Текстовые сложные задачи егэ профильный уровень

Задание 9 Профильного ЕГЭ по математике – это несколько типов текстовых задач. Условия и «сюжеты» задач могут быть разными. При этом в каждой из них нужно построить математическую модель, то есть обозначить какие-либо величины за переменные, составить уравнение и решить его. И еще есть неочевидные секреты их решения. О них – в конце статьи.

Вот основные типы текстовых задач, которые могут вам встретиться на ЕГЭ под номером 9. Переходите по ссылкам, читайте краткую теорию и разбирайте вместе с нами решения задач!

1. Задачи на движение

2. Задачи на работу

3. Задачи на проценты

4. Задачи на сплавы, смеси, растворы

5. Задачи на движение по окружности

Формула S = v cdot t работает и в этом случае. Здесь S – расстояние,  v – скорость, t – время.

А секрет задач на движение по окружности: тот, кто обгоняет, проезжает на 1 круг больше, если это первый обгон. И на n кругов больше, если обогнал другого в n-ный раз.

6. Задачи на нахождение средней скорости

По определению, средняя скорость получается, если всё расстояние поделить на всё время. В общем случае она не равна среднему арифметическому скоростей, а находится по следующей формуле:

.

7. Задачи на движение протяженных тел, встречное движение и обгон

Да, это те самые задачи, где поезд проходит через туннель. Или проезжает мимо платформы. И нам нужно учитывать длину поезда.

Есть еще задачи на встречное движение или обгон. Например, два поезда движутся навстречу друг другу (конечно, по параллельным путям), или один поезд обгоняет другой. Такие задачи удобно решать в движущейся системе отсчета.

Но и это не все. Есть еще задачи ЕГЭ на арифметическую и геометрическую прогрессии.

8. Задачи на арифметическую прогрессию

Арифметическая прогрессия в задачах ЕГЭ по математике

9. Задачи на геометрическую прогрессии

Геометрическая прогрессия в задачах ЕГЭ по математике

И еще мы обещали секреты решения текстовых задач на движение и работу. Читайте и применяйте!

Спасибо за то, что пользуйтесь нашими материалами.
Информация на странице «Задание 9. Текстовые задачи u0026#8212; профильный ЕГЭ по математике» подготовлена нашими авторами специально, чтобы помочь вам в освоении предмета и подготовке к экзаменам.
Чтобы успешно сдать нужные и поступить в высшее учебное заведение или техникум нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими материалами из разделов нашего сайта.

Публикация обновлена:
09.03.2023

11. Сюжетные текстовые задачи


1. Вспоминай формулы по каждой теме


2. Решай новые задачи каждый день


3. Вдумчиво разбирай решения

Сюжетные задачи повышенного уровня сложности

(blacktriangleright) Арифметическая прогрессия ({a_1,a_2,dots})– последовательность чисел, где каждое число, начиная со второго, получается путем добавления к предыдущему числу одного и того же числа (d), называемого разностью прогрессии. [{large{a_n-a_{n-1}=d}}] Справедливы следующие формулы:

({large{a_n=a_1+(n-1)d}})

({large{dfrac{a_{n-1}+a_{n+1}}2=a_n}}) (каждый элемент равен среднему арифметическому двух соседних)

Пример: (1, -2, -5, -8, dots) – арифметическая прогрессия с разностью (d=-3).

Сумма первых (n) элементов арифметической прогрессии [{large{S_n=dfrac{a_1+a_n}2cdot n}}]

(blacktriangleright) Геометрическая прогрессия ({b_1, b_2,
dots})
– последовательность чисел, где каждое число, начиная со второго, получается путем умножения предыдущего числа на одно и то же число (q), называемое знаменателем прогрессии. [{large{b_n=b_{n-1}cdot q}}] Справедливы следующие формулы:

({large{b_n=b_1cdot q^{n-1}}})

({large{sqrt{b_{n-1}cdot b_{n+1}}=b_n}}) (каждый элемент равен среднему геометрическому двух соседних)

Пример: (2, 1, dfrac12, dfrac14, dots) – геометрическая прогрессия со знаменателем (q=dfrac12).

Сумма первых (n) элементов геометрической прогрессии [{large{S_n=dfrac{1-q^n}{1-q}cdot b_1, quad qne 1}}]


Задание
1

#859

Уровень задания: Равен ЕГЭ

Маша и Даша читают один и тот же роман. Маша за час прочитывает 20 страниц, а Даша – 21. Они одновременно начали читать роман, и Маша закончила читать позже Даши на 10 минут. Сколько страниц в романе?

Пусть за (t) часов Даша прочитала роман, тогда

Маша прочитала роман за (t + dfrac{1}{6}) часов.

Так как количества страниц, прочитанные ими, одинаковы, то:

[21t = 20left(t + dfrac{1}{6}right) qquadLeftrightarrowqquad t = dfrac{10}{3} text{часа},] значит, в романе (21 cdot dfrac{10}{3} = 70) страниц.

Ответ: 70


Задание
2

#857

Уровень задания: Равен ЕГЭ

Николай прорешал сборник задач, в котором было 1260 задач, ежемесячно увеличивая количество задач на одно и то же число по сравнению с предыдущим месяцем. За первый и последний месяц в сумме Николай прорешал 210 задач. Сколько месяцев Николай прорешивал сборник?

Последовательность количеств задач, решённых за первый, второй и т.д. месяцы соответственно, представляет собой арифметическую прогрессию, сумма элементов которой равна 1260, а сумма первого и последнего элементов равна 210.

Формула для суммы первых (n) членов арифметической прогрессии:

[S_n = dfrac{a_1 + a_n}{2}n,] где (a_1, a_n) – первый и (n)-ый члены арифметической прогрессии соответственно. При этом по условию (a_1 + a_n = 210), а (S_n = 1260), откуда находим (n = 12).

Ответ: 12


Задание
3

#858

Уровень задания: Равен ЕГЭ

У Ильи дома есть часы со стрелками. Илья уходит на работу в 8 часов 00 минут утра. Домой Илья возвращается в 5 часов 30 минут вечера. Сколько раз за время отсутствия Ильи часовая и минутная стрелки успевают поравняться?

Начиная с 8 часов утра каждый час стрелки успевают поравняться ровно один раз, кроме часа с 12 до 13 часов.

При этом за время с 17 часов до 17 часов 30 минут стрелки успевают поравняться ещё один раз. Итого: ((17 — 8) — 1 + 1 = 9) раз.

Ответ: 9


Задание
4

#862

Уровень задания: Равен ЕГЭ

Света ловит бабочек. Каждый день она ловит на одно и то же количество бабочек больше по сравнению с предыдущим днём. В первый день она поймала одну бабочку, а за 15 дней в сумме она поймала 120 бабочек. Сколько бабочек поймала Света в восьмой день?

Последовательность количеств бабочек, пойманных за первый, второй и т.д. дни соответственно, представляет собой арифметическую прогрессию, сумма первых 15 элементов которой равна 120.

Формула для суммы первых (n) членов арифметической прогрессии:

[S_n = dfrac{a_1 + a_n}{2}n,] где (a_1, a_n) – первый и (n)-ый члены арифметической прогрессии соответственно. При этом по условию (n = 15, S_{15} = 120), откуда находим (a_1 + a_{15} = 16).

Так как в первый день Света поймала 1 бабочку, то (a_1 = 1), следовательно, (a_{15} = 15).

При этом (a_{15} = 14d + a_1), где (d) – разница в количествах бабочек, пойманных Светой во второй и первый дни, откуда находим (d = 1). В восьмой день она поймала (1 + 7cdot 1 = 8) бабочек.

Ответ: 8


Задание
5

#867

Уровень задания: Равен ЕГЭ

Степан за несколько дней отжался в сумме 330 раз, ежедневно увеличивая количество отжиманий на одно и то же число штук. В первый и последний день в сумме Степан отжался 60 раз. За сколько дней Степан отжался в сумме 330 раз?

Последовательность количеств отжиманий, сделанных Степаном за первый, второй и т.д. дни соответственно, представляет собой арифметическую прогрессию, сумма элементов которой равна 330, а сумма первого и последнего элементов равна 60.

Формула для суммы первых (n) членов арифметической прогрессии:

[S_n = dfrac{a_1 + a_n}{2}n,] где (a_1, a_n) – первый и (n)-ый члены арифметической прогрессии соответственно. При этом по условию (a_1 + a_n = 60), а (S_n = 330), откуда находим (n = 11).

Ответ: 11


Задание
6

#2735

Уровень задания: Равен ЕГЭ

Художник каждый день пишет на 2 портрета больше, чем в предыдущий день. Известно, что за 10 дней он написал 100 портретов. Сколько портретов он написал в первый день?

Последовательность количеств портретов, написанных за первый, второй и т.д. дни соответственно, представляет собой арифметическую прогрессию, сумма первых 10 элементов которой равна 100.

Формула для суммы первых (n) членов арифметической прогрессии:

[S_n = dfrac{a_1 + a_n}{2}n,] где (a_1, a_n) – первый и (n)-ый члены арифметической прогрессии соответственно. При этом по условию (n = 10, S_{10} = 100), откуда находим (a_1 + a_{10} = 20).

Кроме того, известно, что каждый день художник пишет на 2 портрета больше, чем в предыдущий день, тогда (a_1 + a_{10} = 2a_1 + 9cdot 2 = 20), значит, (a_1 = 1).

Ответ: 1


Задание
7

#864

Уровень задания: Равен ЕГЭ

Поезд едет с постоянной скоростью 60 км/ч. Он проезжает мимо столба за 45 секунд. За сколько секунд он полностью переедет мост длиной 1500 метров?

За 45 секунд поезд проезжает 750 метров, значит длина поезда и есть 750 метров (когда поезд проезжает мимо столба, изначально расстояние от последнего вагона до столба равно длине поезда, а в конце последний вагон проезжает мимо столба, значит, он перемещается на расстояние, равное длине поезда).

Чтобы полностью переехать мост длиной 1500 метров поезду длиной 750 метров понадобится (45 cdot 3 = 135) секунд. Действительно, через 45 секунд после начала переезда первый вагон поезда окажется на середине моста.

Ещё через 45 секунд первый вагон начнёт покидать мост, а ещё через 45 секунд последний вагон покинет мост.

Ответ: 135

Курс Глицин. Любовь, друзья, спорт и подготовка к ЕГЭ

Курс Глицин. Любовь, друзья, спорт и подготовка к ЕГЭ


Пройти тестирование по 10 заданиям
Пройти тестирование по всем заданиям
Вернуться к каталогу заданий

Версия для печати и копирования в MS Word

1

Из пункта A в пункт B одновременно выехали два автомобиля. Первый проехал с постоянной скоростью весь путь. Второй проехал первую половину пути со скоростью 24 км/ч, а вторую половину пути  — со скоростью, на 16 км/ч большей скорости первого, в результате чего прибыл в пункт B одновременно с первым автомобилем. Найдите скорость первого автомобиля. Ответ дайте в км/ч.


2

Из пункта A в пункт B одновременно выехали два автомобиля. Первый проехал с постоянной скоростью весь путь. Второй проехал первую половину пути со скоростью, меньшей скорости первого на 13 км/ч, а вторую половину пути  — со скоростью 78 км/ч, в результате чего прибыл в пункт В одновременно с первым автомобилем. Найдите скорость первого автомобиля, если известно, что она больше 48 км/ч. Ответ дайте в км/ч.


3

Из пункта A в пункт B, расстояние между которыми 75 км, одновременно выехали автомобилист и велосипедист. Известно, что за час автомобилист проезжает на 40 км больше, чем велосипедист. Определите скорость велосипедиста, если известно, что он прибыл в пункт B на 6 часов позже автомобилиста. Ответ дайте в км/ч.


4

Велосипедист выехал с постоянной скоростью из города A в город B, расстояние между которыми равно 70 км. На следующий день он отправился обратно в A со скоростью на 3 км/ч больше прежней. По дороге он сделал остановку на 3 часа. В результате велосипедист затратил на обратный путь столько же времени, сколько на путь из A в B. Найдите скорость велосипедиста на пути из B в A. Ответ дайте в км/ч.


5

Велосипедист выехал с постоянной скоростью из города A в город B, расстояние между которыми равно 98 км. На следующий день он отправился обратно со скоростью на 7 км/ч больше прежней. По дороге он сделал остановку на 7 часов. В результате он затратил на обратный путь столько же времени, сколько на путь из A в B. Найдите скорость велосипедиста на пути из A в B. Ответ дайте в км/ч.

Пройти тестирование по этим заданиям

Начала теории вероятностей

1. Фабрика выпускает сумки. В среднем 8 сумок из 100 имеют скрытые дефекты. Найдите вероятность того, что купленная сумка окажется без дефектов.

Решение. В среднем без дефектов выпускают 92 сумки из каждых 100, поэтому искомая вероятность равна 0,92.

Ответ: 0,92.

2.Фабрика выпускает сумки. В среднем на 100 качественных сумок приходится восемь сумок со скрытыми дефектами. Найдите вероятность того, что купленная сумка окажется качественной. Результат округлите до сотых.

Решение.

По условию из любых 100 + 8 = 108 сумок в среднем 100 качественных сумок. Значит, вероятность того, что купленная сумка окажется качественной, равна

 дробь: числитель: 100, знаменатель: 108 конец дроби =0,925 925 ...approx 0,93 .

 Ответ: 0,93.

3. На рок-фестивале выступают группы — по одной от каждой из заявленных стран. Порядок выступления определяется жребием. Какова вероятность того, что группа из Дании будет выступать после группы из Швеции и после группы из Норвегии? Результат округлите до сотых.

Решение. Общее количество выступающих на фестивале групп для ответа на вопрос неважно. Сколько бы их ни было, для указанных стран есть 6 способов взаимного расположения среди выступающих (Д — Дания, Ш — Швеция, Н — Норвегия):

…Д…Ш…Н…, …Д…Н…Ш…, …Ш…Н…Д…, …Ш…Д…Н…, …Н…Д…Ш…, …Н…Ш…Д…

Дания находится после Швеции и Норвегии в двух случаях. Поэтому вероятность того, что группы случайным образом будут распределены именно так, равна

 дробь: числитель: 2, знаменатель: 6 конец дроби = дробь: числитель: 1, знаменатель: 3 конец дроби approx 0,33.

 Ответ: 0,33.

4. В некотором городе из 5000 появившихся на свет младенцев 2512 мальчиков. Найдите частоту рождения девочек в этом городе. Результат округлите до тысячных.

Решение. Из 5000 тысяч новорожденных 5000 − 2512 = 2488 девочек. Поэтому частота рождения девочек равна

 дробь: числитель: 2488, знаменатель: 5000 конец дроби =0,4976 approx 0,498.

Ответ: 0,498.

5. На борту самолёта 12 кресел расположены рядом с запасными выходами и 18 — за перегородками, разделяющими салоны. Все эти места удобны для пассажира высокого роста. Остальные места неудобны. Пассажир В. высокого роста. Найдите вероятность того, что на регистрации при случайном выборе места пассажиру В. достанется удобное место, если всего в самолёте 300 мест.

Решение. В самолете 12 + 18 = 30 мест удобны пассажиру В., а всего в самолете 300 мест. Поэтому вероятность того, что пассажиру В. достанется удобное место равна 30 : 300 = 0,1.

 Ответ: 0,1.

6. В классе 26 учащихся, среди них два друга  — Андрей и Сергей. Учащихся случайным образом разбивают на 2 равные группы. Найдите вероятность того, что Андрей и Сергей окажутся в одной группе.

Решение. Пусть один из друзей находится в некоторой группе. Вместе с ним в группе окажутся 12 человек из 25 оставшихся одноклассников. Вероятность того, что второй друг окажется среди этих 12 человек, равна 12 : 25 = 0,48.

Ответ: 0,48.

7. За круглый стол на 9 стульев в случайном порядке рассаживаются 7 мальчиков и 2 девочки. Найдите вероятность того, что обе девочки будут сидеть рядом.

Решение. Пусть первой за стол сядет девочка, рядом с ней есть два места, на каждое из которых может сесть 8 человек, из которых только одна девочка. Таким образом, вероятность, что девочки будут сидеть рядом равна  дробь: числитель: 2, знаменатель: 8 конец дроби = 0,25.

Ответ: 0,25.

8. За круглый стол на 5 стульев в случайном порядке рассаживаются 3 мальчика и 2 девочки. Найдите вероятность того, что девочки будут сидеть рядом.

Решение. Пусть первой за стол сядет девочка, тогда рядом с ней есть два места, на каждое из которых претендует 4 человека, из которых только одна девочка. Таким образом, вероятность, что девочки будут сидеть рядом равна 2 умножить на дробь: числитель: 1, знаменатель: 4 конец дроби = 0,5

9. За круглый стол на 201 стул в случайном порядке рассаживаются 199 мальчиков и 2 девочки. Найдите вероятность того, что между девочками будет сидеть один мальчик.

Решение. Рассмотрим сидящую за столом девочку. За столом есть два места через одно от нее, на каждое из которых претендует 200 человек, из которых только одна девочка. Таким образом, вероятность, что между двумя девочками будет сидеть один мальчик равна 2 умножить на дробь: числитель: 1, знаменатель: 200 конец дроби = 0,01.

Ответ: 0,01

 10. Проводится жеребьёвка Лиги Чемпионов. На первом этапе жеребьёвки восемь команд, среди которых команда «Барселона», распределились случайным образом по восьми игровым группам — по одной команде в группу. Затем по этим же группам случайным образом распределяются еще восемь команд, среди которых команда «Зенит». Найдите вероятность того, что команды «Барселона» и «Зенит» окажутся в одной игровой группе.

Решение. По результатам первой жеребьёвки команда «Барселона» находится в одной из 8 групп. Вероятность того, что команда «Зенит» окажется в той же игровой группе равна одной восьмой.

Ответ: 0,125.

11. У Вити в копилке лежит 12 рублёвых, 6 двухрублёвых, 4 пятирублёвых и 3 десятирублёвых монеты. Витя наугад достаёт из копилки одну монету. Найдите вероятность того, что оставшаяся в копилке сумма составит более 70 рублей.

Решение. У Вити в копилке лежит 12 + 6 + 4 + 3 = 25 монет на сумму 12 + 12 + 20 + 30 = 74 рубля. Больше 70 рублей останется, если достать из копилки либо рублёвую, либо двухрублёвую монету. Таких монет 12 + 6 = 18. Искомая вероятность равна 18 : 25 = 0,72. Ответ: 0,72.

12. В случайном эксперименте симметричную монету бросают трижды. Найдите вероятность того, что орел выпадет ровно два раза.

Решение. Обозначим выпадение орла буквой О, а выпадение решки буквой Р. Возможных восемь исходов:

OOO,  OОР,   ОРО,   ОРР,   РОО,   РОР,  РРО,   РРР

Из них благоприятными являются OОР, ОРО и РОО. Поэтому искомая вероятность равна  дробь: числитель: 3, знаменатель: 8 конец дроби , то есть 0,375. (Этот подход затруднителен в случае большого числа бросаний монетки.)

Ответ: 0,375.

13. В случайном эксперименте бросают две игральные кости. Найдите вероятность того, что в сумме выпадет 8 очков. Результат округлите до сотых.

Решение. Количество исходов, при которых в результате броска игральных костей выпадет 8 очков, равно 5: 2+6, 3+5, 4+4, 5+3, 6+2. Каждый из кубиков может выпасть шестью вариантами, поэтому общее число исходов равно 6·6 = 36. Следовательно, вероятность того, что в сумме выпадет 8 очков, равна

 дробь: числитель: 5, знаменатель: 36 конец дроби =0,138...

Ответ: 0,14.

14. В чемпионате мира участвуют 16 команд. С помощью жребия их нужно разделить на четыре группы по четыре команды в каждой. В ящике вперемешку лежат карточки с номерами групп:

1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4.

Капитаны команд тянут по одной карточке. Какова вероятность того, что команда России окажется во второй группе?

Решение. Вероятность того, что команда России окажется во второй группе, равна отношению количества карточек с номером 2, к общему числу карточек. Тем самым, она равна

 дробь: числитель: 4, знаменатель: 16 конец дроби = дробь: числитель: 1, знаменатель: 4 конец дроби =0,25.

Ответ: 0,25

15На клавиатуре телефона 10 цифр, от 0 до 9. Какова вероятность того, что случайно нажатая цифра будет чётной?

Решение. На клавиатуре телефона 10 цифр, из них 5 четных: 0, 2, 4, 6, 8. Поэтому вероятность того, что случайно будет нажата четная цифра, равна 5 : 10 = 0,5.

Ответ: 0,5.

16. Из множества натуральных чисел от 10 до 19 наудачу выбирают одно число. Какова вероятность того, что оно делится на 3?

Решение. Натуральных чисел от 10 до 19 включительно десять, из них на три делятся три числа: 12, 15, 18. Следовательно, искомая вероятность равна 3:10 = 0,3.

Ответ: 0,3.

17. В группе туристов 5 человек. С помощью жребия они выбирают двух человек, которые должны идти в село в магазин за продуктами. Какова вероятность того, что турист Д., входящий в состав группы, пойдёт в магазин?

Решение. Всего туристов пять, случайным образом из них выбирают двоих. Вероятность быть выбранным равна 2 : 5 = 0,4.

Ответ: 0,4.

18. Перед началом футбольного матча судья бросает монетку, чтобы определить, какая из команд начнёт игру с мячом. Команда «Физик» играет три матча с разными командами. Найдите вероятность того, что в этих играх «Физик» выиграет жребий ровно два раза.

Решение. Обозначим «1» ту сторону монеты, которая отвечает за выигрыш жребия «Физиком», другую сторону монеты обозначим «0». Тогда благоприятных комбинаций три: 110, 101, 011, а всего комбинаций 23 = 8: 000, 001, 010, 011, 100, 101, 110, 111. Тем самым, искомая вероятность равна:

 дробь: числитель: 3, знаменатель: 8 конец дроби =0,375.

Ответ: 0,375.

19. Игральный кубик бросают дважды. Сколько элементарных исходов опыта благоприятствуют событию «А = сумма очков равна 5»?

Решение. Сумма очков может быть равна 5 в четырех случаях: «3 + 2», «2 + 3», «1 + 4», «4 + 1».

Ответ: 4.

20. В случайном эксперименте симметричную монету бросают дважды. Найдите вероятность того, что наступит исход ОР (в первый раз выпадает орёл, во второй — решка).

Решение. Всего возможных исходов — четыре: орел-орел, орел-решка, решка-орел, решка-решка. Благоприятным является один: орел-решка. Следовательно, искомая вероятность равна 1 : 4 = 0,25.

Ответ: 0,25.

Вероятности сложных событий

1. Симметричную монету бросают 10 раз. Во сколько раз вероятность события «выпадет ровно 5 орлов» больше вероятности события «выпадет ровно 4 орла»?

Решение. Воспользуемся формулой Бернулли. Найдем вероятность события А, состоящего в том, что при десяти бросаниях выпадет ровно 5 орлов:

P(A)=C в степени 5 _10 умножить на левая круглая скобка дробь: числитель: 1, знаменатель: 2 конец дроби правая круглая скобка в степени 5 умножить на левая круглая скобка дробь: числитель: 1, знаменатель: 2 конец дроби правая круглая скобка в степени 5 .

Аналогично найдем вероятность события B, состоящего в том, что при десяти бросаниях выпадет ровно 4 орла:

P(B)=C в степени 4 _10 умножить на левая круглая скобка дробь: числитель: 1, знаменатель: 2 конец дроби правая круглая скобка в степени 4 умножить на левая круглая скобка дробь: числитель: 1, знаменатель: 2 конец дроби правая круглая скобка в степени 6 .

Тогда

 дробь: числитель: P(A), знаменатель: P(B) конец дроби = дробь: числитель: C в степени 5 _10 умножить на левая круглая скобка дробь: числитель: 1, знаменатель: 2 конец дроби правая круглая скобка в степени 10 , знаменатель: C в степени 4 _10 конец дроби умножить на левая круглая скобка дробь: числитель: 1, знаменатель: 2 конец дроби правая круглая скобка в степени 10 = дробь: числитель: 10!, знаменатель: 5! умножить на 5! конец дроби умножить на дробь: числитель: 4! умножить на 6!, знаменатель: 10! конец дроби = дробь: числитель: 6, знаменатель: 5 конец дроби =1,2.

Ответ: 1,2

Приведем решение Ирины Шраго.

Вероятность того, что выпадет ровно 5 орлов, равна отношению количества вариантов, при которых выпадает ровно 5 орлов, к общему количеству вариантов: P(A)= дробь: числитель: N(A), знаменатель: N конец дроби . Вероятность того, что выпадет ровно 4 орла, равна отношению количества вариантов, при которых выпадает ровно 4 орла, к общему количеству вариантов: P(B)= дробь: числитель: N(B), знаменатель: N конец дроби . Тогда отношение этих вероятностей  дробь: числитель: P(A), знаменатель: P(B) конец дроби = дробь: числитель: N(A), знаменатель: N(B) конец дроби .

Количество вариантов, при которых выпадет ровно 5 орлов, равно C в степени 5 _10= дробь: числитель: 10 умножить на 9 умножить на 8 умножить на 7 умножить на 6, знаменатель: 5! конец дроби .

Количество вариантов, при которых выпадет ровно 4 орла, равно C в степени 4 _10= дробь: числитель: 10 умножить на 9 умножить на 8 умножить на 7, знаменатель: 4! конец дроби .

Тогда

 дробь: числитель: P(A), знаменатель: P(B) конец дроби = дробь: числитель: 10 умножить на 9 умножить на 8 умножить на 7 умножить на 6, знаменатель: 5! конец дроби умножить на дробь: числитель: 10 умножить на 9 умножить на 8 умножить на 7, знаменатель: 4! конец дроби =
= дробь: числитель: 10 умножить на 9 умножить на 8 умножить на 7 умножить на 6 умножить на 1 умножить на 2 умножить на 3 умножить на 4, знаменатель: 10 умножить на 9 умножить на 8 умножить на 7 умножить на 1 умножить на 2 умножить на 3 умножить на 4 умножить на 5 конец дроби = дробь: числитель: 6, знаменатель: 5 конец дроби =1,2.

2. В одном ресторане в г. Тамбове администратор предлагает гостям сыграть в «Шеш-беш»: гость бросает одновременно две игральные кости. Если он выбросит комбинацию 5 и 6 очков хотя бы один раз из двух попыток, то получит комплимент от ресторана: чашку кофе или десерт бесплатно. Какова вероятность получить комплимент? Результат округлите до сотых.

Решение. Сначала найдём вероятность того, что при двух бросках игральных костей комбинация 5 и 6 очков не выпадет ни разу. Заметим, что вероятность выбросить комбинацию 5 и 6 очков складывается из двух несовместных событий: на первом кубике выпало 5 очков, а на втором кубике выпало 6 очков или на первом кубике выпало 6 очков, а на втором кубике выпало 5 очков. Тогда вероятность того, что при броске двух игральных костей выпадет комбинация 5 и 6 очков, равна

p= дробь: числитель: 1, знаменатель: 6 конец дроби умножить на дробь: числитель: 1, знаменатель: 6 конец дроби плюс дробь: числитель: 1, знаменатель: 6 конец дроби умножить на дробь: числитель: 1, знаменатель: 6 конец дроби = дробь: числитель: 2, знаменатель: 36 конец дроби = дробь: числитель: 1, знаменатель: 18 конец дроби .

Вероятность противоположного события, состоящего в том, что при одном броске костей комбинация 5 и 6 очков не выпадет, равна

q=1 минус p=1 минус дробь: числитель: 1, знаменатель: 18 конец дроби = дробь: числитель: 17, знаменатель: 18 конец дроби .

Каждое бросание костей не зависит от предыдущего. Вероятность произведения независимых событий равна произведению вероятностей этих событий. Поэтому вероятность того, что при двух бросках игральных костей комбинация 5 и 6 очков не выпадет ни разу, равна  дробь: числитель: 17, знаменатель: 18 конец дроби умножить на дробь: числитель: 17, знаменатель: 18 конец дроби = дробь: числитель: 289, знаменатель: 324 конец дроби . Следовательно, вероятность противоположного события, состоящего в том, что при двух бросаниях игральных костей комбинация 5 и 6 очков выпадет хотя бы один раз, равна

1 минус дробь: числитель: 289, знаменатель: 324 конец дроби = дробь: числитель: 35, знаменатель: 324 конец дроби =0,108...

Округляя до сотых, получаем ответ.

Ответ: 0,11.

3. Игральную кость бросали до тех пор, пока сумма всех выпавших очков не превысила число 3. Какова вероятность того, что для этого потребовалось два броска? Ответ округлите до сотых.

Решение. Изобразим с помощью дерева возможные исходы. Зелёным цветом отмечены исходы, удовлетворяющие условию «Сумма очков превысила число 3 ровно за два броска». Красным цветом отмечены исходы, неудовлетворяющие этому.

https://math-ege.sdamgia.ru/get_file?id=92103&png=1

Искомая вероятность равна

 дробь: числитель: 1, знаменатель: 6 конец дроби умножить на дробь: числитель: 4, знаменатель: 6 конец дроби плюс дробь: числитель: 1, знаменатель: 6 конец дроби умножить на дробь: числитель: 5, знаменатель: 6 конец дроби плюс дробь: числитель: 1, знаменатель: 6 конец дроби умножить на 1= дробь: числитель: 15, знаменатель: 36 конец дроби =0,4166...

Округляя до сотых, получаем 0,42.

Ответ: 0,42.

4. Телефон передаёт SMS-сообщение. В случае неудачи телефон делает следующую попытку. Вероятность того, что сообщение удастся передать без ошибок в каждой отдельной попытке, равна 0,4. Найдите вероятность того, что для передачи сообщения потребуется не больше двух попыток.

Решение. Вероятность того, что для передачи сообщения потребуется не больше двух попыток, равна сумме вероятностей того, что сообщение будет передано с первой попытки, и того, что сообщение будет передано со второй попытки. Вероятность неудачной отправки равна 1 − 0,4 = 0,6. Тогда искомая вероятность равна

0,4 плюс 0,6 умножить на 0,4=0,64.

Ответ: 0,64.

5. При подозрении на наличие некоторого заболевания пациента отправляют на ПЦР-тест. Если заболевание действительно есть, то тест подтверждает его в 86% случаев. Если заболевания нет, то тест выявляет отсутствие заболевания в среднем в 94% случаев. Известно, что в среднем тест оказывается положительным у 10% пациентов, направленных на тестирование.

При обследовании некоторого пациента врач направил его на ПЦР-тест, который оказался положительным. Какова вероятность того, что пациент действительно имеет это заболевание?

Решение. Пусть событие A — пациент болен, событие B — тест выявляет наличие заболевания. Тогда P(A) = x — вероятность того, что пациент болен. Если заболевание действительно есть, то тест подтверждает его в 86% случаев, значит, вероятность того, что пациент болен и тест подтверждает это, равна P(AB) = x · 0,86. Если заболевания нет, то тест выявляет отсутствие заболевания в 94% случаев, значит, вероятность того, что пациент не болен, а тест дал положительный результат, равна (1 − x) · (1 − 0,94). Тогда вероятность того, что тест окажется положительным, равна P(B)=x умножить на 0,86 плюс (1 минус x) умножить на (1 минус 0,94)=0,1. Отсюда выразим x:

x умножить на 0,86 плюс (1 минус x) умножить на (1 минус 0,94)=0,1 равносильно
 равносильно x умножить на 0,86 плюс (1 минус x) умножить на 0,06=0,1 равносильно

 равносильно 0,86x плюс 0,06 минус 0,06x=0,1 равносильно 0,8x=0,04 равносильно x=0,05.

Тогда вероятность того, что тест оказался положительным у пациента, который действительно имеет заболевание, равна

P(A|B)= дробь: числитель: P(AB), знаменатель: P(B) конец дроби = дробь: числитель: 0,05 умножить на 0,86, знаменатель: 0,1 конец дроби = дробь: числитель: 0,043, знаменатель: 0,1 конец дроби =0,43.

Ответ: 0,43.

6. Стрелок в тире стреляет по мишени до тех пор, пока не поразит её. Известно, что он попадает в цель с вероятностью 0,2 при каждом отдельном выстреле. Сколько патронов нужно дать стрелку, чтобы он поразил цель с вероятностью не менее 0,6?

Решение. Вероятность попадания в мишень равна 0,2. Вероятность противоположного события — промаха — равна 1 − 0,2 = 0,8. Заметим, что вероятность попадания с n-го раза равна 1 − 0,8n. Таким образом, задача сводится к решению неравенства

1 минус 0,8 в степени n geqslant0,6 равносильно 0,8 в степени n leqslant0,4.

При n = 2 получаем 0,8 в степени 2 =0,64. При n = 3 получаем 0,8 в степени 3 =0,512. При n = 4 получаем 0,8 в степени 4 =0,4096. При n = 5 получаем 0,8 в степени 5 =0,32768. Таким образом, ответ — 5.

Ответ: 5.

7. В ящике четыре красных и два синих фломастера. Фломастеры вытаскивают по очереди в случайном порядке. Какова вероятность того, что первый раз синий фломастер появится третьим по счету?

Решение. https://math-ege.sdamgia.ru/get_file?id=92320&png=1Изобразим с помощью дерева возможные исходы. Последовательность исходов, приводящая к событию «первый раз синий фломастер появится третьим по счету» выделена оранжевым цветом. Искомая вероятность равна

 дробь: числитель: 4, знаменатель: 6 конец дроби умножить на дробь: числитель: 3, знаменатель: 5 конец дроби умножить на дробь: числитель: 2, знаменатель: 4 конец дроби = дробь: числитель: 1, знаменатель: 5 конец дроби =0,2.

Ответ: 0,2.

8. Стрелок стреляет по пяти одинаковым мишеням. На каждую мишень даётся не более двух выстрелов, и известно, что вероятность поразить мишень каждым отдельным выстрелом равна 0,6. Во сколько раз вероятность события «стрелок поразит ровно пять мишеней» больше вероятности события «стрелок поразит ровно четыре мишени»?

Решение. Сначала найдём вероятность попасть в мишень с первого или второго выстрела: 0,6 плюс 0,4 умножить на 0,6=0,84. Соответственно, вероятность противоположного события, состоящего в том, что стрелок не попадёт в мишень с двух выстрелов, равна 1 − 0,84 = 0,16.

Вероятность события «стрелок поразит ровно пять мишеней» равна 0,845. Для нахождения вероятности события «стрелок поразит ровно четыре мишени» воспользуемся формулой Бернулли:

 дробь: числитель: 5!, знаменатель: (5 минус 4)! умножить на 4! конец дроби умножить на 0,84 в степени 4 умножить на 0,16=5 умножить на 0,84 в степени 4 умножить на 0,16.

Теперь найдём искомое отношение вероятностей:

 дробь: числитель: 0,84 в степени 5 , знаменатель: 5 умножить на 0,84 в степени 4 умножить на 0,16 конец дроби = дробь: числитель: 0,84, знаменатель: 0,8 конец дроби =1,05.

Ответ: 1,05.

9. В викторине участвуют 6 команд. Все команды разной силы, и в каждой встрече выигрывает та команда, которая сильнее. В первом раунде встречаются две случайно выбранные команды. Ничья невозможна. Проигравшая команда выбывает из викторины, а победившая команда играет со следующим случайно выбранным соперником. Известно, что в первых трёх играх победила команда А. Какова вероятность того, что эта команда выиграет четвёртый раунд?

Решение. Поскольку команда A победила в первых трёх играх, она является либо сильнейшей среди всех команд, либо второй по силе, либо третьей по силе. Рассмотрим три случая.

Первый случай — команда A — сильнейшая. Выпишем все команды в порядке возрастания силы: xxxxxA, где x — некоторая команда. Тогда есть 5 · 4 · 3 · 2 · 1 · 1 = 120 способов расположить по силе остальные команды. Поскольку команда A является сильнейшей, вероятность выигрыша в четвёртом раунде равна 1.

Второй случай — команда A является второй по силе среди всех команд. Выпишем все команды в порядке возрастания силы: xxxxAx, где x — некоторая команда. Заметим, что справа от команды A может располагаться одна из двух ещё не проигравших ей команд, значит, есть 2 · 4 · 3 · 2 · 1 · 1 · 1 = 48 способов расположить по силе остальные команды. Поскольку к четвёртому раунду в игре, кроме команды A, остались ещё две команды, одна из которых слабее команды A, вероятность победы команды A в четвёртом раунде равна 0,5.

Третий случай — команда A является третьей по силе среди всех команд. Выпишем все команды в порядке возрастания силы: xxxAxx, где x — некоторая команда. Заметим, что справа от команды A могут располагаться две ещё не проигравшие ей команды, а слева — три проигравших ей команды, значит, есть 3 · 2 · 1 · 1 · 2 · 1 = 12 способов расположить по силе остальные команды. Поскольку к четвёртому раунду в игре, кроме команды A, остались ещё две команды, обе из которых сильнее команды A, вероятность победы команды A в четвёртом раунде равна 0.

Таким образом, поскольку известно, что некоторые три команды слабее команды A, всего имеется 120 + 48 + 12 = 180 способов расположить шесть команд по силе. Так как три вышеперечисленных случая — несовместные события, вероятность победы команды A в четвёртом раунде равна

 дробь: числитель: 120, знаменатель: 180 конец дроби умножить на 1 плюс дробь: числитель: 48, знаменатель: 180 конец дроби умножить на дробь: числитель: 1, знаменатель: 2 конец дроби плюс дробь: числитель: 12, знаменатель: 180 конец дроби умножить на 0= дробь: числитель: 144, знаменатель: 180 конец дроби =0,8.

Ответ: 0,8.

10. Турнир по настольному теннису проводится по олимпийской системе: игроки случайным образом разбиваются на игровые пары; проигравший в каждой паре выбывает из турнира, а победитель выходит в следующий тур, где встречается со следующим противником, который определён жребием. Всего в турнире участвует 16 игроков, все они играют одинаково хорошо, поэтому в каждой встрече вероятность выигрыша и поражения у каждого игрока равна 0,5. Среди игроков два друга – Иван и Алексей. Какова вероятность того, что этим двоим в каком-то туре придётся сыграть друг с другом?

Решение. Заметим, что поскольку в турнире участвуют 16 игроков, всего будет четыре тура, в каждом из которых будут играть 16, 8, 4 и 2 человека соответственно. Пусть событие A — Иван с Алексеем сыграли друг с другом в первом туре, событие B — они не сыграли друг с другом в первом туре, но выиграли свои игры в первом туре и встретились во втором, событие C — они не сыграли друг с другом в первом и втором туре, но выиграли свои игры в первом и втором туре и встретились в третьем, D — они не сыграли друг с другом в первом, втором и третьем туре, но выиграли свои игры в первом, втором и третьем туре и встретились в четвёртом.

Вероятность того, что Иван с Алексеем сыграют в первом туре, равна P(A)= дробь: числитель: 1, знаменатель: 15 конец дроби . Вероятность события, при котором Иван с Алексеем не сыграли друг с другом в первом туре, но оба выиграли в первом туре и встретились во втором туре, равна

P(B)= дробь: числитель: 14, знаменатель: 15 конец дроби умножить на дробь: числитель: 1, знаменатель: 2 конец дроби умножить на дробь: числитель: 1, знаменатель: 2 конец дроби умножить на дробь: числитель: 1, знаменатель: 7 конец дроби = дробь: числитель: 1, знаменатель: 30 конец дроби .

Аналогично, вероятность события C:

P(C)= дробь: числитель: 14, знаменатель: 15 конец дроби умножить на дробь: числитель: 1, знаменатель: 2 конец дроби умножить на дробь: числитель: 1, знаменатель: 2 конец дроби умножить на дробь: числитель: 6, знаменатель: 7 конец дроби умножить на дробь: числитель: 1, знаменатель: 2 конец дроби умножить на дробь: числитель: 1, знаменатель: 2 конец дроби умножить на дробь: числитель: 1, знаменатель: 3 конец дроби = дробь: числитель: 1, знаменатель: 60 конец дроби .

Осталось найти вероятность того, что Иван с Алексеем сыграют в четвёртом туре:

P(D)= дробь: числитель: 14, знаменатель: 15 конец дроби умножить на дробь: числитель: 1, знаменатель: 2 конец дроби умножить на дробь: числитель: 1, знаменатель: 2 конец дроби умножить на дробь: числитель: 6, знаменатель: 7 конец дроби умножить на дробь: числитель: 1, знаменатель: 2 конец дроби умножить на дробь: числитель: 1, знаменатель: 2 конец дроби умножить на дробь: числитель: 2, знаменатель: 3 конец дроби умножить на дробь: числитель: 1, знаменатель: 2 конец дроби умножить на дробь: числитель: 1, знаменатель: 2 конец дроби умножить на 1= дробь: числитель: 1, знаменатель: 120 конец дроби .

Теперь найдём искомую вероятность:

P=P(A) плюс P(B) плюс P(C) плюс P(D)=
= дробь: числитель: 1, знаменатель: 15 конец дроби плюс дробь: числитель: 1, знаменатель: 30 конец дроби плюс дробь: числитель: 1, знаменатель: 60 конец дроби плюс дробь: числитель: 1, знаменатель: 120 конец дроби = дробь: числитель: 8 плюс 4 плюс 2 плюс 1, знаменатель: 120 конец дроби =0,125.

Ответ: 0,125.

____________________________________________________________________

7. В магазине три продавца. Каждый из них занят с клиентом с вероятностью 0,3. Найдите вероятность того, что в случайный момент времени все три продавца заняты одновременно (считайте, что клиенты заходят независимо друг от друга).

Решение. Вероятность произведения независимых событий равна произведению вероятностей этих событий. Поэтому вероятность того, что все три продавца заняты равна (0,3) в степени 3 =0,027.

Ответ: 0,027.

8. В торговом центре два одинаковых автомата продают кофе. Обслуживание автоматов происходит по вечерам после закрытия центра. Известно, что вероятность события «К вечеру в первом автомате закончится кофе» равна 0,25. Такая же вероятность события «К вечеру во втором автомате закончится кофе». Вероятность того, что кофе к вечеру закончится в обоих автоматах, равна 0,15. Найдите вероятность того, что к вечеру кофе останется в обоих автоматах.

Решение. Рассмотрим события

А = кофе закончится в первом автомате,

В = кофе закончится во втором автомате.

Тогда

A·B = кофе закончится в обоих автоматах,

A + B = кофе закончится хотя бы в одном автомате.

По условию P(A) = P(B) = 0,25; P(A·B) = 0,15.

События A и B совместные, вероятность суммы двух совместных событий равна сумме вероятностей этих событий, уменьшенной на вероятность их произведения:

P(A + B) = P(A) + P(B) − P(A·B) = 0,25 + 0,25 − 0,15 = 0,35.

Следовательно, вероятность противоположного события, состоящего в том, что кофе останется в обоих автоматах, равна 1 − 0,35 = 0,65.

Ответ: 0,65.

9. Вероятность того, что новый электрический чайник прослужит больше года, равна 0,97. Вероятность того, что он прослужит больше двух лет, равна 0,89. Найдите вероятность того, что он прослужит меньше двух лет, но больше года.

Решение. Пусть A = «чайник прослужит больше года, но меньше двух лет», В = «чайник прослужит больше двух лет», С = «чайник прослужит ровно два года», тогда A + B + С = «чайник прослужит больше года».

События A, В и С несовместные, вероятность их суммы равна сумме вероятностей этих событий. Вероятность события С, состоящего в том, что чайник выйдет из строя ровно через два года — строго в тот же день, час, наносекунду и т. д. — равна нулю. Тогда:

P(A + B + С) = P(A) + P(B) + P(С)= P(A) + P(B),

откуда, используя данные из условия, получаем

0,97 = P(A) + 0,89.

Тем самым для искомой вероятности имеем:

P(A) = 0,97 − 0,89 = 0,08.

Ответ: 0,08.

11. Из районного центра в деревню ежедневно ходит автобус. Вероятность того, что в понедельник в автобусе окажется меньше 18 пассажиров, равна 0,82. Вероятность того, что окажется меньше 10 пассажиров, равна 0,51. Найдите вероятность того, что число пассажиров будет от 10 до 17.

Решение. Рассмотрим события A = «в автобусе меньше 10 пассажиров» и В = «в автобусе от 10 до 17 пассажиров». Их сумма — событие A + B = «в автобусе меньше 18 пассажиров». События A и В несовместные, вероятность их суммы равна сумме вероятностей этих событий:

P(A + B) = P(A) + P(B).

Тогда, используя данные задачи, получаем: 0,82 = 0,51 + P(В), откуда P(В) = 0,82 − 0,51 = 0,31.

Ответ: 0,31.

12. Биатлонист пять раз стреляет по мишеням. Вероятность попадания в мишень при одном выстреле равна 0,8. Найдите вероятность того, что биатлонист первые три раза попал в мишени, а последние два промахнулся. Результат округлите до сотых.

Решение. Поскольку биатлонист попадает в мишени с вероятностью 0,8, он промахивается с вероятностью 1 − 0,8 = 0,2. Cобытия попасть или промахнуться при каждом выстреле независимы, вероятность произведения независимых событий равна произведению их вероятностей. Тем самым, вероятность события «попал, попал, попал, промахнулся, промахнулся» равна

0,8 умножить на 0,8 умножить на 0,8 умножить на 0,2 умножить на 0,2=0,02048 approx 0,02.

Ответ: 0,02.

13. Помещение освещается фонарём с двумя лампами. Вероятность перегорания лампы в течение года равна 0,3. Найдите вероятность того, что в течение года хотя бы одна лампа не перегорит.

Решение. Найдем вероятность того, что перегорят обе лампы. Эти события независимые, вероятность их произведения равна произведению вероятностей этих событий: 0,3·0,3 = 0,09.

Событие, состоящее в том, что не перегорит хотя бы одна лампа, противоположное. Следовательно, его вероятность равна 1 − 0,09 = 0,91.

Ответ: 0,91.

14. При артиллерийской стрельбе автоматическая система делает выстрел по цели. Если цель не уничтожена, то система делает повторный выстрел. Выстрелы повторяются до тех пор, пока цель не будет уничтожена. Вероятность уничтожения некоторой цели при первом выстреле равна 0,4, а при каждом последующем — 0,6. Сколько выстрелов потребуется для того, чтобы вероятность уничтожения цели была не менее 0,98?

В ответе укажите наименьшее необходимое количество выстрелов.

Решение. 

Р(1) = 0,6.

Р(2) = Р(1)·0,4 = 0,24.

Р(3) = Р(2)·0,4 = 0,096.

Р(4) = Р(3)·0,4 = 0,0384;

Р(5) = Р(4)·0,4 = 0,01536.

Последняя вероятность меньше 0,02, поэтому достаточно пяти выстрелов по мишени. Ответ:5

16. Чтобы пройти в следующий круг соревнований, футбольной команде нужно набрать хотя бы 4 очка в двух играх. Если команда выигрывает, она получает 3 очка, в случае ничьей — 1 очко, если проигрывает — 0 очков. Найдите вероятность того, что команде удастся выйти в следующий круг соревнований. Считайте, что в каждой игре вероятности выигрыша и проигрыша одинаковы и равны 0,4.

Решение. Команда может получить не меньше 4 очков в двух играх тремя способами: 3+1, 1+3, 3+3. Эти события несовместны, вероятность их суммы равна сумме их вероятностей. Каждое из этих событий представляет собой произведение двух независимых событий — результата в первой и во второй игре. Отсюда имеем:

P(N geqslant 4)=P(3 плюс 1) плюс P(1 плюс 3) плюс P(3 плюс 3)=
=P(3) умножить на P(1) плюс P(1) умножить на P(3) плюс P(3) умножить на P(3)==0,4 умножить на 0,2 плюс 0,2 умножить на 0,4 плюс 0,4 умножить на 0,4=
=0,08 плюс 0,08 плюс 0,16=0,32.

Ответ: 0,32.

17. В Волшебной стране бывает два типа погоды: хорошая и отличная, причём погода, установившись утром, держится неизменной весь день. Известно, что с вероятностью 0,8 погода завтра будет такой же, как и сегодня. Сегодня 3 июля, погода в Волшебной стране хорошая. Найдите вероятность того, что 6 июля в Волшебной стране будет отличная погода.

Решение. Для погоды на 4, 5 и 6 июля есть 4 варианта: ХХО, ХОО, ОХО, ООО (здесь Х — хорошая, О — отличная погода). Найдем вероятности наступления такой погоды:

P(XXO) = 0,8·0,8·0,2 = 0,128;

P(XOO) = 0,8·0,2·0,8 = 0,128;

P(OXO) = 0,2·0,2·0,2 = 0,008;

P(OOO) = 0,2·0,8·0,8 = 0,128.

Указанные события несовместные, вероятность их суммы равна сумме вероятностей этих событий:

P(ХХО) + P(ХОО) + P(ОХО) + P(ООО) = 0,128 + 0,128 + 0,008 + 0,128 = 0,392.

Ответ: 0,392.

18. В магазине стоят два платёжных автомата. Каждый из них может быть неисправен с вероятностью 0,05 независимо от другого автомата. Найдите вероятность того, что хотя бы один автомат исправен.

Решение. Найдем вероятность того, что неисправны оба автомата. Эти события независимые, вероятность их произведения равна произведению вероятностей этих событий: 0,05 · 0,05 = 0,0025. Событие, состоящее в том, что исправен хотя бы один автомат, противоположное. Следовательно, его вероятность равна 1 − 0,0025 = 0,9975.

Ответ: 0,9975.

19. Ковбой Джон попадает в муху на стене с вероятностью 0,9, если стреляет из пристрелянного револьвера. Если Джон стреляет из непристрелянного револьвера, то он попадает в муху с вероятностью 0,2. На столе лежит 10 револьверов, из них только 4 пристрелянные. Ковбой Джон видит на стене муху, наудачу хватает первый попавшийся револьвер и стреляет в муху. Найдите вероятность того, что Джон промахнётся.

Решение. Джон промахнется, если схватит пристрелянный револьвер и промахнется из него, или если схватит непристрелянный револьвер и промахнется из него. По формуле условной вероятности, вероятности этих событий равны соответственно 0,4·(1 − 0,9) = 0,04 и 0,6·(1 − 0,2) = 0,48. События схватить пристрелянный или непристрелянный револьвер образуют полную группу (они несовместны и одно из них непременно наступает), поэтому, по формуле полной вероятности, Джон промахнется с вероятностью 0,04 + 0,48 = 0,52.

Ответ: 0,52.

20. Две фабрики выпускают одинаковые стекла для автомобильных фар. Первая фабрика выпускает 45% этих стекол, вторая — 55%. Первая фабрика выпускает 3% бракованных стекол, а вторая — 1%. Найдите вероятность того, что случайно купленное в магазине стекло окажется бракованным.

Решение. Вероятность того, что стекло сделано на первой фабрике и оно бракованное: 0,45 · 0,03 = 0,0135.

Вероятность того, что стекло сделано на второй фабрике и оно бракованное: 0,55 · 0,01 = 0,0055.

Поэтому по формуле полной вероятности вероятность того, что случайно купленное в магазине стекло окажется бракованным равна 0,0135 + 0,0055 = 0,019.

Ответ: 0,019.

21. Всем пациентам с подозрением на гепатит делают анализ крови. Если анализ выявляет гепатит, то результат анализа называется положительным. У больных гепатитом пациентов анализ даёт положительный результат с вероятностью 0,9. Если пациент не болен гепатитом, то анализ может дать ложный положительный результат с вероятностью 0,01. Известно, что 5% пациентов, поступающих с подозрением на гепатит, действительно больны гепатитом. Найдите вероятность того, что результат анализа у пациента, поступившего в клинику с подозрением на гепатит, будет положительным.

Решение. Анализ пациента может быть положительным по двум причинам: А) пациент болеет гепатитом, его анализ верен; B) пациент не болеет гепатитом, его анализ ложен. По формуле условной вероятности, вероятности этих событий равны соответственно 0,9 умножить на 0,05 = 0,045 и 0,01 умножить на 0,95 = 0,0095.

События быть больным или быть здоровым образуют полную группу (они несовместны и одно из них непременно наступает), поэтому можно применить формулу полной вероятности. Получим: 0,045 плюс 0,0095=0,0545.

Ответ: 0,0545.

22. Автоматическая линия изготавливает батарейки. Вероятность того, что готовая батарейка неисправна, равна 0,02. Перед упаковкой каждая батарейка проходит систему контроля. Вероятность того, что система забракует неисправную батарейку, равна 0,99. Вероятность того, что система по ошибке забракует исправную батарейку, равна 0,01. Найдите вероятность того, что случайно выбранная батарейка будет забракована системой контроля.

Решение. Ситуация, при которой батарейка будет забракована, может сложиться в результате следующих событий: батарейка действительно неисправна и забракована справедливо или батарейка исправна, но по ошибке забракована. По формуле условной вероятности, вероятности этих событий равны соответственно 0,02 умножить на 0,99 и 0,98 умножить на 0,01.

События быть неисправной батарейкой или быть исправной образуют полную группу (они несовместны и одно из них непременно происходит), поэтому можно применить формулу полной вероятности. Получим:

0,0198 плюс 0,0098=0,0296.

Ответ: 0,0296.

23. Агрофирма закупает куриные яйца в двух домашних хозяйствах. 40% яиц из первого хозяйства — яйца высшей категории, а из второго хозяйства — 20% яиц высшей категории. Всего высшую категорию получает 35% яиц. Найдите вероятность того, что яйцо, купленное у этой агрофирмы, окажется из первого хозяйства.

Это решение можно записать коротко. Пусть x — искомая вероятность того, что куплено яйцо, произведенное в первом хозяйстве. Тогда 1 минус x — вероятность того, что куплено яйцо, произведенное во втором хозяйстве. По формуле полной вероятности имеем:

0,4x плюс 0,2(1 минус x)=0,35 равносильно 0,2x=0,15 равносильно x=0,75.

Ответ: 0,75.

 25. Чтобы поступить в институт на специальность «Лингвистика», абитуриент должен набрать на ЕГЭ не менее 70 баллов по каждому из трёх предметов — математика, русский язык и иностранный язык. Чтобы поступить на специальность «Коммерция», нужно набрать не менее 70 баллов по каждому из трёх предметов — математика, русский язык и обществознание.

Вероятность того, что абитуриент З. получит не менее 70 баллов по математике, равна 0,6, по русскому языку — 0,8, по иностранному языку — 0,7 и по обществознанию — 0,5.

Найдите вероятность того, что З. сможет поступить хотя бы на одну из двух упомянутых специальностей.

Решение. Для того, чтобы поступить хоть куда-нибудь, З. нужно сдать и русский, и математику как минимум на 70 баллов, а помимо этого еще сдать иностранный язык или обществознание не менее, чем на 70 баллов. Пусть ABC и D — это события, в которых З. сдает соответственно математику, русский, иностранный и обществознание не менее, чем на 70 баллов. Тогда поскольку

 P(C плюс D)=P(C) плюс P(D) минус P(C умножить на D),

для вероятности поступления имеем:

P(AB(C плюс D))=P(A) умножить на P(B) умножить на P(C плюс D) =
= P(A) умножить на P(B) умножить на (P(C) плюс P(D) минус P(C) умножить на P(D))

=0,6 умножить на 0,8 умножить на (0,7 плюс 0,5 минус 0,7 умножить на 0,5)=0,408.

Ответ: 0,408.

26. Из районного центра в деревню ежедневно ходит автобус. Вероятность того, что в понедельник в автобусе окажется меньше 20 пассажиров, равна 0,94. Вероятность того, что окажется меньше 15 пассажиров, равна 0,56. Найдите вероятность того, что число пассажиров будет от 15 до 19.

Решение. Рассмотрим события A = «в автобусе меньше 15 пассажиров» и В = «в автобусе от 15 до 19 пассажиров». Их сумма — событие A + B = «в автобусе меньше 20 пассажиров». События A и В несовместные, вероятность их суммы равна сумме вероятностей этих событий:

P(A + B) = P(A) + P(B).

Тогда, используя данные задачи, получаем: 0,94 = 0,56 + P(В), откуда P(В) = 0,94 − 0,56 = 0,38.

Ответ: 0,38.

.

28. На фабрике керамической посуды 10% произведённых тарелок имеют дефект. При контроле качества продукции выявляется 80% дефектных тарелок. Остальные тарелки поступают в продажу. Найдите вероятность того, что случайно выбранная при покупке тарелка не имеет дефектов. Результат округлите до сотых.

Решение. Пусть завод произвел n тарелок. В продажу поступят все качественные тарелки и 20% невыявленных дефектных тарелок: 0,9n плюс 0,2 умножить на 0,1n=0,92n тарелок. Поскольку качественных из них 0,9n, вероятность купить качественную тарелку равна

 дробь: числитель: 0,9n, знаменатель: 0,92n конец дроби = дробь: числитель: 90, знаменатель: 92 конец дроби = 0,978...

Округляя результат до сотых, получаем 0,98.

Ответ: 0,98.

29. По отзывам покупателей Иван Иванович оценил надёжность двух интернет-магазинов. Вероятность того, что нужный товар доставят из магазина А, равна 0,8. Вероятность того, что этот товар доставят из магазина Б, равна 0,9. Иван Иванович заказал товар сразу в обоих магазинах. Считая, что интернет-магазины работают независимо друг от друга, найдите вероятность того, что ни один магазин не доставит товар.

Решение. Вероятность того, что первый магазин не доставит нужный товар равна 1 − 0,9 = 0,1. Вероятность того, что второй магазин не доставит нужный товар равна 1 − 0,8 = 0,2. Поскольку эти события независимы, вероятность их произведения (оба магазина не доставят товар) равна произведению вероятностей этих событий: 0,1 · 0,2 = 0,02.

Ответ: 0,02.

30. Перед началом волейбольного матча капитаны команд тянут честный жребий, чтобы определить, какая из команд начнёт игру с мячом. Команда «Статор» по очереди играет с командами «Ротор», «Мотор» и «Стартер». Найдите вероятность того, что «Статор» будет начинать только первую и последнюю игры.

Решение. Требуется найти вероятность произведения трех событий: «Статор» начинает первую игру, не начинает вторую игру, начинает третью игру. Вероятность произведения независимых событий равна произведению вероятностей этих событий. Вероятность каждого из них равна 0,5, откуда находим: 0,5·0,5·0,5 = 0,125.

Ответ: 0,125.

31. В кармане у Пети было 2 монеты по 5 рублей и 4 монеты по 10 рублей. Петя, не глядя, переложил какие-то 3 монеты в другой карман. Найдите вероятность того, что пятирублевые монеты лежат теперь в разных карманах.

Решение. Чтобы пятирублевые монеты оказались в разных карманах, Петя должен взять из кармана одну пятирублевую и две десятирублевые монеты. Это можно сделать тремя способами: 5, 10, 10; 10, 5, 10 или 10, 10, 5. Эти события несовместные, вероятность их суммы равна сумме вероятностей этих событий:

 дробь: числитель: 2, знаменатель: 6 конец дроби умножить на дробь: числитель: 4, знаменатель: 5 конец дроби умножить на дробь: числитель: 3, знаменатель: 4 конец дроби плюс дробь: числитель: 4, знаменатель: 6 конец дроби умножить на дробь: числитель: 2, знаменатель: 5 конец дроби умножить на дробь: числитель: 3, знаменатель: 4 конец дроби плюс дробь: числитель: 4, знаменатель: 6 конец дроби умножить на дробь: числитель: 3, знаменатель: 5 конец дроби умножить на дробь: числитель: 2, знаменатель: 4 конец дроби = дробь: числитель: 3, знаменатель: 5 конец дроби .

32. Стрелок стреляет по мишени один раз. В случае промаха стрелок делает второй выстрел по той же мишени. Вероятность попасть в мишень при одном выстреле равна 0,7. Найдите вероятность того, что мишень будет поражена (либо первым, либо вторым выстрелом).

Решение. Пусть A — событие, состоящее в том, что мишень поражена стрелком с первого выстрела, B — событие, состоящее в том, что первый раз стрелок промахнулся, а со второго выстрела поразил мишень. Вероятность события A равна P(A) = 0,7. Событие B является произведением двух независимых событий, поэтому его вероятность равна произведению вероятностей этих событий: P(B) = 0,3·0,7 = 0,21. События A и B несовместные, вероятность их суммы равна сумме вероятностей этих событий:

P(A + B) = P(A) + P(B) = 0,7 + 0,21 = 0,91.

Ответ: 0,91.

33. Перед началом волейбольного матча капитаны команд тянут жребий, чтобы определить, какая из команд начнёт игру с мячом. Команда «Мотор» по очереди играет с командами «Статор», «Стартер» и «Ротор». Найдите вероятность того, что «Мотор» будет начинать с мячом только вторую игру.

Решение. Требуется найти вероятность произведения трех событий: «Мотор» не начинает первую игру, начинает вторую игру, не начинает третью игру. Вероятность произведения независимых событий равна произведению вероятностей этих событий. Вероятность каждого из них равна 0,5, откуда находим: 0,5·0,5·0,5 = 0,125.

Ответ: 0,125.

34. Игральный кубик бросают дважды. Известно, что в сумме выпало 8 очков. Найдите вероятность того, что во второй раз выпало 3 очка.

Решение. При двукратном бросании кубика 8 очков может получиться только в пяти случаях: 6 + 2, 5 + 3, 4 + 4, 3 + 5 и 2 + 6. При этом во второй раз только единожды выпало 3 очка. Значит, вероятность того, что во второй раз выпало 3 очка при условии, что в сумме выпало 8 очков, равна одной пятой.

Ответ: 0,2.

35. При двукратном бросании игральной кости в сумме выпало 9 очков. Какова вероятность того, что хотя бы раз выпало 5 очков?

Решение. При двукратном бросании игральной кости 9 очков может получится только в четырёх случаях: 6 + 3, 5 + 4, 4 + 5 и 3 + 6. При этом 5 очков выпадало в двух из этих случаев. Значит, вероятность того, что хотя бы раз выпало 5 очков равна

 дробь: числитель: N_благопр., знаменатель: N_общ. конец дроби = дробь: числитель: 2, знаменатель: 4 конец дроби =0,5.

Ответ: 0,5.

36. Игральную кость бросили два раза. Известно, что три очка не выпали ни разу. Найдите при этом условии вероятность события «сумма выпавших очков окажется равна 8».

Решение. https://math-ege.sdamgia.ru/get_file?id=92227&png=1Условию, что при двукратном броске игральной кости три очка не выпали ни разу, соответствует 25 исходов (отмечены оранжевым цветом). Событию «сумма выпавших очков равна 8» соответствуют 3 из них (отмечены зелёным цветом). Значит, искомая вероятность равна

 дробь: числитель: N_благопр., знаменатель: N_общ. конец дроби = дробь: числитель: 3, знаменатель: 25 конец дроби =0,12.

Ответ: 0,12.

37. Игральную кость бросили один или несколько раз. Оказалось, что сумма всех выпавших очков равна 4. Какова вероятность того, что был сделан один бросок? Ответ округлите до сотых.

Решение. Пусть событие A состоит в том, сумма всех выпавших в результате одного или нескольких бросаний очков равна 4. Построим дерево вариантов, приводящих к этому событию.

https://math-ege.sdamgia.ru/get_file?id=97878&png=1

Найдем вероятность P(A):

P(A)= дробь: числитель: 1, знаменатель: 6 конец дроби плюс дробь: числитель: 3, знаменатель: 6 в степени 2 конец дроби плюс дробь: числитель: 3, знаменатель: 6 в степени 3 конец дроби плюс дробь: числитель: 1, знаменатель: 6 в степени 4 конец дроби = дробь: числитель: 6 в степени 3 плюс 3 умножить на 6 в степени 2 плюс 3 умножить на 6 плюс 1, знаменатель: 6 в степени 4 конец дроби = дробь: числитель: 343, знаменатель: 6 в степени 4 конец дроби .

Пусть событие B состоит в том, что был сделан один бросок. Тогда искомая вероятность P(B|A) события В при условии, что событие А наступило (вероятность того, что был сделан один бросок, при условии что выпало 4 очка) определяется по формуле условной вероятности P(B|A)= дробь: числитель: P(AB), знаменатель: P(A) конец дроби . Вероятность произведения событий B и A, то есть события, в котором при первом бросании кости выпало 4 очка, равна  дробь: числитель: 1, знаменатель: 6 конец дроби . Тогда для искомой вероятности получаем:

P(B|A)= дробь: числитель: P(AB), знаменатель: P(A) конец дроби = дробь: числитель: 1, знаменатель: 6 конец дроби : дробь: числитель: 343, знаменатель: 6 в степени 4 конец дроби = дробь: числитель: 1, знаменатель: 6 конец дроби умножить на дробь: числитель: 6 в степени 4 , знаменатель: 343 конец дроби = дробь: числитель: 216, знаменатель: 343 конец дроби =0,6297...

Ответ просят округлить до сотых.

Ответ: 0,63.

Примечание.

Любознательный читатель наверняка обратит внимание на различие в способах решения этой задачи и задачи 508762. В задаче 508762 подсчитывалось общее количество вариантов, с помощью которых можно получить заданную сумму очков, а затем количество подходящих вариантов делилось на общее количество. В данной задаче общее количество вариантов равно 8: 4, 1 + 3, 3 + 1, 2 + 2, 1 + 1 + 2, 1 + 2 + 1, 2 + 1 + 1, 1 + 1 + 1 + 1. Подходящий вариант только один. Однако эти варианты не являются равновероятными, поэтому нельзя делить количество подходящих вариантов на общее количество вариантов, а необходимо рассчитывать вероятности вариантов и использовать формулу, приведенную в решении данной задачи.

38. Игральную кость бросили один или несколько раз. Оказалось, что сумма всех выпавших очков равна 3. Какова вероятность того, что было сделано два броска? Ответ округлите до сотых.

Решение. Изобразим с помощью дерева возможные исходы. Зелёным цветом отмечены исходы, удовлетворяющие условию «сумма выпавших очков равна 3». Оранжевым цветом отмечены исходы, удовлетворяющие условию «сумма очков, выпавших ровно за два броска равна 3».https://math-ege.sdamgia.ru/get_file?id=92318&png=1

Тогда вероятность события «сделано два броска» при условии «в сумме выпало 3 очка» равна:

 дробь: числитель: левая круглая скобка дробь: числитель: 1, знаменатель: 6 конец дроби правая круглая скобка в степени 2 плюс левая круглая скобка дробь: числитель: 1, знаменатель: 6 конец дроби правая круглая скобка в степени 2 , знаменатель: левая круглая скобка дробь: числитель: 1, знаменатель: 6 конец дроби правая круглая скобка в степени 3 плюс 2 умножить на левая круглая скобка дробь: числитель: 1, знаменатель: 6 конец дроби правая круглая скобка в степени 2 плюс дробь: числитель: 1, знаменатель: 6 конец дроби конец дроби =
= дробь: числитель: 2 умножить на левая круглая скобка дробь: числитель: 1, знаменатель: 6 конец дроби правая круглая скобка в степени 2 , знаменатель: дробь: числитель: 1, знаменатель: 6 конец дроби умножить на левая круглая скобка левая круглая скобка дробь: числитель: 1, знаменатель: 6 конец дроби правая круглая скобка в степени 2 плюс 2 умножить на дробь: числитель: 1, знаменатель: 6 конец дроби плюс 1 правая круглая скобка конец дроби = дробь: числитель: 2 умножить на дробь: числитель: 1, знаменатель: 6 конец дроби , знаменатель: левая круглая скобка дробь: числитель: 1, знаменатель: 6 конец дроби плюс 1 правая круглая скобка в степени 2 конец дроби = дробь: числитель: 12, знаменатель: 49 конец дроби =0,2448...

Ответ просят округлить до сотых.

Ответ: 0,24.

39. Первый игральный кубик обычный, а на гранях второго кубика нет чётных чисел, а нечётные числа 1, 3 и 5 встречаются по два раза. В остальном кубики одинаковые. Один случайно выбранный кубик бросают два раза. Известно, что в каком-то порядке выпали 3 и 5 очков. Какова вероятность того, что бросали второй кубик?

Решение. Предположим, что бросали первый кубик. Тогда вероятность того, что в каком-то порядке выпали 3 и 5 очков, равна  дробь: числитель: 1, знаменатель: 6 конец дроби умножить на дробь: числитель: 1, знаменатель: 6 конец дроби плюс дробь: числитель: 1, знаменатель: 6 конец дроби умножить на дробь: числитель: 1, знаменатель: 6 конец дроби = дробь: числитель: 1, знаменатель: 18 конец дроби . Теперь предположим, что бросали второй кубик. Поскольку на втором кубике числа 3 и 5 встречаются по два раза, вероятность того, что в каком-то порядке выпали 3 и 5 очков, равна  дробь: числитель: 2, знаменатель: 6 конец дроби умножить на дробь: числитель: 2, знаменатель: 6 конец дроби плюс дробь: числитель: 2, знаменатель: 6 конец дроби умножить на дробь: числитель: 2, знаменатель: 6 конец дроби = дробь: числитель: 2, знаменатель: 9 конец дроби . Таким образом, искомая вероятность равна  дробь: числитель: дробь: числитель: 2, знаменатель: 9 конец дроби , знаменатель: дробь: числитель: 1 конец дроби 18, знаменатель: плюс конец дроби дробь: числитель: 2, знаменатель: 9 конец дроби = дробь: числитель: 4, знаменатель: 1 плюс 4 конец дроби =0,8.

Ответ: 0,8.

40. Первый игральный кубик обычный, а на гранях второго кубика нет чисел, больших, чем 2, а числа 1 и 2 встречаются по три раза. В остальном кубики одинаковые.

Один случайно выбранный кубик бросают два раза. Известно, что в каком-то порядке выпали 1 и 2 очков. Какова вероятность того, что бросали второй кубик?

Решение. Предположим, что бросали первый кубик. Тогда вероятность того, что в каком-то порядке выпали 1 и 2, равна  дробь: числитель: 1, знаменатель: 6 конец дроби умножить на дробь: числитель: 1, знаменатель: 6 конец дроби плюс дробь: числитель: 1, знаменатель: 6 конец дроби умножить на дробь: числитель: 1, знаменатель: 6 конец дроби = дробь: числитель: 1, знаменатель: 18 конец дроби . Теперь предположим, что бросали второй кубик. Поскольку на втором кубике числа 1 и 2 встречаются по три раза, вероятность того, что в каком-то порядке выпали 1 и 2, равна  дробь: числитель: 3, знаменатель: 6 конец дроби умножить на дробь: числитель: 3, знаменатель: 6 конец дроби плюс дробь: числитель: 3, знаменатель: 6 конец дроби умножить на дробь: числитель: 3, знаменатель: 6 конец дроби = дробь: числитель: 1, знаменатель: 2 конец дроби . Таким образом, искомая вероятность равна  дробь: числитель: дробь: числитель: 1, знаменатель: 2 конец дроби , знаменатель: дробь: числитель: 1 конец дроби 18, знаменатель: плюс конец дроби дробь: числитель: 1, знаменатель: 2 конец дроби = дробь: числитель: 9, знаменатель: 1 плюс 9 конец дроби =0,9.

Ответ: 0,9.

41. Первый игральный кубик обычный, а на гранях второго кубика нет чётных чисел, а нечётные числа 1, 3 и 5 встречаются по два раза. В остальном кубики одинаковые.

Один случайно выбранный кубик бросают два раза. Известно, что в каком-то порядке выпали 3 и 5 очков. Какова вероятность того, что бросали первый кубик?

Решение. Предположим, что бросали первый кубик. Тогда вероятность того, что в каком-то порядке выпали 3 и 5 очков, равна  дробь: числитель: 1, знаменатель: 6 конец дроби умножить на дробь: числитель: 1, знаменатель: 6 конец дроби плюс дробь: числитель: 1, знаменатель: 6 конец дроби умножить на дробь: числитель: 1, знаменатель: 6 конец дроби = дробь: числитель: 1, знаменатель: 18 конец дроби . Теперь предположим, что бросали второй кубик. Поскольку на втором кубике числа 3 и 5 встречаются по два раза, вероятность того, что в каком-то порядке выпали 3 и 5 очков, равна  дробь: числитель: 2, знаменатель: 6 конец дроби умножить на дробь: числитель: 2, знаменатель: 6 конец дроби плюс дробь: числитель: 2, знаменатель: 6 конец дроби умножить на дробь: числитель: 2, знаменатель: 6 конец дроби = дробь: числитель: 2, знаменатель: 9 конец дроби . Таким образом, искомая вероятность равна  дробь: числитель: дробь: числитель: 1, знаменатель: 18 конец дроби , знаменатель: конец дроби дробь: числитель: 1, знаменатель: 18 конец дроби плюс дробь: числитель: 2, знаменатель: 9 конец дроби = дробь: числитель: 1, знаменатель: 1 плюс 4 конец дроби =0,2.

Ответ: 0,2.

42. Первый игральный кубик обычный, а на гранях второго кубика числа 1 и 2 встречаются по три раза. В остальном кубики одинаковые.

Один случайно выбранный кубик бросают два раза. Известно, что в каком-то порядке выпали 1 и 2 очков. Какова вероятность того, что бросали первый кубик?

Решение. Предположим, что бросали первый кубик. Тогда вероятность того, что в каком-то порядке выпали 1 и 2, равна  дробь: числитель: 1, знаменатель: 6 конец дроби умножить на дробь: числитель: 1, знаменатель: 6 конец дроби плюс дробь: числитель: 1, знаменатель: 6 конец дроби умножить на дробь: числитель: 1, знаменатель: 6 конец дроби = дробь: числитель: 1, знаменатель: 18 конец дроби . Теперь предположим, что бросали второй кубик. Поскольку на втором кубике числа 1 и 2 встречаются по три раза, вероятность того, что в каком-то порядке выпали 1 и 2, равна  дробь: числитель: 3, знаменатель: 6 конец дроби умножить на дробь: числитель: 3, знаменатель: 6 конец дроби плюс дробь: числитель: 3, знаменатель: 6 конец дроби умножить на дробь: числитель: 3, знаменатель: 6 конец дроби = дробь: числитель: 1, знаменатель: 2 конец дроби . Таким образом, искомая вероятность равна  дробь: числитель: дробь: числитель: 1, знаменатель: 18 конец дроби , знаменатель: конец дроби дробь: числитель: 1, знаменатель: 18 конец дроби плюс дробь: числитель: 1, знаменатель: 2 конец дроби = дробь: числитель: 1, знаменатель: 1 плюс 9 конец дроби =0,1.

Ответ: 0,1.

43. Первый игральный кубик обычный, а на гранях второго кубика нет нечётных чисел, а чётные числа 2, 4 и 6 встречаются по два раза. В остальном кубики одинаковые.

Один случайно выбранный кубик бросают два раза. Известно, что в каком-то порядке выпали 4 и 6 очков. Какова вероятность того, что бросали второй кубик?

Решение. Предположим, что бросали первый кубик. Тогда вероятность того, что в каком-то порядке выпали 4 и 6 очков, равна  дробь: числитель: 1, знаменатель: 6 конец дроби умножить на дробь: числитель: 1, знаменатель: 6 конец дроби плюс дробь: числитель: 1, знаменатель: 6 конец дроби умножить на дробь: числитель: 1, знаменатель: 6 конец дроби = дробь: числитель: 1, знаменатель: 18 конец дроби . Теперь предположим, что бросали второй кубик. Поскольку на втором кубике числа 4 и 6 встречаются по два раза, вероятность того, что в каком-то порядке выпали 4 и 6 очков, равна  дробь: числитель: 2, знаменатель: 6 конец дроби умножить на дробь: числитель: 2, знаменатель: 6 конец дроби плюс дробь: числитель: 2, знаменатель: 6 конец дроби умножить на дробь: числитель: 2, знаменатель: 6 конец дроби = дробь: числитель: 2, знаменатель: 9 конец дроби . Таким образом, искомая вероятность равна  дробь: числитель: дробь: числитель: 2, знаменатель: 9 конец дроби , знаменатель: дробь: числитель: 1 конец дроби 18, знаменатель: плюс конец дроби дробь: числитель: 2, знаменатель: 9 конец дроби = дробь: числитель: 4, знаменатель: 1 плюс 4 конец дроби =0,8.

Ответ: 0,8.

44. Первый игральный кубик обычный, а на гранях второго кубика нет нечётных чисел, а чётные числа 2, 4 и 6 встречаются по два раза. В остальном кубики одинаковые.

Один случайно выбранный кубик бросают два раза. Известно, что в каком-то порядке выпали 4 и 6 очков. Какова вероятность того, что бросали первый кубик?

Решение. Предположим, что бросали первый кубик. Тогда вероятность того, что в каком-то порядке выпали 4 и 6 очков, равна  дробь: числитель: 1, знаменатель: 6 конец дроби умножить на дробь: числитель: 1, знаменатель: 6 конец дроби плюс дробь: числитель: 1, знаменатель: 6 конец дроби умножить на дробь: числитель: 1, знаменатель: 6 конец дроби = дробь: числитель: 1, знаменатель: 18 конец дроби . Теперь предположим, что бросали второй кубик. Поскольку на втором кубике числа 4 и 6 встречаются по два раза, вероятность того, что в каком-то порядке выпали 4 и 6 очков, равна  дробь: числитель: 2, знаменатель: 6 конец дроби умножить на дробь: числитель: 2, знаменатель: 6 конец дроби плюс дробь: числитель: 2, знаменатель: 6 конец дроби умножить на дробь: числитель: 2, знаменатель: 6 конец дроби = дробь: числитель: 2, знаменатель: 9 конец дроби . Таким образом, искомая вероятность равна  дробь: числитель: дробь: числитель: 1, знаменатель: 18 конец дроби , знаменатель: конец дроби дробь: числитель: 1, знаменатель: 18 конец дроби плюс дробь: числитель: 2, знаменатель: 9 конец дроби = дробь: числитель: 1, знаменатель: 1 плюс 4 конец дроби =0,2.

Ответ: 0,2.

45. Первый игральный кубик обычный, а на гранях второго кубика числа 5 и 6 встречаются по три раза. В остальном кубики одинаковые.

Один случайно выбранный кубик бросают два раза. Известно, что в каком-то порядке выпали 5 и 6 очков. Какова вероятность того, что бросали второй кубик?

Решение. Предположим, что бросали первый кубик. Тогда вероятность того, что в каком-то порядке выпали 5 и 6 очков, равна  дробь: числитель: 1, знаменатель: 6 конец дроби умножить на дробь: числитель: 1, знаменатель: 6 конец дроби плюс дробь: числитель: 1, знаменатель: 6 конец дроби умножить на дробь: числитель: 1, знаменатель: 6 конец дроби = дробь: числитель: 1, знаменатель: 18 конец дроби . Теперь предположим, что бросали второй кубик. Поскольку на втором кубике числа 5 и 6 встречаются по три раза, вероятность того, что в каком-то порядке выпали 5 и 6 очков, равна  дробь: числитель: 3, знаменатель: 6 конец дроби умножить на дробь: числитель: 3, знаменатель: 6 конец дроби плюс дробь: числитель: 3, знаменатель: 6 конец дроби умножить на дробь: числитель: 3, знаменатель: 6 конец дроби = дробь: числитель: 1, знаменатель: 2 конец дроби . Таким образом, искомая вероятность равна  дробь: числитель: дробь: числитель: 1, знаменатель: 2 конец дроби , знаменатель: дробь: числитель: 1 конец дроби 18, знаменатель: плюс конец дроби дробь: числитель: 1, знаменатель: 2 конец дроби = дробь: числитель: 9, знаменатель: 1 плюс 9 конец дроби =0,9.

Ответ: 0,9.

46. Маша коллекционирует принцесс из Киндер-сюрпризов. Всего в коллекции 10 разных принцесс, и они равномерно распределены, то есть в каждом очередном Киндер-сюрпризе может с равными вероятностями оказаться любая из 10 принцесс. У Маши уже есть две разные принцессы из коллекции. Какова вероятность того, что для получения следующей принцессы Маше придётся купить ещё 2 или 3 шоколадных яйца?

Решение. Заметим, что вероятность получения новой принцессы равна  дробь: числитель: 8, знаменатель: 10 конец дроби , а вероятность противоположного события — получение старой принцессы —  дробь: числитель: 2, знаменатель: 10 конец дроби . Вероятность того, что для получения следующей принцессы Маше придётся купить 2 шоколадных яйца, равна  дробь: числитель: 2, знаменатель: 10 конец дроби умножить на дробь: числитель: 8, знаменатель: 10 конец дроби =0,16. Вероятность того, что для получения следующей принцессы Маше придётся купить 3 шоколадных яйца, равна  дробь: числитель: 2, знаменатель: 10 конец дроби умножить на дробь: числитель: 2, знаменатель: 10 конец дроби умножить на дробь: числитель: 8, знаменатель: 10 конец дроби =0,032. Таким образом, искомая вероятность — 0,16 + 0,032 = 0,192.

Ответ: 0,192.

47. https://math-ege.sdamgia.ru/get_file?id=84620&png=1Артём гуляет по парку. Он выходит из точки S и, дойдя до очередной развилки, с равными шансами выбирает следующую дорожку, но не возвращается обратно. Найдите вероятность того, что таким образом он выйдет к пруду или фонтану.

Решение. https://math-ege.sdamgia.ru/get_file?id=84621&png=1Чтобы выйти к фонтану Артёму нужно пройти три развилки. На первой развилке нужно выбрать одну из четырёх дорожек, на второй — одну из двух, на третьей — одну из двух. Значит, вероятность выйти к фонтану равна 0,25 умножить на 0,5 умножить на 0,5=0,0625.

Выйти к пруду Артём может двумя разными способами. Первый способ: на первой развилке нужно выбрать одну из четырёх дорожек, на второй — одну из двух. Вероятность этого способа равна 0,25 умножить на 0,5=0,125. Второй способ: на первой развилке нужно выбрать одну из четырёх дорожек, на второй — две из четырёх. Вероятность этого способа тоже равна 0,25 умножить на 0,5=0,125.

Значит, вероятность того, что Артём выйдет к пруду или фонтану, равна 0,0625 плюс 0,125 плюс 0,125=0,3125.

Ответ: 0,3125.

48. Симметричную игральную кость бросили 3 раза. Известно, что в сумме выпало 6 очков. Какова вероятность события «хотя бы раз выпало 3 очка»?

Решение. При трёхкратном бросании игральной кости 6 очков может получится только в десяти случаях: 1 + 2 + 3, 1 + 3 + 2, 2 + 1 + 3, 2 + 3 + 1, 3 + 1 + 2, 3 + 2 + 1, 2 + 2 + 2, 1 + 1 + 4, 1 + 4 + 1 и 4 + 1 + 1. При этом 3 очка выпадает в шести из этих случаев. Значит, вероятность того, что хотя бы раз выпало 3 очка равна

 дробь: числитель: N_благ, знаменатель: N_общ конец дроби = дробь: числитель: 6, знаменатель: 10 конец дроби =0,6.

Ответ: 0,6.

49. В городе 48 % взрослого населения — мужчины. Пенсионеры составляют 12,6 % взрослого населения, причём доля пенсионеров среди женщин равна 15 %. Для социологического опроса выбран случайным образом мужчина, проживающий в этом городе. Найдите вероятность события «выбранный мужчина является пенсионером».

Решение. Женщин среди взрослого населения 100 % − 48 % = 52 %, среди них 52 % · 0,15 = 7,8% пенсионерок. Всего в городе 12,6 % пенсионеров, поэтому мужчин-пенсионеров 12,6 % − 7,8 % = 4,8 % от взрослого населения города. Поскольку всего среди взрослого населения города 48 % мужчин и среди них 4,8 % пенсионеров, пенсионером является каждый десятый: 4,8 % : 48 %} = 0,1. Следовательно, вероятность того, что случайно выбранный мужчина окажется пенсионером равна 0,1.

Ответ: 0,1.

Приведём другое решение.

Пусть х  — доля мужчин-пенсионеров среди всех мужчин. Построим дерево вероятностей (см. рис.).https://math-ege.sdamgia.ru/get_file?id=97423&png=1

Пенсионеры составляют 0,126 взрослого населения города, откуда получаем:

0,48x плюс 0,52 умножить на 0,15 = 0,126 равносильно
 равносильно 4800x плюс 52 умножить на 15 = 1260 равносильно 4800x = 480 равносильно x = 0,1.

Таким образом, вероятность того, что случайно выбранный мужчина окажется пенсионером, равна 0,1.

50. В коробке 8 синих, 6 красных и 11 зелёных фломастеров. Случайным образом выбирают два фломастера. Какова вероятность того, что окажутся выбраны один синий и один красный фломастер?

Решение. Заметим, что возможны два случая, когда выбраны один синий и один красный фломастер: сначала выбрали синий, потом красный; сначала выбрали красный, потом синий. Эти события несовместны, следовательно, искомая вероятность равна P(С; К) + P(К; С):

 дробь: числитель: 8, знаменатель: 25 конец дроби умножить на дробь: числитель: 6, знаменатель: 24 конец дроби плюс дробь: числитель: 6, знаменатель: 25 конец дроби умножить на дробь: числитель: 8, знаменатель: 24 конец дроби = дробь: числитель: 2, знаменатель: 25 конец дроби плюс дробь: числитель: 2, знаменатель: 25 конец дроби = дробь: числитель: 4, знаменатель: 25 конец дроби =0,16.

Ответ: 0,16.

Лучшие репетиторы для сдачи ЕГЭ

Задания по теме «Текстовые задачи»

Открытый банк заданий по теме текстовые задачи. Задания B11 из ЕГЭ по математике (профильный уровень)

Задание №1106

Условие

Наташе надо изготовить 300 бумажных журавликов. Ежедневно она делает на одно и то же количество журавликов больше по сравнению с предыдущим днём. В первый день Наташа сделала 6 журавликов. Сколько журавликов было сделано в последний день, если на всю работу потребовалось 15 дней?

Показать решение

Решение

Из условия следует, что количество бумажных «журавликов» ежедневно увеличивалось на одно и тоже число. Количество ежедневно сделанных бумажных «журавликов» образует арифметическую прогрессию, при этом первый член прогрессии равен 6. По формуле суммы первых членов арифметической прогрессии имеем

a_1+a_2+a_3+…+a_{15}= frac{a_1+a_{15}}{2}cdot15= 300,

6+a_{15}=40,

a_{15}=40-6=34.

Наташа в последний день изготовила 34 бумажных «журавлика»

Ответ

34

Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Задание №1105

Условие

Два велосипедиста одновременно отправились из деревни A в деревню B, расстояние между которыми 21 км. Скорость первого велосипедиста была на 3 км/ч больше скорости второго велосипедиста. Найдите скорость второго велосипедиста, если он приехал в деревню B на 10 мин позже первого. Ответ дайте в км/ч.

Показать решение

Решение

Обозначим скорость второго велосипедиста через x км/ч. Тогда скорость первого (x+3) км/ч, а время первого велосипедиста на прохождение всего пути frac{21}{x+3}ч, время второго велосипедиста, затраченное на прохождение всего пути frac{21}{x}ч. Разница во времени равна 10 мин = frac16часа.

Составим и решим уравнение: frac{21}{x}-frac{21}{x+3}=frac16,

6(21(x+3)-21x)=x(x+3),

x^2+3x-378=0,

x_1=18, x_2=-21.

Отрицательная скорость не удовлетворяет условию задачи. Скорость второго велосипедиста равна 18 км/ч.

Ответ

18

Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Задание №1104

Условие

Коле надо посадить 350 кустов роз. Ежедневно он сажает на одно и то же количество кустов больше по сравнению с предыдущим днём. В первый день он посадил 8 кустов роз. Сколько кустов было посажено в последний день, если на всю работу потребовалось 20 дней?

Показать решение

Решение

Из условия следует, что количество посаженных кустов роз ежедневно увеличивалось на одно и тоже число. Количество ежедневно посаженных роз образует арифметическую прогрессию, при этом первый член равен 8. По формуле суммы первых членов арифметической прогрессии получаем a_1+a_2+a_3+…+a_{20}= frac{a_1+a_{20}}{2}cdot20= 350,

8+a_{20}=35,

a_{20}=35-8=27.

Коля в последний день посадил 27 кустов роз.

Ответ

27

Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Задание №1103

Условие

Обе трубы наполняют бассейн за 6 часов, а первая труба — за 10 часов. За сколько часов наполнит бассейн вторая труба?

Показать решение

Решение

Объём бассейна примем за 1. Тогда за 1 час две трубы заполнят frac16часть бассейна, первая труба за 1 час заполнит frac{1}{10}часть бассейна. Значит, вторая труба за 1 час заполнит frac16-frac{1}{10}=frac{1}{15}часть бассейна. Весь бассейн вторая труба заполнит за 1 : frac{1}{15}=frac{15}{1}=15часов.

Ответ

15

Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Задание №1102

Условие

Первая труба пропускает на 2 литра воды в минуту меньше, чем вторая. Сколько литров воды в минуту пропускает первая труба, если ёмкость объёмом 420 литров она заполняет на 15 минут дольше, чем вторая труба заполняет ёмкость объёмом 280 литров?

Показать решение

Решение

Пусть первая труба пропускает x литров воды в минуту. Тогда вторая труба пропускает за одну минуту x + 2 литра. Первая труба заполняет ёмкость объёмом 420 литров за время frac{420}{x} мин, а вторая труба заполняет ёмкость объёмом 280 литров за frac{280}{x+2} мин, что различается на 15 минут.

Составим и решим уравнение:

frac{420}{x}-frac{280}{x+2}=15,

frac{84}{x}-frac{56}{x+2}=3,

84(x+2)-56x=3x(x+2),

28x+168=3x^2+6x,

3x^2-22x-168=0,

x_1=12, x_2=-frac{14}{3}.

Отрицательное значение не удовлетворяет условию. Первая труба пропускает 12 литров воды в минуту.

Ответ

12

Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Задание №1101

Условие

Моторная лодка прошла против течения реки 160 км и вернулась в пункт отправления, затратив на обратный путь на 8 часов меньше времени. Известно, что в неподвижной воде лодка движется со скоростью 15 км/ч. Найдите скорость течения реки. Ответ дайте в км/ч.

Показать решение

Решение

Обозначим скорость течения реки через x км/ч. Тогда скорость лодки по течению реки (15 + x) км/ч, скорость лодки против течения реки (15 — x) км/ч. Время, затраченное лодкой на путь по течению реки frac{160}{15+x} ч, время, затраченное на путь против течения реки — frac{160}{15-x} ч.

Составим и решим уравнение:

frac{160}{15-x}-frac{160}{15+x}=8,

frac{20}{15-x}-frac{20}{15+x}=1,

20(15+x-15+x)= (15-x)(15+x),

20cdot2x=225-x^2,

40x=225-x^2,

x^2+40x-225=0,

x_1=5, x_2=-45.

Скорость течения положительна, она равна 5 км/ч.

Ответ

5

Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Задание №1100

Условие

Два мотоциклиста выехали одновременно из города A в город B, расстояние между которыми 171 км. За один час первый мотоциклист проезжает расстояние на 40 км больше второго мотоциклиста. Найдите скорость второго мотоциклиста, если он приехал в пункт В на 2,5 часа позже первого. Ответ дайте в км/ч.

Показать решение

Решение

Обозначим скорость второго мотоциклиста через x км/ч, тогда по условию скорость первого мотоциклиста (x + 40) км/ч. Время, затраченное на прохождение всего пути первым мотоциклистом, равно frac{171}{x+40} ч. Время, затраченное на прохождение всего пути вторым мотоциклистом, равно frac{171}{x} ч.

Составим и решим уравнение:

frac{171}{x}-frac{171}{x+40}=2,5,

171(x + 40) — 171x = 2,5x(x + 40),

171x+171cdot40-171x = 2,5x^2 + 100x,

2,5x^2+100x-171cdot40 =0,

x^2+40x-171cdot16=0,

x_1 = 36, x_2 = -76.

Отрицательная скорость не удовлетворяет условию. Скорость второго мотоциклиста

36 км/ч.

Ответ

36

Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Задание №1099

Условие

Елена сделала вклад в банк в размере 5500 рублей. Проценты по вкладу начисляются раз в год и прибавляются к текущей сумме вклада. Спустя год Наталья положила такую же сумму в этот же банк и на тех же условиях. Ещё через год Елена и Наталья одновременно закрыли вклады и забрали деньги. В результате Елена получила на 739,2 рубля больше, чем получила Наталья. Найдите, какой процент годовых начислял банк по вкладам?

Показать решение

Решение

Пусть процент годовых будет x, тогда через год вклад Елены составил:

5500 + 0, 01x cdot 5500 = 5500(1 + 0,01x) рублей, а ещё через год — 5500(1 + 0,01x)^2 рублей. Вклад Натальи лежал в банке только год, потому он равен 5500(1 + 0,01x) рублей. А разность между получившимися вкладами Елены и Натальи составила 739,2 рубля.

Составим и решим уравнение:

5500(1+ 0,01x)^2-5500(1+0,01x)= 739,2,

(1+0,01x)^2-(1+0,01x)=0,1344,

x^2+100x-1344=0,

x_1=-112,enspace x_2=12.

Банк начислял 12% годовых.

Ответ

12

Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Задание №1098

Условие

Предприниматель Петров получил в 2005 году прибыль в размере 12,000 рублей. Каждый следующий год его прибыль увеличивалась на 110% по сравнению с предыдущим годом. Сколько рублей заработал Петров за 2008 год?

Показать решение

Решение

В 2005 году прибыль составляла 12,000 рублей, каждый следующий год она увеличивалась на 110%, то есть становилась 210% = 2,1 от предыдущего года. Через три года она будет равна 12,000 cdot 2,1^3 = 111,132 рубля.

Ответ

111132

Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Задание №1097

Условие

Имеется два сплава. Первый сплав содержит 12% железа, второй — 28% железа. Масса второго сплава больше массы первого на 2 кг. Из этих двух сплавов изготовили третий сплав с содержанием железа 21%. Найдите массу третьего сплава. Ответ дайте в килограммах.

Показать решение

Решение

Обозначим массу первого сплава через x кг. Тогда масса второго сплава (x + 2) кг. Содержание железа в первом сплаве равно 0,12x кг, во втором сплаве — 0,28(x + 2) кг. Третий сплав имеет массу x + x + 2 = 2x + 2 (кг), и в нём содержание железа равно 2(x + 1) cdot 0,21 = 0,42(x + 1) кг.

Составим и решим уравнение:

0,12x+ 0,28(x + 2) = 0,42(x+1),

6x + 14(x + 2) = 21(x + 1),

x = 7.

Третий сплав имеет массу 2 cdot 7 + 2 = 16 (кг).

Ответ

16

Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Лучшие репетиторы для сдачи ЕГЭ

Сложно со сдачей ЕГЭ?

Звоните, и подберем для вас репетитора: 78007750928

Задача 3. Начала теории вероятностей

Задача 3. Начала теории вероятностей

Задача 4. Вероятности сложных событий

Задача 4. Вероятности сложных событий

Задача 5. Простейшие уравнения

Задача 5. Простейшие уравнения

Задача 6. Вычисления и преобразования

Задача 6. Вычисления и преобразования

Задача 7. Производная и первообразная

Задача 7. Производная и первообразная

Задача 8. Задачи с прикладным содержанием

Задача 8. Задачи с прикладным содержанием

Задача 9. Текстовые задачи

Задача 9. Текстовые задачи

Задача 10. Графики функций

Задача 10. Графики функций

Задача 11. Наибольшее и наименьшее значение функций

Задача 11. Наибольшее и наименьшее значение функций

ЕГЭ по математике

Подборка текстовых задач ЕГЭ по математике (профиль).

Вариант содержит 13 заданий с ответами, которые можно использовать для подготовки к ЕГЭ по математике. По материалам работ СтатГрад.

→ скачать вариант

→ скачать ответы

Пример формулировки задач:

1. Имеется два сплава. Первый сплав содержит 5 % меди, второй — 14 % меди. Масса второго сплава больше массы первого на 7 кг. Из этих двух сплавов получили третий сплав, содержащий 10 % меди. Найдите массу третьего сплава. Ответ дайте в килограммах.

Ответ: ___________________________.

2. От пристани A к пристани B, расстояние между которыми равно 182 км, отправился с постоянной скоростью первый теплоход, а через 1 час после этого следом за ним со скоростью, на 1 км/ч большей, отправился второй. Найдите скорость второго теплохода, если в пункт B он прибыл одновременно с первым. Ответ дайте в км/ч.

Ответ: ___________________________.

3. По двум параллельным железнодорожным путям друг навстречу другу следуют скорый и пассажирский поезда, скорости которых равны соответственно 80 км/ч и 40 км/ч. Длина пассажирского поезда равна 350 метрам. Найдите длину скорого поезда, если время, за которое он прошёл мимо пассажирского поезда, равно 24 секундам. Ответ дайте в метрах.

Ответ: ___________________________.

Связанные страницы:

Понравилась статья? Поделить с друзьями:
  • Текстовые задачи по математике 11 класс егэ базовый
  • Текстовые задачи на работу по математике на егэ
  • Текстовые задачи на работу 11 класс егэ
  • Текстовые задачи на проценты егэ 11 класс
  • Текстовые задачи на егэ по математике базовый уровень