Биологическая система –
целостная система компонентов, выполняющих определенную функцию в живых системах. К биологическим системам относятся сложные системы разного уровня организации:
Признаки биологических систем –
критерии, отличающие биологические системы от объектов неживой природы:
1. Единство химического состава. В состав живых организмов входят те же химические элементы, что и в объекты неживой природы, но в виде сложных молекул.
2. Обмен веществ. Все живые организмы поглощают из среды элементы питания и выделяют продукты жизнедеятельности. В неживой природе также существует обмен веществами, однако при небиологическом круговороте они просто переносятся с одного места на другое или меняют свое агрегатное состояние: смывается почва, превращается вода в пар или лед. У живых организмов обмен веществ имеет качественно иной уровень. В круговороте органических веществ самыми существенными являются процессы синтеза и распада (ассимиляция и диссимиляция), в результате которых сложные вещества распадаются на более простые и выделяется энергия, необходимая для реакций синтеза новых сложных веществ. Обмен веществ обеспечивает относительное постоянство химического состава всех частей организма (гомеостаз) и как следствие – постоянство их функционирования в непрерывно меняющихся условиях окружающей среды.
3. Самовоспроизведение (репродукция, размножение) – свойство организмов воспроизводить себе подобных; осуществляется практически на всех уровнях жизни. Существование каждой отдельно взятой биологической системы ограничено во времени, поэтому поддержание жизни связано с самовоспроизведением. В основе самовоспроизведения лежит образование новых молекул и структур, обусловленное информацией, заложенной в нуклеиновой кислоте – ДНК, которая находится в родительских клетках.
4. Наследственность – способность организмов передавать свои признаки, свойства и особенности развития из поколения в поколение; обеспечивается стабильностью ДНК и точным воспроизведением ее химического строения. Материальными структурами наследственности, передаваемыми от родителей потомкам, являются гены, хромосомы, белки (прионы).
5. Изменчивость – способность организмов приобретать новые признаки и свойства; в ее основе лежат изменения материальных структур наследственности. Поставляет разнообразный материал для отбора особей, наиболее приспособленных к конкретным условиям существования, что, в свою очередь, приводит к появлению новых форм жизни, новых видов организмов.
6. Рост и развитие. Развитие есть необратимое направленное закономерное изменение объектов природы, приводящее к возникновению нового качественного состояния объекта. Рост – преобладают количественные изменения.
7. Раздражимость – это специфические избирательные ответные реакции организмов на изменения окружающей среды. Всякое изменение окружающих организм условий представляет собой по отношению к нему раздражение, а его ответная реакция является проявлением раздражимости. Отвечая на воздействия факторов среды, организмы взаимодействуют с ней и приспосабливаются к ней, что помогает им выжить. Реакции организмов, не имеющих нервной системы, выражаются в изменении характера движения (таксисы) или роста (тропизмы).
Реакции многоклеточных животных на раздражители, осуществляемые и контролируемые центральной нервной системой называются рефлексы.
8. Дискретность. Любая биологическая система состоит из отдельных изолированных (обособленных или отграниченных в пространстве), тесно связанных и взаимодействующих между собой частей, образующих структурно-функциональное единство. Так, любая особь состоит из отдельных клеток с их особыми свойствами, а в клетках также дискретно представлены органоиды и другие внутриклеточные образования.
Дискретность строения организма – основа его структурной упорядоченности. Она создает возможность постоянного самообновления системы путем замены износившихся структурных элементов без прекращения функционирования всей системы в целом.
9. Саморегуляция (авторегуляция) – способность живых организмов поддерживать постоянство своего химического состава и интенсивность физиологических процессов (гомеостаз).
10. Ритмичность – свойство, присущее как живой, так и неживой природе; проявляется в периодических изменениях интенсивности физиологических функций и формообразовательных процессов через определенные равные промежутки времени. Направлена на согласование функций организма с периодически меняющимися условиями жизни. Обусловлено различными космическими и планетарными причинами: вращением Земли вокруг Солнца и вокруг своей оси, фазами Луны и т.д.
11. Энергозависимость. Биологические системы динамичны, «открыты» для поступления энергии – не находятся в состоянии покоя, устойчивы лишь при условии периодического доступа к ним веществ и энергии извне. Живые организмы существуют до тех пор, пока в них поступают из окружающей среды энергия и вещества в виде пищи, и могут без энергии и пищи обходиться ограниченное время, то есть они энергонезависимы ограниченное время. В основном организмы используют энергию Солнца: одни непосредственно – это фотоавтотрофы (зеленые растения и цианобактерии), другие опосредованно, в виде органических веществ потребляемой пищи, – это гетеротрофы (животные, грибы и бактерии).
1. Основные признаки жизни
Реализация жизни происходит через конкретные физические и химические процессы, а сама жизнь может существовать только при определенных физических и химических условиях.
Приведем основные признаки жизни, синтез которых, их совокупность и взаимосвязь с той или иной степенью надежности позволяют отнести организмы к живым или неживым.
Специфические особенности живых систем, отличающие их от систем неживых, определяются следующими качествами:
1. Единство химического состава и высокий уровень организации веществ, образующих биологическую систему. Живые системы состоят из тех же химических элементов, что и объекты неживой природы. Но их соотношение неодинаково. В живых организмах всего 6 элементов составляют около 98% химического состава. Это кислород, углерод, водород, азот, фосфор и кальций. Живые организмы содержат такие сложные органические вещества, как белки, нуклеиновые кислоты (ДНК и РНК), ферменты, которых нет в неживой природе.
2. Живые системы – открытые системы, используют внешние источники энергии в виде пищи, света и т.п. Через них проходит поток веществ и энергии, благодаря чему в живых организмах осуществляется обмен веществ – метаболизм. Метаболизм состоит из двух противоположных процессов:
- анаболизм или ассимиляция – синтез веществ;
- катаболизм или диссимиляция – распад сложных веществ пищи на простые с выделением энергии, которая используется для биосинтеза веществ, специфичных для данного организма.
3. Живые системы – самоуправляющиеся, саморегулирующиеся, самоорганизующиеся системы.
- Саморегуляция – свойство живых систем устанавливать и поддерживать на определенном уровне физиологические или другие показатели. Такое состояние динамического равновесия системы называется гомеостаз.
- Самоорганизация – свойство живой системы приспосабливаться к изменяющимся условиям внешней среды за счет изменения внутренней структуры управления. Управляющие факторы возникают в самой системе в процессе переработки информации, которой живая система обменивается с внешней средой. Это означает, что живые организмы — самоуправляющиеся системы.
4. Живые системы – самовоспроизводящиеся системы. Это ихсвойство сохраняет жизнь вида на длительное время. В основе само воспроизводства лежит генетическая программа, которая задает алгоритм образования новых молекул и сложных структур. Благодаряэтому живое существо всегда воспроизводит себе подобное, передавая потомкам информацию о способе существования и приспособляемости к внешним условиям. Генетический материал определяет направление развития организма.
5. Изменчивость. Рождающиеся потомки не только похожи на родителей, но и отличаются от них. Изменения появляются уже на самых ранних стадиях эмбрионального развития, так как информация в процессе передачи несколько видоизменяется, искажается. Благодаря изменчивости организм приобретает новые признаки и свойства.
6. Живые организмы растут и развиваются. Рост — увеличение в размерах и массе с сохранением общих черт строения.Развитие сопровождается возникновением новых черт и качеств. Так, у растения или животного появляются новые ветки или новые органы.
7. Раздражимость — неотъемлемая черта всего живого. Раздражимость связана с передачей информации из внешней среды живой системе и проявляется в виде ответной реакции системы. Способность реагировать на внешние раздражения — это универсальное свойствовсех живых существ, как растений, так и животных.
8. Реакция на среду и приспособление к ней. Живые организмы хорошо приспособлены к среде обитания и соответствуют своему образу жизни. Строение птицы, рыбы, дождевого червя полностью соответствует условиям, в которых они живут.
9. Способность к образованию относительно самостоятельных надорганизменных образований (биогеоценозов и экосистем).
10. Реализация инстинктивных и приобретенных форм поведения.
11. Конечность существования (смертность).
12. Дискретность и целостность. Живые системы в природе относительно обособлены друг от друга (особи, популяции, виды). Любая особь многоклеточного животного состоит из клеток, а любая клетка и одноклеточные существа – из определенных органелл. Органеллы состоят из дискретных, обычно высокомолекулярных органических веществ, которые, в свою очередь, состоят из дискретных атомов и т.д.
В то же время сложная организация немыслима без взаимодействия ее частей и структур, т. е. без целостности. Целостность — это несводимость свойств системы к сумме свойств ее элементов. Целостность биологических систем качественно отличается от целостности неживого тем, что поддерживается в процессе развития. Живые системы — это открытые системы, обменивающиеся веществом, энергией и информацией со средой. Важная особенность живых систем заключается в том, что такой обмен осуществляется под контролем специальных механизмов реализации генетической информации и внутреннего управления, которые позволяют избежать «термодинамической» смерти путем использования энергии, извлекаемой из внешней среды.
13 (см. п. 4). Способность к конвариантной редупликации — к самовоспроизведению ДНК (основных управляющих систем) на основе матричного принципа синтеза макромолекул. Благодаря способности к самовоспроизведению молекулы ДНК исполняют роль носителя наследственной информации. Ошибка в репликации ДНК ведет к мутациям, т.е. к изменениям наследственной основы организма. Последние суть фундаментальное свойство жизни и исходная предпосылка эволюции. Мутации являются элементарным эволюционным материалом, на котором работает естественный отбор.
Ни один из перечисленных признаков (а их можно привести еще 10-20) не является самым главным, определяющим. Только все признаки вместе взятые позволяют провести границу между живым и неживым в природе.
Примечание. Для закрепления можно посмотреть запись открытого мероприятия, на котором мы с помощью мини-проекта доказывали свойства живого.
Тема 1. Биология как наука, ее
достижения, методы познания живой природы. Роль биологии в формировании
современной естественнонаучной картины мира. Уровневая организация и эволюция.
Основные уровни организации живой природы: клеточный, организменный,
популяционно-видовой, биогеоценотический, биосферный. Биологические системы.
Общие признаки биологических систем: клеточное строение, особенности
химического состава, обмен веществ и превращения энергии, гомеостаз,
раздражимость, движение, рост и развитие, воспроизведение, эволюция.
Биология (от греч. биос — жизнь, логос —
слово, наука) — это комплекс наук о живой природе.
Термин «биология» встречается в трудах немецких анатомов Т. Роозе (1779) и К.
Ф. Бурдаха (1800), однако только в 1802 году он был впервые употреблен
независимо друг от друга Ж. Б. Ламар ком и Г. Р. Тревиранусом для обозначения
науки, изучающей живые организмы.
Предмет —
строение и функции живых существ, их разнообразие, происхождение и развитие, а
также взаимодействие с окружающей средой.
Задача —
истолковании всех явлений живой природы на научной основе, учитывая при этом,
что целостному организму присущи свойства, в корне отличающиеся от его
составляющих.
Биологические науки |
|
1. Ботаника |
Биологическая наука, комплексно изучающая |
2. Зоология |
Раздел биологии, наука о многообразии, |
3. Бактериология |
Биологическая наука, изучающая строение и |
4. Вирусология |
Биологическая наука, изучающая вирусы. |
5. Микология |
Основным объектом микологии являются грибы, их |
6. Лихенология |
Биологическая наука, изучающая лишайники. |
7. Микробиология |
Раздела биологии, науке о микроорганизмах |
8. Систематика, или таксономия |
Биологическая наука, которая описывает и классифицирует |
9. Фенология |
Наука о развитии живой природы |
10. Медицина |
Область научной и практической деятельности по |
11. Биохимия |
Наука о химическом составе живой материи, |
12. Морфология |
Биологическая наука, изучающая форму и строение |
13. Анатомия |
Раздел биологии (точнее — морфологии), наука, |
14. Физиология |
Наука, изучающая процессы жизнедеятельности |
15. Эмбриология (биология развития) |
Раздел биологии, наука об индивидуальном |
16. Генетика |
Изучает закономерности наследственности и |
17. Молекулярная биология |
Наука, изучающая, в частности, организацию |
18. Цитология, или клеточная биология |
Наука, объектом изучения которой являются |
19. Гистология |
Наука, раздел морфологии, объектом которой |
20. Этология |
Наука о поведении организмов. |
21. Биогеография |
Изучает распространение живых организмов. |
22. Экология |
Изучает организацию и функционирование |
23. Синэкология |
раздел экологии, изучающий взаимоотношения |
24. Аутоэкология |
раздел экологии, изучающий взаимоотношения |
25. Общая биология |
Выявление и объяснение закономерностей |
26. Эволюционное учение |
Изучает причины, движущие силы, механизмы и |
27. Палеонтология |
Наука, предметом которой являются ископаемые |
28. Антропология |
Наука о происхождении и развитии человека как |
29. Биотехнология |
Наука, изучающую использование живых организмов |
30. Селекция |
Наука о методах создания пород домашних |
31. Бионика |
Наука о применении в технических |
32. Бриология |
Наука о мхах |
Достижения
биологии.
·
Установление молекулярной структуры ДНК и ее роли
в передаче информации в живой материи (Ф. Крик, Дж. Уотсон, М. Уилкинс);
·
Расшифровка генетического кода (Р. Холли, Х. Г.
Корана, М. Ниренберг);
·
Открытие структуры гена и генетической регуляции
синтеза белков (А. М. Львов, Ф. Жакоб, Ж. Л. Моно и др.);
·
Формулировка клеточной теории (М. Шлейден, Т.
Шванн, Р. Вирхов, К. Бэр);
·
Исследование закономерностей наследственности и
изменчивости (Г. Мендель, Х. де Фриз, Т. Морган и др.);
·
Формулировка принципов современной систематики
(К. Линней);
·
Эволюционная теория (Ч. Дарвин);
·
Учение о биосфере (В.И. Вернадский);
·
Клонирование млекопитающих;
·
Расшифрован ряд генов, отвечающих за развитие
наследственных заболеваний, а также генов-мишеней лекарственных препаратов;
·
Биологические исследования являются фундаментом
медицины, фармации, широко используются в сельском и лесном хозяйстве, пищевой
промышленности и других отраслях человеческой деятельности. Значительная часть
современных лекарственных препаратов производится на основе природного сырья, а
также благодаря успехам генной инженерии, как, например, инсулин, столь
необходимый больным сахарным диабетом, в основном синтезируется бактериями,
которым перенесен соответствующий ген;
·
Наибольшее значение среди достижений биологии имеет
тот факт, что они лежат даже в основе построения нейронных сетей и
генетического кода в компьютерных технологиях, а также широко используются в
архитектуре и других отраслях.
Методы науки. |
|
Моделирование |
метод, при котором создается некий образ |
Наблюдение |
метод, с помощью которого исследователь |
Эксперимент (опыт) |
метод, с помощью которого проверяют результаты наблюдений, |
Проблема |
вопрос, задача, требующие решения. Решение |
Гипотеза |
предположение, предварительное решение |
Теория |
это обобщение основных идей в какой – |
Частные |
|
Генеалогический метод |
Применяется при составлении родословных людей, |
Исторический метод |
Установление взаимосвязей между фактами, |
Палеонтологический метод |
Позволяет выяснить родство между древними |
Центрифугирование |
Разделение смесей на составные части под |
Цитологический или цитогенетический метод |
Исследование клеточных структур с помощью |
Микроскопия или микроскопирование |
Изучать строение клетки можно с помощью |
Биохимический метод |
Исследование химических процессов, происходящих |
Близнецовый метод |
Используется для выяснения степени |
Гибридологический метод |
Скрещивание организмов и анализ потомства |
Статистический метод |
Измерение, мониторинг, анализ массовых |
Популяционно-статистический метод |
Дает возможность рассчитать в популяции частоту |
Хроматография |
Метод основан на разной скорости движения |
Ученые – биологи (Роль
биологии в формировании современной естественнонаучной картины мира)
Гиппократ |
Создал научную медицинскую школу. Считал, что у каждой болезни |
Аристотель |
Один из основателей биологии как науки, впервые обобщил |
Теофраст |
Основоположник ботаники. |
Клавдий Гален |
Заложил основы анатомии человека. |
Авиценна |
В современной анатомической номенклатуре сохранил арабские |
Леонардо да Винчи |
Описал многие растения, изучал строение человеческого тела, |
Андреас Визалия |
Работа «О строении человеческого тела» |
Уильям Гарвей |
Открыл кровообращение |
Карл Линней |
Предложил систему классификации живой природы, ввел бинарную |
Карл Бэр |
Изучал внутриутробное развитие, установил, что зародыши всех |
Жан Батист Ламарк |
Первым попытался создать стройную и целостную теорию эволюции |
Жорж Кювье |
Создал науку палеонтологию. |
Теодор Шванн и Шлейден |
Создали клеточную теорию |
Ч Дарвин |
Эволюционное учение. |
Грегор Мендель |
Основоположник генетики |
Роберт Кох |
Основатель микробиологии |
Луи Пастер и Мечников |
Основатели иммунологии. |
И.М. Сеченов |
Заложил основы изучения высшей нервной деятельности |
И.П. Павлов |
Создал учение об условных рефлексах |
Гуго де Фриза |
Мутационная теория |
Томас Морган |
Хромосомная теория наследственности |
И.И. Шмальгаузен |
Учение о факторах эволюции |
В.И. Вернадский |
Учение о биосфере |
А. Флеминг |
Открыл антибиотики |
Д. Уотсон |
Установил структуру ДНК |
Д.И. Ивановский |
Открыл вирусы |
Н.И. Вавилов |
Учение о многообразии и происхождении культурных растений |
И.В. Мичурин |
Селекционер |
А.А. Ухтомский |
Учение о доминанте |
Э.Геккель и И.Мюллер |
Создали биогенетический закон |
С.С. Четвериков |
Исследовал мутационные процессы |
И.Янсен |
Создал первый микроскоп |
Роберт Гук |
Первым обнаружил клетку |
Антониа Левенгук |
Увидел в микроскоп микроскопических организмов |
Р.Броун |
Описал ядро растительной клетки |
Р.Вирхов |
Теория целлюлярной патологии. |
Д.И.Ивановский |
Открыл возбудителя табачной мозаики (вирус) |
М.Кальвин |
Химическая эволюция |
Г.Д.Карпеченко |
Селекционер |
А.О.Ковалевский |
Основоположник сравнительной эмбриологии и физиологии |
В.О.Ковалевский |
Основоположник эволюционной палеонтологии |
Н.И.Вавилов |
Учение о биологических основах селекции и учение о центрах |
Х.Кребс |
Изучал метаболизм |
С.Г.Навашин |
Открыл двойное оплодотворение у покрытосеменных |
А.И.Опарин |
Теория самозарождения жизни |
Д.Холдейн |
Создал учение о дыхании человека |
Ф.Реди |
Изучал паразитов человека и животных |
А.С.Северцов |
Основатель эволюционной морфологии животных |
В.Н.Сукачев |
Основоположник биогеоценологии |
А.Уоллес |
Сформулировал теорию естественного отбора, которая совпала с |
Ф.Крик |
Изучал животные организмы на молекулярном уровне |
К.А.Темирязев |
Раскрыл закономерности фотосинтеза |
Уровни организации живого.
Живая природа является системой, компоненты которой можно
расположить в строгом порядке: от низших к высшим. Данный принцип организации
позволяет выделить в живой природе отдельные уровни и дает
комплексное представление о жизни как о природном явлении. На каждом из уровней
организации определяют элементарную единицу и элементарное явление. В
качестве элементарной единицы рассматривают структуру или
объект, изменения которых составляют специфический для соответствующего уровня
вклад в процесс сохранения и развития жизни, тогда как само это изменение
является элементарным явлением.
В настоящее время выделяют несколько основных уровней
организации живой материи: молекулярный, клеточный, тканевый, организменный,
популяционно-видовой, биогеоценотический и биосферный.
Уровни организации |
Биологическая система |
Компоненты, образующие |
Основные процессы |
Молекулярный |
Молекула |
Отдельные биополимеры (ДНК, РНК, белки, липиды, |
На этом уровне жизни изучаются явления, |
Клеточный |
Клетка |
Комплексы молекул химических соединений и |
Синтез специфических органических веществ; |
Тканевый |
Ткань |
Клетки и межклеточное вещество |
Обмен веществ; раздражимость |
Органный |
Орган |
Ткани разных типов |
Пищеварение; газообмен; транспорт веществ; |
Организменный |
Организм |
Системы органов |
Обмен веществ; раздражимость; размножение; онтогенез. |
Популяционно-видовой |
Популяция |
Группы родственных особей, объединенных |
Генетическое своеобразие; взаимодействие между |
Биогеоценотический |
Биогеоценоз (экосистема) |
Популяции разных видов; факторы среды; |
Биологический круговорот веществ и поток |
Биосферный |
Биосфера |
Биогеоценозы и антропогенное воздействие |
Активное взаимодействие живого и неживого |
Биологические системы
Биологические системы – это объекты различной сложности, имеющие несколько
уровней структурно-функциональной организации и представляющие собой
совокупность взаимосвязанных и взаимодействующих элементов. Примеры
биологических систем: клетка, ткани, органы, организмы, популяции, виды,
биоценозы, экосистемы разных рангов и биосфера.
Клеточное строение |
Все существующие на Земле организмы состоят |
Особенности химического |
Главными особенностями химического состава |
Обмен веществ и |
Обмен веществ — совокупность биохимических |
Гомеостаз |
Это способность биологических систем |
Раздражимость |
Способность организма реагировать на внешние |
Движение |
Возможность активного взаимодействия со |
Рост и развитие |
Все организмы растут в течение своей жизни. |
Воспроизведение |
Способность живых систем воспроизводить себе подобных. |
Эволюция |
естественный процесс развития живой природы, |
Целостность (непрерывность) и дискретность |
Любой организм представляет собой целостную |
Уровневая организация |
Живые системы Земли, характеризующиеся |
Признаки живых организмов
Основные термины и понятия, проверяемые в экзаменационной работе: гомеостаз, единство живой и неживой природы, изменчивость, наследственность, обмен веществ.
Признаки и свойства живого. Живые системы имеют общие признаки:
– клеточное строение. Все существующие на Земле организмы состоят из клеток. Исключением являются вирусы, проявляющие свойства живого только в других организмах.
Обмен веществ – совокупность биохимических превращений, происходящих в организме и других биосистемах.
Саморегуляция – поддержание постоянства внутренней среды организма (гомеостаза). Стойкое нарушение гомеостаза ведет к гибели организма.
Раздражимость – способность организма реагировать на внешние и внутренние раздражители (рефлексы у животных и тропизмы, таксисы и настии у растений).
Изменчивость – способность организмов приобретать новые признаки и свойства в результате влияния внешней среды и изменений наследственного аппарата – молекул ДНК.
Наследственность – способность организма передавать свои признаки из поколения в поколение.
Репродукция или самовоспроизведение – способность живых систем воспроизводить себе подобных. В основе размножения лежит процесс удвоения молекул ДНК с последующим делением клеток.
Рост и развитие – все организмы растут в течение своей жизни; под развитием понимают как индивидуальное развитие организма, так и историческое развитие живой природы.
Открытость системы – свойство всех живых систем связанное с постоянным поступлением энергии извне и удалении продуктов жизнедеятельности. Иными словами организм жив, пока в нем происходит обмен веществами и энергией с окружающей средой.
Способность к адаптациям – в процессе исторического развития и под действием естественного отбора организмы приобретают приспособления к условиям окружающей среды (адаптации). Организмы, не обладающие необходимыми приспособлениями, вымирают.
Общность химического состава. Главными особенностями химического состава клетки и многоклеточного организма являются соединения углерода – белки, жиры, углеводы, нуклеиновые кислоты. В неживой природе эти соединения не образуются.
Общность химического состава живых систем и неживой природы говорит о единстве и связи живой и неживой материи. Весь мир представляет собой систему, в основании которой лежат отдельные атомы. Атомы, взаимодействуя друг с другом, образуют молекулы. Из молекул в неживых системах формируются кристаллы горных пород, звезды, планеты, вселенная. Из молекул, входящих в состав организмов формируются живые системы – клетки, ткани, организмы. Взаимосвязь живых и неживых систем отчетливо проявляется на уровне биогеоценозов и биосферы.
Основные уровни организации живой природы: клеточный, организменный, популяционно-видовой, биогеоценотический
Основные термины и понятия, проверяемые в экзаменационных работах: уровень жизни, биологические системы, изучаемые на данном уровне, молекулярно-генетический, клеточный, организменный, популяционно–видовой, биогеоценотический, биосферный.
Уровни организации живых систем отражают сопод– чиненность, иерархичность структурной организации жизни. Уровни жизни отличаются друг от друга сложностью организации системы. Клетка устроена проще по сравнению с многоклеточным организмом или популяцией.
Уровень жизни – это форма и способ ее существования. Например, вирус существует в виде молекулы ДНК или РНК, заключенной в белковую оболочку. Это форма существования вируса. Однако свойства живой системы вирус проявляет, только попав в клетку другого организма. Там он размножается. Это способ его существования.
Молекулярно-генетический уровень представлен отдельными биополимерами (ДНК, РНК, белками, липидами, углеводами и другими соединениями); на этом уровне жизни изучаются явления, связанные с изменениями (мутациями) и воспроизведением генетического материала, обменом веществ.
Клеточный – уровень, на котором жизнь существует в форме клетки – структурной и функциональной единицы жизни. На этом уровне изучаются такие процессы, как обмен веществ и энергии, обмен информацией, размножение, фотосинтез, передача нервного импульса и многие другие.
Организменный – это самостоятельное существование отдельной особи – одноклеточного или многоклеточного организма.
Популяционно-видовой – уровень, который представлен группой особей одного вида – популяцией; именно в популяции происходят элементарные эволюционные процессы – накопление, проявление и отбор мутаций.
Биогеоценотический – представлен экосистемами, состоящими из разных популяций и среды их обитания.
Биосферный – уровень, представляющий совокупность всех биогеоценозов. В биосфере происходит круговорот веществ и превращение энергии с участием организмов. Продукты жизнедеятельности организмов участвуют в процессе эволюции Земли.
Общие свойства живых организмов (Таблица)
Справочная таблица содержит основные общие свойства живых организмов, такие как движение, рост, наследственность, изменчивость, развитие, размножение, обмен веществ и другие, их описание и характеристика.
Живое тело — открытая саморегулирующаяся и самовоспроизводящаяся система, построенная из биополимеров — белков и нуклеиновых кислот (М. В. Волькенштейн, 1965). Первые живые тела возникли при взаимодействии коацерватов и нуклеиновых кислот; их называют пробионтами.
Таблица общих свойств живых организмов
Свойства живых организмов |
Характеристика |
Единство химического элементарного состава |
В состав живого входят те же элементы, что и в состав неживой природы, но в других количественных соотношениях. В живых организмах 98% химического состава приходится на четыре элемента: углерод, кислород, азот и водород, которые образуют крупные органические молекулы — белки, жиры, углеводы, нуклеиновые кислоты. |
Единство биохимического состава |
Все живые организмы состоят в основном из белков, липидов, углеводов и нуклеиновых кислот. |
Единый принцип структурной организации |
Клеточное строение всех живых организмов. Единицей строения, жизнедеятельности, размножения, индивидуального развития является клетка; вне клетки жизни нет. |
Движение |
Перемещение организма или частей организма в пространстве (у растений движение к свету — фототропизм) |
Обмен веществ и энергии |
Процесс который состоит из двух взаимосвязанных процессов: ассимиляции — синтеза органических веществ в организме (за счет внешних источников энергии — света, цищи) и диссимиляции — процесса распада сложных органических веществ с выделением энергии, которая затем расходуется организмом. Все живые организмы способны к обмену веществ с окружающей средой, поглощая из нее вещества, необходимые организму и выделяя продукты жизнедеятельности. Питание — поглощение и усвоение питательных веществ. Дыхание — поглощение кислорода и выделение углекислого газа. Выделение — удаление из организма побочных продуктов обмена веществ. Именно обмен веществ и обеспечивает относительное постоянство химического состава организмов. |
Открытость |
Живые системы являются открытыми, поскольку в ходе метаболиза через них проходят потоки веществ и энергии. |
Рост |
Увеличение размеров и массы тела, сопровождающееся развитием |
Развитие |
Необратимое направленное изменение объектов живой природы, сопровождается количественным и качественным изменением объекта (особи). Индивидуальное развитие — онтогенез, историческое развитие — филогенез |
Размножение (самовоспроизведение) |
Воспроизведение себе подобных. Половое и бесполое размножение. В основе лежит информация, заложенная в ДНК. |
Наследственность |
Способность организмов передавать свои признаки, свойства и функции следующим поколениям. Обусловлена наличием единого генетического кода. |
Изменчивость |
Способность организмов приобретать новые признаки и свойства, основой которой являются изменения строения молекул ДНК. |
Раздражимость |
Способность отдельных клеток, тканей и организмов изменять свое состояние, реагируя на воздействие внешних и внутренних раздражителей, условия внешней среды. |
Саморегуляция |
Способность организмов поддерживать постоянство своего химического состава и функций (например: постоянство температуры тела), в непрерывно меняющихся условиях окружающей среды — гомеостаз |
Дискретность |
Любая биологическая система состоит из отдельных взаимодействующих частей, которые вместе образуют структурно-функциональное единство. |
_______________
Источник информации: Биология: Справочник для старшеклассников и поступающих в вузы/ Т.Л.Богданова —М.: 2012.
Поделитесь ссылкой с друзьями:
Похожие таблицы
Комментарии:
«Биологические системы»
Код раздела ЕГЭ: 1.2. Биологические системы. Общие признаки биологических систем: клеточное строение, особенности химического состава, обмен веществ и превращение энергии, гомеостаз, раздражимость, движение, рост и развитие, воспроизведение, эволюция.
Биологические системы – это объекты различной сложности, имеющие несколько уровней структурно-функциональной организации и представляющие собой совокупность взаимосвязанных и взаимодействующих элементов. Примеры биологических систем: клетка, ткани, органы, организмы, популяции, виды, биоценозы, экосистемы разных рангов и биосфера.
Биологические системы (или живые системы) отличаются от тел неживой природы совокупностью признаков и свойств, среди которых основными являются:
- клеточное строение (Все существующие на Земле организмы состоят из клеток. Исключением являются вирусы, проявляющие свойства живого только в других организмах.);
- особенности химического состава (Главными особенностями химического состава клетки и многоклеточного организма являются соединения углерода — белки, жиры, углеводы, нуклеиновые кислоты. В неживой природе эти соединения не образуются);
- обмен веществ и превращения энергии (Обмен веществ — совокупность биохимических превращений, происходящих в организме и других биосистемах. Все живые системы являются открытыми системами, через которые непрерывно идут потоки веществ, энергии и информации. К открытым системам относят системы, между которыми и окружающей средой происходит обмен веществ и энергии, например, растения в процессе фотосинтеза улавливают солнечный свет и поглощают воду и углекислый газ, выделяя кислород);
- гомеостаз — это способность биологических систем противостоять изменениям и поддерживать относительное постоянство химического состава, строения и свойств, а также обеспечивать постоянство функционирования в изменяющихся условиях окружающей среды;
- раздражимость — способность организма реагировать на внешние и внутренние раздражители (рефлексы у животных и тропизмы, таксисы и настии у растений);
- движение — возможность активного взаимодействия со средой, в частности, перемещение с места на место, захват пищи и т. п.;
- рост и развитие (Все организмы растут в течение своей жизни. Под развитием понимают как индивидуальное развитие организма, так и историческое развитие живой природы);
- воспроизведение (Способность живых систем воспроизводить себе подобных. В основе размножения лежит процесс удвоения молекул ДНК с последующим делением клеток);
- эволюция — естественный процесс развития живой природы, сопровождающийся изменением генетического состава популяций, формированием адаптаций, видообразованием и вымиранием видов, преобразованием экосистем и биосферы в целом.
Общность химического состава живых систем и неживой природы говорит о единстве и связи живой и неживой материи. Весь мир представляет собой систему, в основании которой лежат отдельные атомы. Атомы, взаимодействуя друг с другом, образуют молекулы. Из молекул в неживых системах формируются кристаллы горных пород, звезды, планеты, вселенная. Из молекул, входящих в состав организмов, формируются живые системы — клетки, ткани, организмы. Взаимосвязь живых и неживых систем отчетливо проявляется на уровне биогеоценозов и биосферы.
Уровни организации живых систем отражают соподчиненность, иерархичность структурной организации жизни. Уровни жизни отличаются друг от друга сложностью организации системы. Клетка устроена проще по сравнению с многоклеточным организмом или популяцией.
Структурная организация — живые системы Земли, характеризующиеся упорядоченностью и сложностью структур на всех уровнях организации, несмотря на то, что построены из тех же химических элементов, что и неживые.
Вы смотрели конспект по биологии «Биологические системы».
Читайте также другие конспекты, относящиеся к разделу ЕГЭ 1.2:
- Уровневая организация и эволюция. Основные уровни организации живой природы: клеточный организменный, популяционно-видовой, биогеоценотический, биосферный.
Рассмотрите таблицу «Общие признаки биологических систем». Запишите в ответе пропущенный термин, обозначенный в таблице вопросительным знаком.
ПРИЗНАКИ ЖИВОГО | ПРИМЕРЫ |
Обмен веществ ?…. |
Фотосинтез в листе растения Деление клетки бактерии |
1
Решение
Варианты ответа: Воспроизведение, размножение.
Авторизуйтесь на сайте, чтобы пройти тест.
Следующий вопрос →
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
Видео с разбором теста
Решаемость этого задания 97%