Таблица производных и правила дифференцирования
О том, что такое производная, мы рассказали в статье «Геометрический смысл производной». Если функция задана графиком, её производная в каждой точке равна тангенсу угла наклона касательной к графику функции. А если функция задана формулой — вам помогут таблица производных и правила дифференцирования, то есть правила нахождения производной.
Для решения задач на исследование функции в вариантах ЕГЭ необходима таблица производных и правила дифференцирования, а также знания о том, как связана производная с поведением функции.
Смотри также, как решаются задачи ЕГЭ на применение производной: задача 7 и задача 11.
Прокомментируем несколько строк из таблицы производных.
1. Производная постоянной величины, то есть константы, равна ей самой. Так и должно быть. Ведь константа не меняется. Это постоянная величина, она всегда принимает одинаковые значения.
А производная функции, как мы знаем, – это скорость изменения функции. Подробнее об этом здесь:
Производная функции.
И поэтому производная константы равна нулю.
2. Производная функции у=х равна 1. Вспомним, что производная функции в точке – это тангенс угла наклона касательной, проведенной к графику функции в этой точке. График функции у=х образует угол 45 градусов с положительным направлением оси Х. А тангенс 45 градусов равен 1.
3. Производная функции равна самой этой функции. И действительно, чем больше значение х, тем больше значение функции … и тем круче вверх идет график по отношению к оси Х. Вот такая это функция, экспонента. Чем дальше, тем быстрее она растет.
4. Производная синуса и косинуса – тоже тригонометрические функции. Например, производная синуса – это косинус. Как это отражается в физике? Если координата тела меняется по закону синуса, то производная координаты, скорость, будет меняться по закону косинуса. Это описание гармонических колебаний: и координата, и скорость, и ускорение тела меняются по законам синуса и косинуса.
5. Производная логарифма в точке обратно пропорциональна . Чем дальше, тем медленнее растет логарифмическая функция.
Вспомним, как связаны производная и поведение функции.
Если производная положительна, то функция возрастает.
Если производная отрицательная, то функция убывает.
В точке максимума производная равна нулю и меняет знак с «плюса» на «минус».
В точке минимума производная тоже равна нулю и меняет знак с «минуса» на «плюс».
Запишем эти выводы в виде таблицы:
возрастает | точка максимума | убывает | точка минимума | возрастает | |
+ | 0 | — | 0 | + |
Разберем задачи ЕГЭ по теме «Таблица производных, нахождение наибольших и наименьших значений функции, нахождение точек максимума и минимума». Во всех этих примерах мы пользуемся формулами из таблицы производных.
Задача 1. Найдите точки максимумам функции
Решение:
Область определения функции:
Найдем производную функции, пользуясь формулой производной частного из таблицы.
если
Точки х = 5 и х = -5, а также точка ноль, разбивают числовую прямую на интервалы, на каждом из которых производная сохраняет свой знак. Это метод интервалов.
Найдем знаки производной на каждом интервале.
В точке максимума производная равна нулю и меняет знак с «плюса» на «минус». Это точка 5 на рисунке.
Ответ: 5.
Задача 2. Найдите точки минимума функции
Решение:
Применим формулу производной произведения.
Приравняем производную к нулю:
, если
Если то функция убывает.
Если то функция возрастает, значит, – точка минимума функции
В этой точке производная равна нулю и меняет знак с «минуса» на «плюс».
Ответ: 0,625.
Задача 3. Найдите значение функции в точке максимума.
Решение:
Найдем производную функции:
Мы применили формулы производной степени.
Решим уравнение:
Получили критические точки, в которых производная равна нулю. Отметим их на оси Х и найдём знаки производной.
– точка максимума.
Найдём значение функции в этой точке:
Ответ: 16.
Рассмотрим задачи ЕГЭ на нахождение наибольших и наименьших значений функций.
Мы помним, что наибольшее значение функции на отрезке может достигаться либо в точке максимума, либо на конце отрезка. Эти случаи показаны на рисунке:
Это значит, что у нас есть алгоритм для нахождения наибольших и наименьших значений функции на интервале.
Пусть функция f(x) определена на некотором интервале. Чтобы найти ее наибольшее или наименьшее значение, действуем следующим образом:
- Находим производную функции.
- Приравниваем производную к нулю, находим точки, в которых она равна нулю.
- Если производная меняет знак с «плюса» на «минус» в точке , то – точка максимума функции.
- Если производная меняет знак с «минуса» на «плюс» в точке , то – точка минимума функции.
- Чтобы найти наибольшее значение функции на отрезке, сравниваем значения в точке максимума и концах отрезка.
Чтобы найти наименьшее значение функции на отрезке, сравниваем значения в точке минимума и концах отрезка.
Задача 4. Найдите наибольшее значение функции на отрезке
Решение:
Найдем производную:
Приравняем производную к нулю:
Если то
Так как
Точка – точка максимума функции
В этой точке функция принимает наибольшее значение на указанном отрезке.
Ответ: 4.
Задача 5. Найдите наименьшее значение функции на отрезке
Решение:
Найдем производную функции:
при
Найдем знаки производной слева и справа от точки
Если то
Если то
Значит, – точка минимума. Наименьшее значение функции на отрезке достигается при
Это значение равно
Ответ: -1.
Задача 6. Найдите наибольшее значение функции на отрезке
Решение:
Область определения функции:
Найдем производную функции и приравняем ее к нулю:
если
или Второй корень не принадлежит отрезку
Найдем знаки производной на отрезке:
В точке производная равна нулю и меняет знак с «плюса» на «минус». Значит, это точка максимума, и наибольшее значение функции на отрезке достигается при
Найдем значение функции при
Ответ: -5.
В следующих задачах наименьшее значение функции достигается на конце отрезка.
Задача 7. Найдите наименьшее значение функции на отрезке
Решение:
Найдем производную функции и приравняем ее к нулю.
У этого уравнения нет решений, так как
Это значит, что при любых то есть а это означает, что – убывает, наименьшее значение функции достигается в правом конце отрезка
Ответ: -3.
Задача 8. Найдите наибольшее значение функции на отрезке
Решение:
Найдем производную функции:
Производная функции не равна нулю ни при каком .
Мы знаем, что Тогда
Прибавим 7 ко всем частям неравенства:
для всех
Значит, производная положительна при любом значении переменной, функция монотонно возрастает. Наибольшее значение функции будет достигаться в правом конце отрезка, то есть при
Ответ: 8.
Задача 9. Найдите наименьшее значение функции на отрезке
Решение:
Найдем производную функции и приравняем ее к нулю:
тогда
На указанном отрезке это уравнение имеет единственное решение
Слева от этой точки Если производная отрицательна.
Справа от этой точки производная положительна.
Значит, – точка минимума функции, и наименьшее значение функции на отрезке достигается в этой точке.
Найдем значения функции в этой точке:
Ответ: 7.
В задачах ЕГЭ встречаются сложные функции. И найти нужно их точки максимума или минимума, наибольшие или наименьшие значения. Но производную сложной функции в школьной программе по-настоящему не проходят. Как же быть? Покажем полезные приемы, помогающие решить такие задания ЕГЭ.
Задача 10. Найдите наименьшее значение функции
Решение:
Рассмотрим функцию
Так как функция монотонно возрастает, точка минимума функции будет при том же значении , что и точка минимума функции А ее найти легко:
при
В точке производная меняет знак с «минуса» на «плюс». Значит, – единственная точка минимума функции и функции
Ответ: -2.
Задача 11. Найдите наибольшее значение функции на отрезке
Решение:
Так как функция монотонно возрастает при точка минимума функции соответствует точке минимума подкоренного выражения
Заметим, что подкоренное выражение всегда положительно.
Функция задает квадратичную параболу с ветвями вверх и точкой минимума в вершине параболы, то есть при
Если – монотонно убывает.
Если – монотонно возрастает.
Значит, наибольшее значение функции на отрезке достигается в одном из концов этого отрезка.
Сравним и
Ответ: 6.
Задача 12. Найдите точку максимума функции
Решение:
Рассмотрим функцию
Ее график – парабола с ветвями вниз, и точка максимума будет в вершине параболы, при Функция монотонно возрастает, и значит, большему значению будет соответствовать большее значение
Точка максимума функции будет такой же, как у функции то есть
Ответ: 1.
Читайте также: Задание 11 на ЕГЭ по математике.
Благодарим за то, что пользуйтесь нашими публикациями.
Информация на странице «Таблица производных и правила дифференцирования» подготовлена нашими редакторами специально, чтобы помочь вам в освоении предмета и подготовке к экзаменам.
Чтобы успешно сдать необходимые и поступить в ВУЗ или колледж нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими статьями из данного раздела.
Публикация обновлена:
09.03.2023
Наверх
Шпаргалка по математике для 11 класса таблица производных, формулы и теория по производным может пригодиться при решении задания №7 ЕГЭ по математике.
Ссылка для скачивания шпаргалки №1 по производным: скачать в PDF
Ссылка для скачивания шпаргалки №2 по производным: скачать в PDF
В данной шпаргалке вы найдёте: формулы и правила дифференцирования, применение производной к исследованию функции, анализ графиков, геометрический и физический смысл производной, задачи на нахождения тангенса, задачи на нахождение коэффициента К, задачи на нахождение значения производной, условие касания функции и прямой.
Смотреть онлайн:
Кому нужно углубиться в данную тему, смотрите бесплатный видеоурок:
Смотреть видеоурок 2019-2020 производная, таблица производных
ПОДЕЛИТЬСЯ МАТЕРИАЛОМ
Что такое производная и зачем она нужна
Прежде чем переходить к таблице для вычисления производных, дадим определение производной. В учебнике оно звучит так:
Производная функции — это предел отношения приращения функции к приращению ее аргумента, при условии, что приращение аргумента стремится к нулю.
Если же говорить простыми словами, то производная функции описывает, как и с какой скоростью эта функция меняется в данной конкретной точке. Процесс нахождения производной называется дифференцированием.
Объясним на примере: допустим, Маша решила по утрам делать зарядку и стоять в планке. В первую неделю она держалась каждый день по 10 секунд, но начиная со второй недели смогла стоять в планке с каждым днем на 3 секунды дольше. Успехи Маши можно описать следующими графиками:
Очевидно, что в первую неделю результаты Маши не менялись (т. е. были константой), скорость прироста оставалась нулевой. Если мы заглянем в таблицу производных простых функций, то увидим, что производная константы равна нулю.
у = 10
у′ = 0
Во вторую неделю время выполнения планки с 10 сек начало увеличиваться на 3 сек ежедневно.
у = 10 + 3х
Снова смотрим в таблицу дифференцирования производных, где указано, что производная от х равна 1, а также по правилам вычисления производных (c*f(x))’=cf'(x) и (f(x)+g(x))’=f'(x)+g'(x).
у = 10 + 3х
у′ = 0 + 3
у′ = 3
Вот так с помощью таблицы производных и элементарной математики мы докажем, что успехи Маши росли со скоростью 3 сек в день.
Это был очень простой пример, который в общих чертах объясняет азы дифференциального исчисления и помогает понять, для чего нужны формулы из таблицы производных функций. Но разобраться в решении задач, где скорость меняется нелинейно, конечно, не так просто.
Быстрее освоить производные поможет
обучение на курсах по математике в онлайн-школе Skysmart.
Получай лайфхаки, статьи, видео и чек-листы по обучению на почту
Реши домашку по математике на 5.
Подробные решения помогут разобраться в самой сложной теме.
Производные основных элементарных функций
Таблица производных для 10 и 11 класса может включать только элементарные часто встречающиеся функции. Поэтому приведем стандартную таблицу производных.
Функция f (x) |
Производная f’ (х) |
---|---|
С (т. е. константа, любое число) |
0 |
х |
1 |
xn |
nxn-1 |
√x |
1/(2√x) |
sin x |
cos x |
cos x |
-sin x |
tg x |
1/cos2(х) |
ctg x |
-1/sin2x |
ex |
ex |
ax |
ax * ln a |
ln x |
1/x |
logax |
1/(x * ln a) |
Элементарные функции можно складывать, умножать друг на друга, находить их разность или частное — словом, выполнять любые математические операции. Но для этого существуют определенные правила.
Общие правила дифференцирования
Для решения задач на дифференцирование нужно запомнить (или записать в шпаргалку) пять несложных формул:
(c ⋅ f)′ = c ⋅ f′
(u + v)′ = u′ + v′
(u — v)′ = u′ — v′
(u ⋅ v)′ = u′v + v′u
(u/v)’ = (u’v — v’u)/v2
В данном случае u, v, f — это функции, а c — константа (любое число).
С константой все просто — ее можно смело выносить за знак производной. Специально запоминать придется лишь формулы, где требуется разделить одну функцию на другую или перемножить их и найти производную от результата.
Например: требуется найти производную функции y = (5 ⋅ x3).
y′ = (5 ⋅ x3)′
Вспомним, что константу, а в данном случае это 5, можно вынести за знак производной:
y′ = (5 ⋅ x3)’ = 5 ⋅ (x3)′ = 5 ⋅ 3 ⋅ х3-1 = 15х2
Попробуйте самостоятельно решить эти примеры. Правильные ответы найдете в конце статьи:
Правила дифференцирования сложных функций
Конечно, далеко не все функции выглядят так, как в вышеуказанной таблице. Как быть с дифференцированием, например, вот таких функций: y = (3 + 2x2)4?
Сложной функцией называют такое выражение, в котором одна функция словно вложена в другую. Производную сложной функции f(y) можно найти по следующей формуле: (f(y))′ = f′(y) ⋅ y′. Другими словами, нужно умножить производную, условно говоря, внешней функции на производную внутренней.
Пример 1
Найдем производную функции y(x) = (3 + 2x2)4.
Заменим 3 + 2x2 на u и тогда получим y = u4.
Согласно приведенному выше правилу дифференцирования сложных функций у нас получится:
y = y′u ⋅ u′x = 4u3 ⋅ u’x
А теперь выполним обратную замену и подставим исходное выражение:
4u3 ⋅ u′x = 4 (3 + 2x2)3 ⋅ (3 + 2x2)′ = 16 (3 + 2x2)3 ⋅ х
Пример 2
Найдем производную для функции y = (x3 + 4) cos x.
Для дифференцирования этой функции воспользуемся формулой (UV)′ = U′V + V′U.
y′ = (x3 + 4)′ ⋅ cos x + (x3 + 4) ⋅ cos x′ = 3x2 ⋅ cos x + (x3 + 4) ⋅ (-sin x) = 3x2 ⋅ cos x – (x3 + 4) ⋅ sin x
Ответы на задания
16
Апр 2013
Категория: Справочные материалы
Таблица производных. Правила дифференцирования
Елена Репина
2013-04-16
2016-08-25
Чтобы не потерять страничку, вы можете сохранить ее у себя:
Печать страницы
комментариев 7
-
Анатолий Шевелев
2014-06-03 в 09:28
Извините, не совсем понятен 5-й пункт правил дифференцирования, думаю не только мне…
[ Ответить ]
-
Анатолий Шевелев
2014-06-03 в 09:32
сначала вычисляем производную внешней функции, затем производную внутренней?
[ Ответить ]
-
egeMax
2014-06-03 в 22:53
ДА
[ Ответить ]
-
-
-
Анатолий Шевелев
2014-06-03 в 10:02
Но ведь не обязательно учить всю таблицу? допустим производную Tg(x) можно выразить самому через формулу sin(x)/cos(x)
[ Ответить ]
-
egeMax
2014-06-03 в 22:48
Да, конечно.
[ Ответить ]
-
-
Анатолий Шевелев
2014-06-03 в 11:06
И последний вопрос по этой статье: в задачах В15 может встретиться arcsin, arccos, arctg, arcctg ?
[ Ответить ]
-
egeMax
2014-06-03 в 22:48
До сих пор не встречались… Пока нет, спите спокойно…
[ Ответить ]
-
Добавить комментарий
- Материалы для подготовки к ЕГЭ
-
- Рубрики
- 01 Геометрия (13)
- 02 Стереометрия (9)
- 03 Теория вероятностей ч.1 (1)
- 04 Теория вероятностей ч.2 (1)
- 05 Простейшие уравнения (5)
- 06 Вычисления (5)
- 07 Производная, ПО (4)
- 08 «Прикладные» задачи (5)
- 09 Текстовые задачи (7)
- 10 Графики функций (7)
- 11 Исследование функции (2)
- 12 (С1) Уравнения (78)
- 13 (С2) Стереометр. задачи (94)
- 14 (С3) Неравенства (89)
- 15 (С4) Практич. задачи (71)
- 16 (С5) Планиметр. задачи (86)
- 17 (С6) Параметры* (79)
- 18 (С7) Числа, их свойства (38)
- A1 Простейшие текст/задачи (нет в ЕГЭ-22) (3)
- A2 Читаем графики (нет в ЕГЭ-22) (1)
- Видеоуроки (44)
- ГИА (11)
- II часть (11)
- ЕГЭ (диагностич. работы) (70)
- Иррациональные выражения, уравнения и неравенства (15)
- Логарифмы (39)
- МГУ (12)
- Метод интервалов (4)
- Метод рационализации (18)
- Модуль (9)
- Параметр (40)
- Переменка (5)
- Планиметрия (60)
- Показательные выражения, уравнения и неравенства (8)
- Разложение на множители (1)
- Рациональные выражения, уравнения и неравенства (10)
- Справочные материалы (92)
- Стереометрия (52)
- Т/P A. Ларина (443)
- Текстовые задачи (12)
- Теория чисел (2)
- Тесты по темам (80)
- Тригонометрические выражения, уравнения и неравенства (43)
- Функции и графики (10)
- Дружественные сайты
Сайт А. Ларина
ЕгэТренер – О. Себедаш
Математика?Легко!
Егэ? Ок! – И. Фельдман
- Свежие записи
- Тест «Гиперболы»
- Тест. Графики функций. Комбинированные задачи
- 10. Графики функций. Комбинированные задачи
- Тест. Тригонометрические функции
- 10. Тригонометрическая функция
- Тест. Кусочно-линейная функция
- 10. Кусочно-линейная функция
- Архивы Архивы
По теме: методические разработки, презентации и конспекты
Таблицы производных и интегралов
Таблица производных и таблица интегралов…
Производная. Геометрический смысл производной. Применение производной для исследования функций на монотонность и экстремумы
Урок обобщения и систематизации знаний. Осуществляется подготовка к ЕГЭ по заданиям с производной. Используются различные формы работы (фронтальная, групповая, самостоятельная работа учащихся)….
таблицы к уроку по теме «производная»
Производная.Непрерывность….
Проверочная работа по теме «Производная. Геометрический и физический смысл производной. Исследование функции по графику производной».
Данная проверочная работа может быть использована как для проверки знаний после окончания прохождения темы, так и в ходе итогового повторения при подготовке к ЕГЭ. Работа составлена …
Урок обобщающего повторения в 11 классе по теме: «Таблица производных»
ЦЕЛЬ:- обобщить и систематизировать материал по теме: повторить понятия производная, дифференцирование, сложная функция, алгоритм нахождения производной, правила дифференцирования;- развивать логическ…
Конспект занятия на тему «Приращение аргумента и функции. Определение производной. Алгоритм вычисления производной по определению. Таблица производных. Правила вычисления производной»
Конспект занятия на тему «Приращение аргумента и функции. Определение производной. Алгоритм вычисления производной по определению. Таблица производных. Правила вычисления производной»…
Открытый урок по математике «Определение производной. Механический и геометрический смысл производной. Правила вычисления производной»
laquo;Определение производной. Механический и геометрический смысл производной. Правила вычисления производной»…