Таблица производных и правила дифференцирования
О том, что такое производная, мы рассказали в статье «Геометрический смысл производной». Если функция задана графиком, её производная в каждой точке равна тангенсу угла наклона касательной к графику функции. А если функция задана формулой — вам помогут таблица производных и правила дифференцирования, то есть правила нахождения производной.
Для решения задач на исследование функции в вариантах ЕГЭ необходима таблица производных и правила дифференцирования, а также знания о том, как связана производная с поведением функции.
Смотри также, как решаются задачи ЕГЭ на применение производной: задача 7 и задача 11.
Прокомментируем несколько строк из таблицы производных.
1. Производная постоянной величины, то есть константы, равна ей самой. Так и должно быть. Ведь константа не меняется. Это постоянная величина, она всегда принимает одинаковые значения.
А производная функции, как мы знаем, – это скорость изменения функции. Подробнее об этом здесь:
Производная функции.
И поэтому производная константы равна нулю.
2. Производная функции у=х равна 1. Вспомним, что производная функции в точке – это тангенс угла наклона касательной, проведенной к графику функции в этой точке. График функции у=х образует угол 45 градусов с положительным направлением оси Х. А тангенс 45 градусов равен 1.
3. Производная функции равна самой этой функции. И действительно, чем больше значение х, тем больше значение функции … и тем круче вверх идет график по отношению к оси Х. Вот такая это функция, экспонента. Чем дальше, тем быстрее она растет.
4. Производная синуса и косинуса – тоже тригонометрические функции. Например, производная синуса – это косинус. Как это отражается в физике? Если координата тела меняется по закону синуса, то производная координаты, скорость, будет меняться по закону косинуса. Это описание гармонических колебаний: и координата, и скорость, и ускорение тела меняются по законам синуса и косинуса.
5. Производная логарифма в точке обратно пропорциональна . Чем дальше, тем медленнее растет логарифмическая функция.
Вспомним, как связаны производная и поведение функции.
Если производная положительна, то функция возрастает.
Если производная отрицательная, то функция убывает.
В точке максимума производная равна нулю и меняет знак с «плюса» на «минус».
В точке минимума производная тоже равна нулю и меняет знак с «минуса» на «плюс».
Запишем эти выводы в виде таблицы:
возрастает | точка максимума | убывает | точка минимума | возрастает | |
+ | 0 | — | 0 | + |
Разберем задачи ЕГЭ по теме «Таблица производных, нахождение наибольших и наименьших значений функции, нахождение точек максимума и минимума». Во всех этих примерах мы пользуемся формулами из таблицы производных.
Задача 1. Найдите точки максимумам функции
Решение:
Область определения функции:
Найдем производную функции, пользуясь формулой производной частного из таблицы.
если
Точки х = 5 и х = -5, а также точка ноль, разбивают числовую прямую на интервалы, на каждом из которых производная сохраняет свой знак. Это метод интервалов.
Найдем знаки производной на каждом интервале.
В точке максимума производная равна нулю и меняет знак с «плюса» на «минус». Это точка 5 на рисунке.
Ответ: 5.
Задача 2. Найдите точки минимума функции
Решение:
Применим формулу производной произведения.
Приравняем производную к нулю:
, если
Если то функция убывает.
Если то функция возрастает, значит, – точка минимума функции
В этой точке производная равна нулю и меняет знак с «минуса» на «плюс».
Ответ: 0,625.
Задача 3. Найдите значение функции в точке максимума.
Решение:
Найдем производную функции:
Мы применили формулы производной степени.
Решим уравнение:
Получили критические точки, в которых производная равна нулю. Отметим их на оси Х и найдём знаки производной.
– точка максимума.
Найдём значение функции в этой точке:
Ответ: 16.
Рассмотрим задачи ЕГЭ на нахождение наибольших и наименьших значений функций.
Мы помним, что наибольшее значение функции на отрезке может достигаться либо в точке максимума, либо на конце отрезка. Эти случаи показаны на рисунке:
Это значит, что у нас есть алгоритм для нахождения наибольших и наименьших значений функции на интервале.
Пусть функция f(x) определена на некотором интервале. Чтобы найти ее наибольшее или наименьшее значение, действуем следующим образом:
- Находим производную функции.
- Приравниваем производную к нулю, находим точки, в которых она равна нулю.
- Если производная меняет знак с «плюса» на «минус» в точке , то – точка максимума функции.
- Если производная меняет знак с «минуса» на «плюс» в точке , то – точка минимума функции.
- Чтобы найти наибольшее значение функции на отрезке, сравниваем значения в точке максимума и концах отрезка.
Чтобы найти наименьшее значение функции на отрезке, сравниваем значения в точке минимума и концах отрезка.
Задача 4. Найдите наибольшее значение функции на отрезке
Решение:
Найдем производную:
Приравняем производную к нулю:
Если то
Так как
Точка – точка максимума функции
В этой точке функция принимает наибольшее значение на указанном отрезке.
Ответ: 4.
Задача 5. Найдите наименьшее значение функции на отрезке
Решение:
Найдем производную функции:
при
Найдем знаки производной слева и справа от точки
Если то
Если то
Значит, – точка минимума. Наименьшее значение функции на отрезке достигается при
Это значение равно
Ответ: -1.
Задача 6. Найдите наибольшее значение функции на отрезке
Решение:
Область определения функции:
Найдем производную функции и приравняем ее к нулю:
если
или Второй корень не принадлежит отрезку
Найдем знаки производной на отрезке:
В точке производная равна нулю и меняет знак с «плюса» на «минус». Значит, это точка максимума, и наибольшее значение функции на отрезке достигается при
Найдем значение функции при
Ответ: -5.
В следующих задачах наименьшее значение функции достигается на конце отрезка.
Задача 7. Найдите наименьшее значение функции на отрезке
Решение:
Найдем производную функции и приравняем ее к нулю.
У этого уравнения нет решений, так как
Это значит, что при любых то есть а это означает, что – убывает, наименьшее значение функции достигается в правом конце отрезка
Ответ: -3.
Задача 8. Найдите наибольшее значение функции на отрезке
Решение:
Найдем производную функции:
Производная функции не равна нулю ни при каком .
Мы знаем, что Тогда
Прибавим 7 ко всем частям неравенства:
для всех
Значит, производная положительна при любом значении переменной, функция монотонно возрастает. Наибольшее значение функции будет достигаться в правом конце отрезка, то есть при
Ответ: 8.
Задача 9. Найдите наименьшее значение функции на отрезке
Решение:
Найдем производную функции и приравняем ее к нулю:
тогда
На указанном отрезке это уравнение имеет единственное решение
Слева от этой точки Если производная отрицательна.
Справа от этой точки производная положительна.
Значит, – точка минимума функции, и наименьшее значение функции на отрезке достигается в этой точке.
Найдем значения функции в этой точке:
Ответ: 7.
В задачах ЕГЭ встречаются сложные функции. И найти нужно их точки максимума или минимума, наибольшие или наименьшие значения. Но производную сложной функции в школьной программе по-настоящему не проходят. Как же быть? Покажем полезные приемы, помогающие решить такие задания ЕГЭ.
Задача 10. Найдите наименьшее значение функции
Решение:
Рассмотрим функцию
Так как функция монотонно возрастает, точка минимума функции будет при том же значении , что и точка минимума функции А ее найти легко:
при
В точке производная меняет знак с «минуса» на «плюс». Значит, – единственная точка минимума функции и функции
Ответ: -2.
Задача 11. Найдите наибольшее значение функции на отрезке
Решение:
Так как функция монотонно возрастает при точка минимума функции соответствует точке минимума подкоренного выражения
Заметим, что подкоренное выражение всегда положительно.
Функция задает квадратичную параболу с ветвями вверх и точкой минимума в вершине параболы, то есть при
Если – монотонно убывает.
Если – монотонно возрастает.
Значит, наибольшее значение функции на отрезке достигается в одном из концов этого отрезка.
Сравним и
Ответ: 6.
Задача 12. Найдите точку максимума функции
Решение:
Рассмотрим функцию
Ее график – парабола с ветвями вниз, и точка максимума будет в вершине параболы, при Функция монотонно возрастает, и значит, большему значению будет соответствовать большее значение
Точка максимума функции будет такой же, как у функции то есть
Ответ: 1.
Читайте также: Задание 11 на ЕГЭ по математике.
Благодарим за то, что пользуйтесь нашими публикациями.
Информация на странице «Таблица производных и правила дифференцирования» подготовлена нашими редакторами специально, чтобы помочь вам в освоении предмета и подготовке к экзаменам.
Чтобы успешно сдать необходимые и поступить в ВУЗ или колледж нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими статьями из данного раздела.
Публикация обновлена:
09.03.2023
Наверх
Шпаргалка по математике для 11 класса таблица производных, формулы и теория по производным может пригодиться при решении задания №7 ЕГЭ по математике.
Ссылка для скачивания шпаргалки №1 по производным: скачать в PDF
Ссылка для скачивания шпаргалки №2 по производным: скачать в PDF
В данной шпаргалке вы найдёте: формулы и правила дифференцирования, применение производной к исследованию функции, анализ графиков, геометрический и физический смысл производной, задачи на нахождения тангенса, задачи на нахождение коэффициента К, задачи на нахождение значения производной, условие касания функции и прямой.
Смотреть онлайн:
Кому нужно углубиться в данную тему, смотрите бесплатный видеоурок:
Смотреть видеоурок 2019-2020 производная, таблица производных
ПОДЕЛИТЬСЯ МАТЕРИАЛОМ
Наибольшее (наименьшее) значение функции – это самое большое (маленькое) принимаемое значение ординаты на рассматриваемом интервале.
Чтобы найти наибольшее или наименьшее значение функции необходимо:
- Найти производную функции $f'(х)$
- Найти стационарные точки, решив уравнение $f'(х)=0$
- Проверить, какие стационарные точки входят в заданный отрезок.
- Вычислить значение функции на концах отрезка и в стационарных точках из п.3
- Выбрать из полученных результатов наибольшее или наименьшее значение.
Чтобы найти точки максимума или минимума необходимо:
- Найти производную функции $f'(х)$
- Найти стационарные точки, решив уравнение $f'(х)=0$
- Разложить производную функции на множители.
- Начертить координатную прямую, расставить на ней стационарные точки и определить знаки производной в полученных интервалах, пользуясь записью п.3.
- Найти точки максимума или минимума по правилу: если в точке производная меняет знак с плюса на минус, то это будет точка максимума (если с минуса на плюс, то это будет точка минимума). На практике удобно использовать изображение стрелок на промежутках: на промежутке, где производная положительна, стрелка рисуется вверх и наоборот.
Таблица производных некоторых элементарных функций:
Функция | Производная |
$c$ | $0$ |
$x$ | $1$ |
$x^n, n∈N$ | $nx^{n-1}, n∈N$ |
${1}/{x}$ | $-{1}/{x^2}$ |
${1}/x{^n}, n∈N$ | $-{n}/{x^{n+1}}, n∈N$ |
$√^n{x}, n∈N$ | ${1}/{n√^n{x^{n-1}}, n∈N$ |
$sinx$ | $cosx$ |
$cosx$ | $-sinx$ |
$tgx$ | ${1}/{cos^2x}$ |
$ctgx$ | $-{1}/{sin^2x}$ |
$cos^2x$ | $-sin2x$ |
$sin^2x$ | $sin2x$ |
$e^x$ | $e^x$ |
$a^x$ | $a^xlna$ |
$lnx$ | ${1}/{x}$ |
$log_{a}x$ | ${1}/{xlna}$ |
Основные правила дифференцирования
1. Производная суммы и разности равна производной каждого слагаемого
$(f(x) ± g(x))′= f′(x)± g′(x)$
Пример:
Найти производную функции $f(x) = 3x^5 – cosx + {1}/{x}$
Производная суммы и разности равна производной каждого слагаемого
$f′(x)=(3x^5)′–(cosx)′+({1}/{x})’=15x^4+sinx-{1}/{x^2}$
2. Производная произведения.
$(f(x)∙g(x))′=f′(x)∙g(x)+f(x)∙g(x)′$
Пример:
Найти производную $f(x)=4x∙cosx$
$f′(x)=(4x)′∙cosx+4x∙(cosx)′=4∙cosx-4x∙sinx$
3. Производная частного
$({f(x)}/{g(x)})’={f^'(x)∙g(x)-f(x)∙g(x)’}/{g^2(x)}$
Пример:
Найти производную $f(x)={5x^5}/{e^x}$
$f'(x)={(5x^5)’∙e^x-5x^5∙(e^x)’}/{(e^x)^2}={25x^4∙e^x-5x^5∙e^x}/{(e^x)^2}$
4. Производная сложной функции равна произведению производной внешней функции на производную внутренней функции
$f(g(x))′=f′(g(x))∙g′(x)$
Пример:
$f(x)= cos(5x)$
$f′(x)=cos′(5x)∙(5x)′= — sin(5x)∙5= -5sin(5x)$
Пример:
Найдите точку минимума функции $y=2x-ln(x+11)+4$
Решение:
1. Найдем ОДЗ функции: $х+11>0; х>-11$
2. Найдем производную функции $y’=2-{1}/{x+11}={2x+22-1}/{x+11}={2x+21}/{x+11}$
3. Найдем стационарные точки, приравняв производную к нулю
${2x+21}/{x+11}=0$
Дробь равна нулю если числитель равен нулю, а знаменатель не равен нулю
$2x+21=0; x≠-11$
$2х=-21$
$х=-10,5$
4. Начертим координатную прямую, расставим на ней стационарные точки и определим знаки производной в полученных интервалах. Для этого подставим в производную любое число из крайней правой области, например, нуль.
$y'(0)={2∙0+21}/{0+11}={21}/{11}>0$
5. В точке минимума производная меняет знак с минуса на плюс, следовательно, точка $-10,5$ — это точка минимума.
Ответ: $-10,5$
Пример:
Найдите наибольшее значение функции $y=6x^5-90x^3-5$ на отрезке $[-5;1]$
Решение:
1. Найдем производную функции $y′=30x^4-270x^2$
2. Приравняем производную к нулю и найдем стационарные точки
$30x^4-270x^2=0$
Вынесем общий множитель $30x^2$ за скобки
$30x^2(x^2-9)=0$
$30x^2(х-3)(х+3)=0$
Приравняем каждый множитель к нулю
$x^2=0 ; х-3=0; х+3=0$
$х=0;х=3;х=-3$
3. Выберем стационарные точки, которые принадлежат заданному отрезку $[-5;1]$
Нам подходят стационарные точки $х=0$ и $х=-3$
4. Вычислим значение функции на концах отрезка и в стационарных точках из п.3
$y(-5)= 6∙(-5)^5-90∙(-5)^3-5=6∙(-3125)+90∙125-5= -18750+11250-5=-7505$
$y(-3)= 6∙(-3)^5-90∙(-3)^3-5=-1458+2430-5=967$
$y(0)= -5$
$y(1)= 6∙1^5-90∙1^3-5=6-90-5= -89$
Наибольшее значение равно $967$
Ответ: $967$
Что такое производная и зачем она нужна
Прежде чем переходить к таблице для вычисления производных, дадим определение производной. В учебнике оно звучит так:
Производная функции — это предел отношения приращения функции к приращению ее аргумента, при условии, что приращение аргумента стремится к нулю.
Если же говорить простыми словами, то производная функции описывает, как и с какой скоростью эта функция меняется в данной конкретной точке. Процесс нахождения производной называется дифференцированием.
Объясним на примере: допустим, Маша решила по утрам делать зарядку и стоять в планке. В первую неделю она держалась каждый день по 10 секунд, но начиная со второй недели смогла стоять в планке с каждым днем на 3 секунды дольше. Успехи Маши можно описать следующими графиками:
Очевидно, что в первую неделю результаты Маши не менялись (т. е. были константой), скорость прироста оставалась нулевой. Если мы заглянем в таблицу производных простых функций, то увидим, что производная константы равна нулю.
у = 10
у′ = 0
Во вторую неделю время выполнения планки с 10 сек начало увеличиваться на 3 сек ежедневно.
у = 10 + 3х
Снова смотрим в таблицу дифференцирования производных, где указано, что производная от х равна 1, а также по правилам вычисления производных (c*f(x))’=cf'(x) и (f(x)+g(x))’=f'(x)+g'(x).
у = 10 + 3х
у′ = 0 + 3
у′ = 3
Вот так с помощью таблицы производных и элементарной математики мы докажем, что успехи Маши росли со скоростью 3 сек в день.
Это был очень простой пример, который в общих чертах объясняет азы дифференциального исчисления и помогает понять, для чего нужны формулы из таблицы производных функций. Но разобраться в решении задач, где скорость меняется нелинейно, конечно, не так просто.
Быстрее освоить производные поможет
обучение на курсах по математике в онлайн-школе Skysmart.
Получай лайфхаки, статьи, видео и чек-листы по обучению на почту
Реши домашку по математике на 5.
Подробные решения помогут разобраться в самой сложной теме.
Производные основных элементарных функций
Таблица производных для 10 и 11 класса может включать только элементарные часто встречающиеся функции. Поэтому приведем стандартную таблицу производных.
Функция f (x) |
Производная f’ (х) |
---|---|
С (т. е. константа, любое число) |
0 |
х |
1 |
xn |
nxn-1 |
√x |
1/(2√x) |
sin x |
cos x |
cos x |
-sin x |
tg x |
1/cos2(х) |
ctg x |
-1/sin2x |
ex |
ex |
ax |
ax * ln a |
ln x |
1/x |
logax |
1/(x * ln a) |
Элементарные функции можно складывать, умножать друг на друга, находить их разность или частное — словом, выполнять любые математические операции. Но для этого существуют определенные правила.
Общие правила дифференцирования
Для решения задач на дифференцирование нужно запомнить (или записать в шпаргалку) пять несложных формул:
(c ⋅ f)′ = c ⋅ f′
(u + v)′ = u′ + v′
(u — v)′ = u′ — v′
(u ⋅ v)′ = u′v + v′u
(u/v)’ = (u’v — v’u)/v2
В данном случае u, v, f — это функции, а c — константа (любое число).
С константой все просто — ее можно смело выносить за знак производной. Специально запоминать придется лишь формулы, где требуется разделить одну функцию на другую или перемножить их и найти производную от результата.
Например: требуется найти производную функции y = (5 ⋅ x3).
y′ = (5 ⋅ x3)′
Вспомним, что константу, а в данном случае это 5, можно вынести за знак производной:
y′ = (5 ⋅ x3)’ = 5 ⋅ (x3)′ = 5 ⋅ 3 ⋅ х3-1 = 15х2
Попробуйте самостоятельно решить эти примеры. Правильные ответы найдете в конце статьи:
Правила дифференцирования сложных функций
Конечно, далеко не все функции выглядят так, как в вышеуказанной таблице. Как быть с дифференцированием, например, вот таких функций: y = (3 + 2x2)4?
Сложной функцией называют такое выражение, в котором одна функция словно вложена в другую. Производную сложной функции f(y) можно найти по следующей формуле: (f(y))′ = f′(y) ⋅ y′. Другими словами, нужно умножить производную, условно говоря, внешней функции на производную внутренней.
Пример 1
Найдем производную функции y(x) = (3 + 2x2)4.
Заменим 3 + 2x2 на u и тогда получим y = u4.
Согласно приведенному выше правилу дифференцирования сложных функций у нас получится:
y = y′u ⋅ u′x = 4u3 ⋅ u’x
А теперь выполним обратную замену и подставим исходное выражение:
4u3 ⋅ u′x = 4 (3 + 2x2)3 ⋅ (3 + 2x2)′ = 16 (3 + 2x2)3 ⋅ х
Пример 2
Найдем производную для функции y = (x3 + 4) cos x.
Для дифференцирования этой функции воспользуемся формулой (UV)′ = U′V + V′U.
y′ = (x3 + 4)′ ⋅ cos x + (x3 + 4) ⋅ cos x′ = 3x2 ⋅ cos x + (x3 + 4) ⋅ (-sin x) = 3x2 ⋅ cos x – (x3 + 4) ⋅ sin x
Ответы на задания
На ЕГЭ по профильной математике с собой можно взять только черные гелевые ручки и линейку. На экзамене профильного уровня, в отличие от базового, не выдаются справочные материалы – выпускникам не предоставляются формулы, необходимые для решения задач. Исключение составляют лишь 5 формул по тригонометрии, но, естественно, они не помогут набрать максимальные баллы, если экзаменуемые не будут знать об остальных важных сведениях и математических свойствах.
Содержание
Формулы для ЕГЭ по профильной математике. Алгебра
Формулы сокращенного умножения
Квадрат суммы: (a + b)² = a² + 2ab + b²
Квадрат разности: (a – b)² = a² – 2ab + b²
Разность квадратов: a² – b² = (a + b)(a – b)
Сумма кубов: a³ + b³ = (a + b)(a² – ab + b²)
Разность кубов: a³ – b³ = (a – b)(a² + ab + b²)
Прогрессия
Арифметическая
Геометрическая
Таблица степеней
Свойства степеней
Таблица квадратов
Интенсивы по подготовке к региональному этапу ВсОШ
Все, что нужно знать
для победы, за 7 дней!
Свойства корней
Тригонометрия
Таблица значений тригонометрических функций
Тригонометрическая окружность
Тригонометрические формулы
Обратные тригонометрические функции
Преобразование суммы и разности в произведение
Регулярные курсы по подготовке к олимпиадам и ЕГЭ
Поступаем в вуз мечты без проблем!
Вероятность
Вероятность события А: m – благоприятные, n – общее число событий
P(A) = m/n
События А и В происходят одновременно: A · B
Независимые события: P(A · B) = P(A) · P(B)
Зависимые события: P(A · B) = P(A) · P(B | A)
Происходит или А, или В: A + B
Несовместные события: P(A + B) = P(A) + P(B)
Совместные события: P(A + B) = P(A) + P(B) – P(A · B)
Свойства модуля
Производные
Основные правила дифференцирования
Таблица производных
Первообразные
Логарифмы
Квадратные уравнения
Дискриминант
Теорема Виета
Разложение на множители
Формулы для ЕГЭ по профильной математике. Геометрия
Планиметрия
Треугольник
Следствие из теоремы косинусов:
Длина биссектрисы (через угол):
Длина биссектрисы (через отрезки):
Прямоугольный треугольник
24 декабря – 20 января
5-11 классы
Онлайн-олимпиада Коалиции
Равносторонний треугольник
Аргументы для итогового сочинения
Подборка лучших аргументов
Равносторонний шестиугольник
Площадь внутреннего треугольника:
Площадь внутреннего прямоугольника:
Ромб
Трапеция
Произвольный четырёхугольник
Окружность
Стереометрия
Выводы
Не заучивайте формулы без осознания того, откуда берутся числа. Как можно чаще применяйте формулы при решении задач, тренируйте гибкость мышления, чтобы на ЕГЭ по профильной математике справиться со всеми заданиями.
А чтобы в разы повысить шансы на успех и разобраться в тонкостях непростой науки, можно обратиться за помощью к преподавателю онлайн-курса по подготовке к ЕГЭ.
Поделиться в социальных сетях
Какими формулами вам приходится пользоваться чаще всего?
Межтекстовые Отзывы
Посмотреть все комментарии
Читайте также
По теме: методические разработки, презентации и конспекты
Таблицы производных и интегралов
Таблица производных и таблица интегралов…
Производная. Геометрический смысл производной. Применение производной для исследования функций на монотонность и экстремумы
Урок обобщения и систематизации знаний. Осуществляется подготовка к ЕГЭ по заданиям с производной. Используются различные формы работы (фронтальная, групповая, самостоятельная работа учащихся)….
таблицы к уроку по теме «производная»
Производная.Непрерывность….
Проверочная работа по теме «Производная. Геометрический и физический смысл производной. Исследование функции по графику производной».
Данная проверочная работа может быть использована как для проверки знаний после окончания прохождения темы, так и в ходе итогового повторения при подготовке к ЕГЭ. Работа составлена …
Урок обобщающего повторения в 11 классе по теме: «Таблица производных»
ЦЕЛЬ:- обобщить и систематизировать материал по теме: повторить понятия производная, дифференцирование, сложная функция, алгоритм нахождения производной, правила дифференцирования;- развивать логическ…
Конспект занятия на тему «Приращение аргумента и функции. Определение производной. Алгоритм вычисления производной по определению. Таблица производных. Правила вычисления производной»
Конспект занятия на тему «Приращение аргумента и функции. Определение производной. Алгоритм вычисления производной по определению. Таблица производных. Правила вычисления производной»…
Открытый урок по математике «Определение производной. Механический и геометрический смысл производной. Правила вычисления производной»
laquo;Определение производной. Механический и геометрический смысл производной. Правила вычисления производной»…