Vitriol

References[edit]

  1. ^ Varghese, J. N.; Maslen, E. N. (1985). «Electron density in non-ideal metal complexes. I. Copper sulphate pentahydrate». Acta Crystallogr. B. 41: 184–190. doi:10.1107/S0108768185001914.
  2. ^ a b c d e f g Haynes, p. 4.62
  3. ^ Haynes, p. 5.199
  4. ^ Anthony, John W.; Bideaux, Richard A.; Bladh, Kenneth W.; Nichols, Monte C., eds. (2003). «Chalcocyanite» (PDF). Handbook of Mineralogy. Vol. V. Borates, Carbonates, Sulfates. Chantilly, VA, US: Mineralogical Society of America. ISBN 978-0962209741.
  5. ^ Haynes, p. 10.240
  6. ^ Kokkoros, P. A.; Rentzeperis, P. J. (1958). «The crystal structure of the anhydrous sulphates of copper and zinc». Acta Crystallographica. 11 (5): 361–364. doi:10.1107/S0365110X58000955.
  7. ^ Bacon, G. E.; Titterton, D. H. (1975). «Neutron-diffraction studies of CuSO4 · 5H2O and CuSO4 · 5D2O». Z. Kristallogr. 141 (5–6): 330–341. Bibcode:1975ZK….141..330B. doi:10.1524/zkri.1975.141.5-6.330.
  8. ^ a b c NIOSH Pocket Guide to Chemical Hazards. «#0150». National Institute for Occupational Safety and Health (NIOSH).
  9. ^ Cupric sulfate. US National Institutes of Health
  10. ^ «Copper (II) sulfate MSDS». Oxford University. Archived from the original on 2007-10-11. Retrieved 2007-12-31.
  11. ^ Antoine-François de Fourcroy, tr. by Robert Heron (1796) «Elements of Chemistry, and Natural History: To which is Prefixed the Philosophy of Chemistry». J. Murray and others, Edinburgh. Page 348.
  12. ^ Oxford University Press, «Roman vitriol», Oxford Living Dictionaries. Accessed on 2016-11-13
  13. ^ Ting, V. P.; Henry, P. F.; Schmidtmann, M.; Wilson, C. C.; Weller, M. T. (2009). «In situ neutron powder diffraction and structure determination in controlled humidities». Chem. Commun. 2009 (48): 7527–7529. doi:10.1039/B918702B. PMID 20024268.
  14. ^ a b «Uses of Copper Compounds: Copper Sulphate». copper.org. Copper Development Association Inc. Retrieved 10 May 2015.
  15. ^ Andrew Knox Galwey; Michael E. Green (1999). Thermal decomposition of ionic solids. Elsevier. pp. 228–229. ISBN 978-0-444-82437-0.
  16. ^ Wiberg, Egon; Nils Wiberg; Arnold Frederick Holleman (2001). Inorganic chemistry. Academic Press. p. 1263. ISBN 978-0-12-352651-9.
  17. ^ Ray Q. Brewster, Theodore Groening (1934). «P-Nitrophenyl Ether». Organic Syntheses. 14: 66. doi:10.15227/orgsyn.014.0066.
  18. ^ Zumdahl, Steven; DeCoste, Donald (2013). Chemical Principles. Cengage Learning. pp. 506–507. ISBN 978-1-285-13370-6.
  19. ^ Rodríguez, Emilio; Vicente, Miguel Angel (2002). «A Copper-Sulfate-Based Inorganic Chemistry Laboratory for First-Year University Students That Teaches Basic Operations and Concepts». Journal of Chemical Education. 79 (4): 486. Bibcode:2002JChEd..79..486R. doi:10.1021/ed079p486.
  20. ^ «Process for the preparation of stable copper(II) sulfate monohydrate applicable as trace element additive in animal fodders». Retrieved 2009-07-07.
  21. ^ Van Hullebusch, E.; Chatenet, P.; Deluchat, V.; Chazal, P. M.; Froissard, D.; Lens, P. N.L.; Baudu, M. (2003). «Fate and forms of Cu in a reservoir ecosystem following copper sulfate treatment (Saint Germain les Belles, France)». Journal de Physique IV (Proceedings). 107: 1333–1336. doi:10.1051/jp4:20030547.
  22. ^ Haughey, M. (2000). «Forms and fate of Cu in a source drinking water reservoir following CuSO4 treatment». Water Research. 34 (13): 3440–3452. doi:10.1016/S0043-1354(00)00054-3.
  23. ^ Martin, Hubert (1933). «Uses of Copper Compounds: Copper Sulfate’s Role in Agriculture». Annals of Applied Biology. 20 (2): 342–363. doi:10.1111/j.1744-7348.1933.tb07770.x. Retrieved 2007-12-31.
  24. ^ «All About Copper Sulfate». National Fish Pharmaceuticals. Retrieved 2007-12-31.
  25. ^ «With Zebra mussels here to stay, Austin has a plan to avoid stinky drinking water». KXAN Austin. 2020-10-26. Retrieved 2020-10-28.
  26. ^ Estridge, Barbara H.; Anna P. Reynolds; Norma J. Walters (2000). Basic Medical Laboratory Techniques. Thomson Delmar Learning. p. 166. ISBN 978-0-7668-1206-2.
  27. ^ Hoffman, R. V. (2001). «Copper(II) Sulfate». Copper(II) Sulfate, in Encyclopedia of Reagents for Organic Synthesis. John Wiley & Sons. doi:10.1002/047084289X.rc247. ISBN 978-0471936237.
  28. ^ Philip J. Kocienski (2005). Protecting Groups. Thieme. p. 58. ISBN 978-1-58890-376-1.
  29. ^ Jefford, C. W.; Li, Y.; Wang, Y. «A Selective, Heterogeneous Oxidation using a Mixture of Potassium Permanganate and Cupric Sulfate: (3aS,7aR)-Hexahydro-(3S,6R)-Dimethyl-2(3H)-Benzofuranone». Organic Syntheses.; Collective Volume, vol. 9, p. 462
  30. ^ a b Copper Development Association. «Uses of Copper Compounds: Table A — Uses of Copper Sulphate». copper. Copper Development Association Inc. Retrieved 12 May 2015.
  31. ^ Partin, Lee. «The Blues: Part 2». skylighter. Skylighter.Inc. Archived from the original on 21 December 2010. Retrieved 12 May 2015.
  32. ^ Despommier; Gwadz; Hotez; Knirsch (June 2005). Parasitic Disease (5 ed.). NY: Apple Tree Production L.L.C. pp. Section 4.2. ISBN 978-0970002778. Retrieved 12 May 2015.
  33. ^ «Seizure». Artangel.org.uk. Retrieved 2021-10-05.
  34. ^ «Roger Hiorns: Seizure». Yorkshire Sculpture Park. Archived from the original on 2015-02-22. Retrieved 2015-02-22.
  35. ^ greenart.info, Bordeau etch, 2009-01-18, retrieved 2011-06-02.
  36. ^ ndiprintmaking.ca, The Chemistry of using Copper Sulfate Mordant, 2009-04-12, retrieved 2011-06-02.
  37. ^ http://mordent.com/etch-howto/, How to Electrolytically etch in copper, brass, steel, nickel silver or silver, retrieved 2015-05-2015.
  38. ^ «Chalcocyanite». www.mindat.org.
  39. ^ «Bonattite». www.mindat.org.
  40. ^ «Boothite». www.mindat.org.
  41. ^ «Poitevinite». www.mindat.org.
  42. ^ a b «List of Minerals». www.ima-mineralogy.org. March 21, 2011.
  43. ^ «Langite». www.mindat.org.
  44. ^ «Posnjakite». www.mindat.org.
  45. ^ Windholz, M., ed. 1983. The Merck Index. Tenth edition. Rahway, NJ: Merck and Company.
  46. ^ Guidance for reregistration of pesticide products containing copper sulfate. Fact sheet no. 100., Washington, DC: U.S. Environmental Protection Agency, Office of Pesticide Programs, 1986
  47. ^ Holtzmann, N. A.; Haslam, R. H. (July 1968). «Elevation of serum copper following copper sulfate as an emetic». Pediatrics. 42 (1): 189–93. doi:10.1542/peds.42.1.189. PMID 4385403. S2CID 32740524.
  48. ^ Olson, Kent C. (2004). Poisoning & drug overdose. New York: Lange Medical Mooks/McGraw-Hill. p. 175. ISBN 978-0-8385-8172-8.
  49. ^ V03AB20 (WHO)

Bibliography[edit]

  • Haynes, William M., ed. (2011). CRC Handbook of Chemistry and Physics (92nd ed.). Boca Raton, FL: CRC Press. ISBN 978-1439855119.

External links[edit]

  • Media related to Copper(II) sulfate at Wikimedia Commons
  • International Chemical Safety Card 0751
  • International Chemical Safety Card 1416
  • National Pollutant Inventory – Copper and compounds fact sheet

Понравилась статья? Поделить с друзьями:
  • Сукцессия тест егэ
  • Сукцессия егэ биология это
  • Сукцессии егэ биология теория
  • Суконный язык сочинение егэ
  • Суздальское художественно реставрационное училище вступительные экзамены