Тела вращения егэ математика


Пройти тестирование по этим заданиям
Вернуться к каталогу заданий

Версия для печати и копирования в MS Word

1

В цилиндрический сосуд налили 2000 см3 воды. Уровень воды при этом достигает высоты 12 см. В жидкость полностью погрузили деталь. При этом уровень жидкости в сосуде поднялся на 9 см. Чему равен объем детали? Ответ выразите в см3.


2

В цилиндрическом сосуде уровень жидкости достигает 16 см. На какой высоте будет находиться уровень жидкости, если ее перелить во второй сосуд, диаметр которого в 2 раза больше первого? Ответ дайте в сантиметрах.


3

В цилиндрический сосуд налили 6 куб. см воды. В воду полностью погрузили деталь. При этом уровень жидкости в сосуде увеличился в 1,5 раза. Найдите объём детали. Ответ выразите в куб. см.


4

В сосуде, имеющем форму конуса, уровень жидкости достигает  дробь: числитель: 1, знаменатель: 2 конец дроби высоты. Объём жидкости равен 70 мл. Сколько миллилитров жидкости нужно долить, чтобы полностью наполнить сосуд?

Источник: Пробный экзамен Санкт-Петербург 2014. Вариант 1.


5

Даны две кружки цилиндрической формы. Первая кружка в полтора раза ниже второй, а вторая вдвое шире первой. Во сколько раз объём второй кружки больше объёма первой?

Источник: Апробация базового ЕГЭ по математике, 13—17 октября: вариант 120911., ЕГЭ по базовой математике 26.03.2015. Досрочная волна

Пройти тестирование по этим заданиям

20 февраля 2022

В закладки

Обсудить

Жалоба

Объёмы тел вращения

В данной методической разработке приведены формулы и разобраны примеры решения традиционных задач на вычисление объёмов тел вращения.

obemy-tel-vraschenija.docx
obemy-tel-vraschenija.pdf

Задача №1

Цилиндр и конус имеют общее основание и общую высоту. Вычислите объем цилиндра, если объем конуса равен 36 см3.

Задача №2

Высота одного цилиндра вдвое больше высоты второго цилиндра, но его радиус в два раза меньше радиуса второго цилиндра. Найти отношение их объёмов

Задача №3

Найти объем 25м цилиндрической трубы (полого цилиндра), если внешний радиус равен 50см, диаметр стенок равен 10см.

Задача №4

Объём конуса равен 36, а его высота равна 12. Найдите радиус основания конуса.

Задача №5

Объём конуса равен 24 см3. Через середину высоты параллельно основанию конуса проведено сечение, которое является основанием меньшего конуса с той же вершиной. Найдите объём меньшего конуса.

Задача №6

Диаметр основания конуса равен 16, а длина образующей — 17. Найдите объем конуса.

Задача №7

Радиусы оснований усечённого конуса равны 4 и 12, а образующая равна 10. Вычислить объем усечённого конуса.

Задача №8

Внутренний диаметр полого шара равен 8 см, а толщина стенок равна 2 см. Найдите объем материала, из которого сделан шар.

Задача №9

Прямоугольная трапеция с основаниями 11см и 17 см и высотой 12 см вращается около прямой, проходящей через вершину острого угла перпендикулярно основаниям. Hайдите объем полученного тела вращения.

Задача №10
Прямоугольный треугольник с катетами 20 см и 15 см вращается вокруг гипотенузы . Найти объём полученного тела вращения.

Задания для самостоятельного решения.

1. Даны две кружки цилиндрической формы. Первая кружка в полтора раза ниже второй, а вторая вдвое шире первой. Во сколько раз объём второй кружки больше объёма первой?

2. Однородный шар диаметром 3 см имеет массу 162 грамма. Чему равна масса шара, изготовленного из того же материала, с диаметром 2 см? Ответ дайте в граммах.

3. Осевое сечение конуса равносторонний треугольник, сторона которого равна 12 см. Найдите объём конуса.

4. Найти объем тела, полученного в результате вращения прямоугольного треугольника вокруг гипотенузы, если катеты равны 3см и 4 см.

5. Прямоугольная трапеция с основанием 5 см и 8 см и высотой 4 см вращается около большего основания. Найдите объем тела вращения.

Автор: Барсукова Наталья Александровна.

По теме: методические разработки, презентации и конспекты

Решение задач по теме: «Тела вращения

Цели урока:
• систематизировать знания учащихся;
• обобщить изученный материал;
• рассмотреть задачи на комбинацию тел;
• проверить умения и навыки при решении задач на нахождение объемов тел …

Задачи к уроку по теме «Тела вращения»

При обучении геометрии большое значение имеет умение решать задачи, требующее установление соотношений между данными и искомыми. При решении таких задач проявляется уровень математического развит…

Цилиндры, сферы и конусы: будем вписывать их в другие объекты, будем рассекать их различными плоскостями, отыскивать углы наклона этих сечений к основанию или их площади.

Задача 1.

В правильную шестиугольную пирамиду, боковое ребро которой равно 10, а высота равна 6, вписана сфера. (Сфера касается всех граней пирамиды.) Найдите площадь этой сферы.

Задача14_3_1

Сфера вписана в пирамиду

Так как сфера касается всех граней, то точки касания обязательно лежат на апофемах граней. Нарисуем пирамиду в разрезе, причем разрез пройдет по апофемам противолежащих граней. Тогда сечение – треугольник MSN, а сечение сферы – вписанная в этот треугольник окружность. Разберемся, отрезки каких длин в этом сечении присутствуют. Так как высота пирамиды 6, а боковое ребро 10, найдем длину отрезка Тела вращения: задача 14 профильного ЕГЭ:
Тела вращения: задача 14 профильного ЕГЭ
Так как основание пирамиды составлено из правильных треугольников, то длина Тела вращения: задача 14 профильного ЕГЭ равна ребру основания. Теперь можем определить длину апофемы:
Тела вращения: задача 14 профильного ЕГЭ
Основание треугольника сечения составлено из двух одинаковых отрезков, которые равны высоте треугольника Тела вращения: задача 14 профильного ЕГЭ, например. Так как это правильный треугольник со стороной 8, то высота этого треугольника равна Тела вращения: задача 14 профильного ЕГЭ, а длина MN тогда Тела вращения: задача 14 профильного ЕГЭ.

Задача14_3_2

Сечение пирамиды

Итак, теперь мы знаем стороны треугольника сечения Тела вращения: задача 14 профильного ЕГЭ: Тела вращения: задача 14 профильного ЕГЭ, Тела вращения: задача 14 профильного ЕГЭ.
Определим радиус вписанной в него окружности.

Задача14_3_3

Вписанная в сечение пирамиды окружность (сечение сферы)

Тела вращения: задача 14 профильного ЕГЭ
Тела вращения: задача 14 профильного ЕГЭ
Тела вращения: задача 14 профильного ЕГЭ
Как известно, радиус вписанной окружности можно определить через площадь:
Тела вращения: задача 14 профильного ЕГЭ
Тела вращения: задача 14 профильного ЕГЭ
Теперь, зная радиус, можно найти и площадь поверхности сферы:
Тела вращения: задача 14 профильного ЕГЭ
Ответ: Тела вращения: задача 14 профильного ЕГЭ

Задача 2.

Радиус основания конуса равен 6, а его высота равна 8. Плоскость сечения содержит вершину конуса и хорду основания, длина которой равна 4. Найдите расстояние от центра основания конуса до плоскости сечения.

Задача14_3_4

Сечение конуса

Образующую конуса можно найти из осевого сечения по теореме Пифагора.
Тела вращения: задача 14 профильного ЕГЭ
Отрезок OP – высота треугольника Тела вращения: задача 14 профильного ЕГЭ. В треугольнике MON стороны равны 4, 6 и 6, определим его площадь по формуле Герона и затем найдем высоту:
Тела вращения: задача 14 профильного ЕГЭ
Полупериметр треугольника MON равен 8, площадь:
Тела вращения: задача 14 профильного ЕГЭ
Тела вращения: задача 14 профильного ЕГЭ
Искомое расстояние – высота треугольника Тела вращения: задача 14 профильного ЕГЭ, проведенная к SP.
Определим высоту сечения SP.

Задача14_3_6

Дополнительные построения к задаче

По теореме Пифагора
Тела вращения: задача 14 профильного ЕГЭ
Площадь треугольника SOP:
Тела вращения: задача 14 профильного ЕГЭ
Наконец, искомое расстояние:
Тела вращения: задача 14 профильного ЕГЭ
Ответ: Тела вращения: задача 14 профильного ЕГЭ

Задача 3.

В правильную четырёхугольную пирамиду, боковое ребро которой равно 10, а высота равна 6, вписана сфера. (Сфера касается всех граней пирамиды.) Найдите площадь этой сферы.

Задача14_3_9

Пирамида, в которую надо вписать сферу

Так как сфера касается всех граней, то точки касания обязательно лежат на апофемах граней. Нарисуем пирамиду в разрезе, причем разрез пройдет по апофемам противолежащих граней. Тогда сечение – треугольник SQP, а сечение сферы – вписанная в этот треугольник окружность. Разберемся, отрезки каких длин в этом сечении присутствуют. Так как высота пирамиды 6, а боковое ребро 10, найдем длину отрезка Тела вращения: задача 14 профильного ЕГЭ:
Тела вращения: задача 14 профильного ЕГЭ
Тогда Тела вращения: задача 14 профильного ЕГЭ равна Тела вращения: задача 14 профильного ЕГЭ, так как треугольник Тела вращения: задача 14 профильного ЕГЭ — равнобедренный и прямоугольный, имеет острые углы по Тела вращения: задача 14 профильного ЕГЭ, тригонометрические функции которых хорошо известны:
Тела вращения: задача 14 профильного ЕГЭ
Определим длину апофемы грани:
Тела вращения: задача 14 профильного ЕГЭ
В треугольнике SQP стороны: Тела вращения: задача 14 профильного ЕГЭ, Тела вращения: задача 14 профильного ЕГЭ
Определим радиус вписанной в него окружности.
Тела вращения: задача 14 профильного ЕГЭ
Тела вращения: задача 14 профильного ЕГЭ
Тела вращения: задача 14 профильного ЕГЭ
Как известно, радиус вписанной окружности можно определить через площадь:
Тела вращения: задача 14 профильного ЕГЭ
Тела вращения: задача 14 профильного ЕГЭ
Теперь, зная радиус, можно найти и площадь поверхности сферы:
Тела вращения: задача 14 профильного ЕГЭ
Ответ: Тела вращения: задача 14 профильного ЕГЭ

Задача 4.

Радиус основания конуса с вершиной Тела вращения: задача 14 профильного ЕГЭ равен 6, а длина его образующей равна 9. На окружности основания конуса выбраны точки Тела вращения: задача 14 профильного ЕГЭ и Тела вращения: задача 14 профильного ЕГЭ, делящие окружность на две дуги, длины которых относятся как 1:5. Найдите площадь сечения конуса плоскостью Тела вращения: задача 14 профильного ЕГЭ.

Задача14_3_7

Дуги окружности основания конуса и сечение

Длины дуг окружности пропорциональны центральным углам, поэтому Тела вращения: задача 14 профильного ЕГЭ, Тела вращения: задача 14 профильного ЕГЭ. Таким образом, поскольку радиус основания конуса равен 6, то треугольник MON правильный и длина хорды Тела вращения: задача 14 профильного ЕГЭ. Далее просто пользуемся формулой Герона для определения площади сечения:
Тела вращения: задача 14 профильного ЕГЭ

Тела вращения: задача 14 профильного ЕГЭ
Ответ: Тела вращения: задача 14 профильного ЕГЭ

Задача 5.

Две параллельные плоскости, расстояние между которыми 2, пересекают шар. Одна из плоскостей проходит через центр шара. Отношение площадей сечений шара этими плоскостями равно 0,84. Найдите радиус шара.

Задача14_3_8

Сфера и ее сечения

Площадь сечения шара плоскостью – окружность. Площадь окружности
Тела вращения: задача 14 профильного ЕГЭ
Большая окружность проходит через центр сферы, поэтому ее радиус – радиус сферы R.
Тогда отношение площадей:
Тела вращения: задача 14 профильного ЕГЭ
Тела вращения: задача 14 профильного ЕГЭ
Рассмотрим треугольник Тела вращения: задача 14 профильного ЕГЭ. В нем Тела вращения: задача 14 профильного ЕГЭ, Тела вращения: задача 14 профильного ЕГЭ, Тела вращения: задача 14 профильного ЕГЭ.
Это прямоугольный треугольник, поэтому
Тела вращения: задача 14 профильного ЕГЭ
Тела вращения: задача 14 профильного ЕГЭ
Или
Тела вращения: задача 14 профильного ЕГЭ
Тогда:
Тела вращения: задача 14 профильного ЕГЭ
Получили уравнение:
Тела вращения: задача 14 профильного ЕГЭ
Тела вращения: задача 14 профильного ЕГЭ
Тела вращения: задача 14 профильного ЕГЭ
Тела вращения: задача 14 профильного ЕГЭ
Ответ: Тела вращения: задача 14 профильного ЕГЭ

ТЕМ ВРЕМЕНЕМ
В БЛОГАХ…


еще…

КОММЕНТАРИИ

еще…

Ольга Михайловна, спасибо за полезную разработку! Ваше творчество не имеет грани…

Спасибо, Любовь Николаевна, за то, что оценили мой комплекс как прекрасный. Спас…

Елена Владимировна, спасибо за столь приятный комментарий. Очень рада слышать Ва…

Оригинально и высококачественно подан ресурс по развитию функциональной грамотно…

Любовь Николаевна, Вы освежаете в памяти нашей форматы интереснейших шаблонов! Л…

Широта Вашей фантазии просто изумляет! Так со вкусом подаете ресурсы, что каждый…

Задачи для подготовки к ЕГЭ «Тела вращения»

ЕГЭ по математике

• 11 класс

• проверка знаний, повторение, систематизация
,
презентация

24.08.2021

Презентация «Задачи для подготовки к ГИА и ЕГЭ» содержит задания на тему «Тела вращения» (треугольник, конус, усечённый конус, шар). Подходит для любых УМК. Может быть использована при систематизации знаний и на занятиях по подготовке к ЕГЭ в 11 классе.
Цели урока:
Образовательные: повторить и закрепить знания телах вращения, научиться применять эти знания при решении конкретных задач.
Развивающие: развивать умение анализировать условие задачи.
Воспитательные: воспитание аккуратности, внимательности, быстроты мышления.

©

Коломина Наталья Николаевна

Коломина Наталья Николаевна

Понравилось? Сохраните и поделитесь:

Неограниченная бесплатная загрука материала «Задачи для подготовки к ЕГЭ «Тела вращения»» доступна всем пользователям. Разработка находится в разделе «ЕГЭ по математике» и представляет собой: «проверка знаний, повторение, систематизация».

Загрузка началась…

Понравился сайт? Получайте ссылки
на лучшие материалы еженедельно!

Подарок каждому подписчику!

Порядок вывода комментариев:

Ольга Михайловна, спасибо Вам большое!

Наталья Николаевна, Ваши работы всегда стильно, без излишеств, оформлены. Понравилось, что все ресурсы разнообразны. Спасибо Вам за творчество!

Елена Владимировна, благодарю Вас за позитивный отзыв!

Наталья Николаевна, действительно, всем Вашим работам присущ свой стиль, они легко узнаваемы и всегда вызывают восхищение!

Наталья Александровна, спасибо за добрые слова.

Наталья Николаевна, я Ваша поклонница! Такая красота в каждой работе. Хорошее оформление формирует эстетический вкус у детей. В этом Вы преуспели!

ирина Евгеньевна, приятно читать такие слова от Мастера.

Такое оформление и у взрослых формирует эстетический вкус! Я далеко не математик, но разглядываю эти работы с великим удовольствием! Учусь!

Я согласна с Вами, Наталья Александровна. Мы — учителя — должны не только учить ребят, но и воспитывать. В том числе и вкус.

«И я, и я, и я того же мнения!» tongue

/разглядываю эти работы с великим удовольствием/,
чтобы позаимствоать что-то для своей! Я ещё долго будут заходить в Ваше портфолио после марафона, Наталья Николаевна! Теперь я знаю, у кого можно поучиться «изюминкам» оформления. Спасибо за Ваше творчество.

Надежда Георгиевна, я буду только рада! Правда, не знаю, скоро ли буду что-нибудь выкладывать… Надо передохнуть. surprised

Сняли с языка, Надежда Георгиевна! Просмотрела много Ваших презентаций, Наталья Николаевна. Различные технологические приемы используете и все для закрепления и систематизации материала. Дети в игровой форме будут с радостью изучать математику! Я скачала, теперь буду учиться у Вас. Спасибо Вам за это!

Удачи Вам, Галина Геннадьевна, в работе! Я постараюсь наблюдать за Вашими успехами!

Зачет   «Тела вращения»

1 вариант

№13
ЕГЭ, база

1)     
Радиус ос­но­ва­ния
цилиндра равен 2, вы­со­та равна 3. Най­ди­те площадь бо­ко­вой поверхности
цилиндра, де­лен­ную на π.

2)     
Площадь бо­ко­вой поверхности ци­лин­дра
равна 2π, а диа­метр основания равен 1. Най­ди­те высоту цилиндра.

3)     
Площадь боковой поверхности цилиндра
равна 2π, а высота равна 1. Найдите диаметр основания.

4)     
Во сколь­ко раз уве­ли­чит­ся пло­щадь бо­ко­вой
по­верх­но­сти конуса, если его об­ра­зу­ю­щую уве­ли­чить в 3 раза?

5)     
Высота ко­ну­са равна 4, а диа­метр
основания — 6. Най­ди­те образующую конуса.

6)     
Площадь боль­шо­го круга шара равна 3. Най­ди­те
площадь по­верх­но­сти шара.

7)     
Даны два шара с ра­ди­у­са­ми 3 и 1. Во
сколь­ко раз пло­щадь поверхности пер­во­го шара боль­ше площади по­верх­но­сти
второго?

№16
ЕГЭ, база

8)      
Площадь осевого сечения цилиндра равна 4.
Найдите площадь боковой поверхности цилиндра, деленную на π.

9)     
Длина окружности основания конуса равна 3,
образующая равна 2. Найдите площадь боковой поверхности конуса.

10) Куб
вписан в шар радиуса
. Найдите объем куба.

11)  Около
шара опи­сан цилиндр, пло­щадь поверхности ко­то­ро­го равна 18. Най­ди­те
площадь по­верх­но­сти шара.

https://mathb-ege.sdamgia.ru/get_file?id=778

12)  Около
конуса описана сфера (сфера содержит окружность основания конуса и его
вершину). Центр сферы находится в центре основания конуса. Радиус сферы
равен 
. Найдите образующую
конуса.

Дополнительно: (№13 ЕГЭ, профиль)

13) 
В цилиндре
образующая перпендикулярна плоскости основания. На окружности одного из
оснований цилиндра выбраны точки А и В, а на
окружности другого основания — точки В1 и С1,
причем ВВ1 — образующая цилиндра, а отрезок АС1 пересекает
ось цилиндра.

а)
Докажите, что угол АВС1 прямой.

б)
Найдите угол между прямыми ВВ1 и АС1,
если АВ = 6, ВВ1 = 15, В1С1 = 8.

Зачет   «Тела вращения»

2 вариант

№13
ЕГЭ, база

1)     
Радиус основания цилиндра
равен 7, высота равна 10. Найдите площадь боковой поверхности цилиндра,
деленную на π .

2)     
Длина
окруж­но­сти основания ци­лин­дра равна 3. Пло­щадь боковой по­верх­но­сти
равна 6. Най­ди­те высоту цилиндра.

3)      Площадь
бо­ко­вой поверхности ци­лин­дра равна 40π а диа­метр основания равен
5. Най­ди­те высоту цилиндра.

4)      Во сколько
раз уменьшится площадь боковой поверхности конуса, если радиус его основания
уменьшится в 1,5 раза, а образующая останется прежней?

5)     
Высота конуса равна 4, а
длина образующей — 5. Найдите диаметр основания конуса.

6)     
Во сколь­ко раз уве­ли­чит­ся
площадь по­верх­но­сти шара, если ра­ди­ус шара уве­ли­чить в 2 раза?

7)     
Даны два
шара. Диа­метр пер­во­го шара в 8 раз боль­ше диа­мет­ра второго. Во сколь­ко
раз пло­щадь по­верх­но­сти пер­во­го шара боль­ше пло­ща­ди по­верх­но­сти
второго?

№16
ЕГЭ, база

8)      
Радиус ос­но­ва­ния
цилиндра равен 26, а его об­ра­зу­ю­щая равна 9. Сечение, па­рал­лель­ное оси
цилиндра, уда­ле­но от неё на расстояние, рав­ное 24. Най­ди­те площадь этого
сечения.

9)     
Длина окружности основания
конуса равна 8, образующая равна 8. Найдите площадь боковой поверхности конуса.

10) Куб вписан в шар радиуса .
Найдите объем куба.

11) 
Около шара описан цилиндр,
площадь поверхности которого равна 45. Найдите площадь поверхности шара.

https://mathb-ege.sdamgia.ru/get_file?id=778

12)  Около
конуса описана сфера (сфера содержит окружность основания конуса и его
вершину). Центр сферы находится в центре основания конуса. Радиус сферы
равен 
. Найдите образующую
конуса.

Дополнительно: (№13 ЕГЭ, профиль)

13) В цилиндре образующая перпендикулярна плоскости основания.
На окружности одного из оснований цилиндра выбраны точки А и В,
а на окружности другого основания — точки В1 и С1,
причем ВВ1 — образующая цилиндра, а отрезок АС1 пересекает
ось цилиндра.

а) Докажите, что угол АВС1 прямой.

б) Найдите площадь боковой
поверхности цилиндра, если AB = 20, BB1 = 15, B1C1 = 21.

Понравилась статья? Поделить с друзьями:
  • Тела вращения в задачах егэ акчурина ответы
  • Тел озын гомер кыска сочинение
  • Тел миллэт сакчысы сочинение
  • Тел милл?т сакчысы сочинение
  • Тел кыйммэтле тарихи мирас сочинение