Тела вращения решу егэ


Пройти тестирование по этим заданиям
Вернуться к каталогу заданий

Версия для печати и копирования в MS Word

1

Объем конуса равен 16. Через середину высоты параллельно основанию конуса проведено сечение, которое является основанием меньшего конуса с той же вершиной. Найдите объем меньшего конуса.


2

Найдите объем V конуса, образующая которого равна 2 и наклонена к плоскости основания под углом 30°. В ответе укажите  дробь: числитель: V, знаменатель: Пи конец дроби .


3

Во сколько раз уменьшится объем конуса, если его высота уменьшится в 3 раза, а радиус основания останется прежним?


4

Во сколько раз увеличится объем конуса, если радиус его основания увеличится в 1,5 раза, а высота останется прежней?


5

Высота конуса равна 6, образующая равна 10. Найдите его объем, деленный на  Пи .

Пройти тестирование по этим заданиям

в условии
в решении
в тексте к заданию
в атрибутах

Категория:

Атрибут:

Всего: 129    1–20 | 21–40 | 41–60 | 61–80 …

Добавить в вариант

Конус и цилиндр имеют общее основание и общую высоту (конус вписан в цилиндр). Вычислите объём цилиндра, если объём конуса равен 57.


Цилиндр и конус имеют общие основание и высоту. Найдите объем конуса, если объем цилиндра равен 150.


Цилиндр и конус имеют общие основание и высоту. Найдите объем конуса, если объем цилиндра равен 114.


Цилиндр и конус имеют общие основание и высоту. Найдите объем конуса, если объем цилиндра равен 138.


Цилиндр описан около шара. Объем шара равен 24. Найдите объем цилиндра.

Источник: Пробный экзамен по математике Кировского района Санкт-Петербурга, 2015. Вариант 2.


Конус вписан в шар. Радиус основания конуса равен радиусу шара. Объем шара равен 28. Найдите объем конуса.


Цилиндр описан около шара. Объем шара равен 38. Найдите объем цилиндра.


Конус вписан в шар. Радиус основания конуса равен радиусу шара. Объем шара равен 116. Найдите объем конуса.


Цилиндр и конус имеют общие основание и высоту. Объём конуса равен 25. Найдите объём цилиндра.

Источник: ЕГЭ по математике 07.06.2021. Основная волна. Сибирь


Цилиндр и конус имеют общие основание и высоту. Объём конуса равен 42. Найдите объём цилиндра.


Цилиндр и конус имеют общие основание и высоту. Объём конуса равен 25. Найдите объём цилиндра.

Источник: ЕГЭ по математике. Основная волна 07.06.2021. Урал


Конус вписан в шар. Радиус основания конуса равен радиусу шара. Объём шара равен 156. Найдите объём конуса.


Конус вписан в шар. Радиус основания конуса равен радиусу шара. Объём шара равен 112. Найдите объём конуса.


Цилиндр и конус имеют общие основание и высоту. Объём конуса равен 36. Найдите объём цилиндра.


Цилиндр и конус имеют общие основание и высоту. Объём конуса равен 63. Найдите объём цилиндра.


Цилиндр и конус имеют общие основание и высоту. Объём конуса равен 25. Найдите объём цилиндра.

Источник: Основная волна ЕГЭ по математике 29.05.2019. Центр


Конус вписан в шар. Радиус основания конуса равен радиусу шара. Объем конуса равен 6. Найдите объем шара.

Источник: ЕГЭ по математике 07.06.2021. Основная волна. Подмосковье


Конус вписан в шар. Радиус основания конуса равен радиусу шара. Объем конуса равен 2. Найдите объем шара.

Источник: ЕГЭ по математике 07.06.2021. Основная волна. Санкт-Петербург


Конус вписан в шар. Радиус основания конуса равен радиусу шара. Объём конуса равен 47. Найдите объём шара.

Источник: ЕГЭ по математике 28.03.2016. Досрочная волна, вариант 3


Цилиндр описан около шара. Объем цилиндра равен 33. Найдите объем шара.

Источник: Пробный экзамен по математике Кировского района Санкт-Петербурга, 2015. Вариант 1.

Всего: 129    1–20 | 21–40 | 41–60 | 61–80 …

20 февраля 2022

В закладки

Обсудить

Жалоба

Объёмы тел вращения

В данной методической разработке приведены формулы и разобраны примеры решения традиционных задач на вычисление объёмов тел вращения.

obemy-tel-vraschenija.docx
obemy-tel-vraschenija.pdf

Задача №1

Цилиндр и конус имеют общее основание и общую высоту. Вычислите объем цилиндра, если объем конуса равен 36 см3.

Задача №2

Высота одного цилиндра вдвое больше высоты второго цилиндра, но его радиус в два раза меньше радиуса второго цилиндра. Найти отношение их объёмов

Задача №3

Найти объем 25м цилиндрической трубы (полого цилиндра), если внешний радиус равен 50см, диаметр стенок равен 10см.

Задача №4

Объём конуса равен 36, а его высота равна 12. Найдите радиус основания конуса.

Задача №5

Объём конуса равен 24 см3. Через середину высоты параллельно основанию конуса проведено сечение, которое является основанием меньшего конуса с той же вершиной. Найдите объём меньшего конуса.

Задача №6

Диаметр основания конуса равен 16, а длина образующей — 17. Найдите объем конуса.

Задача №7

Радиусы оснований усечённого конуса равны 4 и 12, а образующая равна 10. Вычислить объем усечённого конуса.

Задача №8

Внутренний диаметр полого шара равен 8 см, а толщина стенок равна 2 см. Найдите объем материала, из которого сделан шар.

Задача №9

Прямоугольная трапеция с основаниями 11см и 17 см и высотой 12 см вращается около прямой, проходящей через вершину острого угла перпендикулярно основаниям. Hайдите объем полученного тела вращения.

Задача №10
Прямоугольный треугольник с катетами 20 см и 15 см вращается вокруг гипотенузы . Найти объём полученного тела вращения.

Задания для самостоятельного решения.

1. Даны две кружки цилиндрической формы. Первая кружка в полтора раза ниже второй, а вторая вдвое шире первой. Во сколько раз объём второй кружки больше объёма первой?

2. Однородный шар диаметром 3 см имеет массу 162 грамма. Чему равна масса шара, изготовленного из того же материала, с диаметром 2 см? Ответ дайте в граммах.

3. Осевое сечение конуса равносторонний треугольник, сторона которого равна 12 см. Найдите объём конуса.

4. Найти объем тела, полученного в результате вращения прямоугольного треугольника вокруг гипотенузы, если катеты равны 3см и 4 см.

5. Прямоугольная трапеция с основанием 5 см и 8 см и высотой 4 см вращается около большего основания. Найдите объем тела вращения.

Автор: Барсукова Наталья Александровна.

Skip to content

ЕГЭ Профиль №14. Фигуры вращения: Цилиндр, конус, шар

ЕГЭ Профиль №14. Фигуры вращения: Цилиндр, конус, шарadmin2019-01-18T18:40:12+03:00

Цилиндры, сферы и конусы: будем вписывать их в другие объекты, будем рассекать их различными плоскостями, отыскивать углы наклона этих сечений к основанию или их площади.

Задача 1.

В правильную шестиугольную пирамиду, боковое ребро которой равно 10, а высота равна 6, вписана сфера. (Сфера касается всех граней пирамиды.) Найдите площадь этой сферы.

Задача14_3_1

Сфера вписана в пирамиду

Так как сфера касается всех граней, то точки касания обязательно лежат на апофемах граней. Нарисуем пирамиду в разрезе, причем разрез пройдет по апофемам противолежащих граней. Тогда сечение – треугольник MSN, а сечение сферы – вписанная в этот треугольник окружность. Разберемся, отрезки каких длин в этом сечении присутствуют. Так как высота пирамиды 6, а боковое ребро 10, найдем длину отрезка Тела вращения: задача 14 профильного ЕГЭ:
Тела вращения: задача 14 профильного ЕГЭ
Так как основание пирамиды составлено из правильных треугольников, то длина Тела вращения: задача 14 профильного ЕГЭ равна ребру основания. Теперь можем определить длину апофемы:
Тела вращения: задача 14 профильного ЕГЭ
Основание треугольника сечения составлено из двух одинаковых отрезков, которые равны высоте треугольника Тела вращения: задача 14 профильного ЕГЭ, например. Так как это правильный треугольник со стороной 8, то высота этого треугольника равна Тела вращения: задача 14 профильного ЕГЭ, а длина MN тогда Тела вращения: задача 14 профильного ЕГЭ.

Задача14_3_2

Сечение пирамиды

Итак, теперь мы знаем стороны треугольника сечения Тела вращения: задача 14 профильного ЕГЭ: Тела вращения: задача 14 профильного ЕГЭ, Тела вращения: задача 14 профильного ЕГЭ.
Определим радиус вписанной в него окружности.

Задача14_3_3

Вписанная в сечение пирамиды окружность (сечение сферы)

Тела вращения: задача 14 профильного ЕГЭ
Тела вращения: задача 14 профильного ЕГЭ
Тела вращения: задача 14 профильного ЕГЭ
Как известно, радиус вписанной окружности можно определить через площадь:
Тела вращения: задача 14 профильного ЕГЭ
Тела вращения: задача 14 профильного ЕГЭ
Теперь, зная радиус, можно найти и площадь поверхности сферы:
Тела вращения: задача 14 профильного ЕГЭ
Ответ: Тела вращения: задача 14 профильного ЕГЭ

Задача 2.

Радиус основания конуса равен 6, а его высота равна 8. Плоскость сечения содержит вершину конуса и хорду основания, длина которой равна 4. Найдите расстояние от центра основания конуса до плоскости сечения.

Задача14_3_4

Сечение конуса

Образующую конуса можно найти из осевого сечения по теореме Пифагора.
Тела вращения: задача 14 профильного ЕГЭ
Отрезок OP – высота треугольника Тела вращения: задача 14 профильного ЕГЭ. В треугольнике MON стороны равны 4, 6 и 6, определим его площадь по формуле Герона и затем найдем высоту:
Тела вращения: задача 14 профильного ЕГЭ
Полупериметр треугольника MON равен 8, площадь:
Тела вращения: задача 14 профильного ЕГЭ
Тела вращения: задача 14 профильного ЕГЭ
Искомое расстояние – высота треугольника Тела вращения: задача 14 профильного ЕГЭ, проведенная к SP.
Определим высоту сечения SP.

Задача14_3_6

Дополнительные построения к задаче

По теореме Пифагора
Тела вращения: задача 14 профильного ЕГЭ
Площадь треугольника SOP:
Тела вращения: задача 14 профильного ЕГЭ
Наконец, искомое расстояние:
Тела вращения: задача 14 профильного ЕГЭ
Ответ: Тела вращения: задача 14 профильного ЕГЭ

Задача 3.

В правильную четырёхугольную пирамиду, боковое ребро которой равно 10, а высота равна 6, вписана сфера. (Сфера касается всех граней пирамиды.) Найдите площадь этой сферы.

Задача14_3_9

Пирамида, в которую надо вписать сферу

Так как сфера касается всех граней, то точки касания обязательно лежат на апофемах граней. Нарисуем пирамиду в разрезе, причем разрез пройдет по апофемам противолежащих граней. Тогда сечение – треугольник SQP, а сечение сферы – вписанная в этот треугольник окружность. Разберемся, отрезки каких длин в этом сечении присутствуют. Так как высота пирамиды 6, а боковое ребро 10, найдем длину отрезка Тела вращения: задача 14 профильного ЕГЭ:
Тела вращения: задача 14 профильного ЕГЭ
Тогда Тела вращения: задача 14 профильного ЕГЭ равна Тела вращения: задача 14 профильного ЕГЭ, так как треугольник Тела вращения: задача 14 профильного ЕГЭ — равнобедренный и прямоугольный, имеет острые углы по Тела вращения: задача 14 профильного ЕГЭ, тригонометрические функции которых хорошо известны:
Тела вращения: задача 14 профильного ЕГЭ
Определим длину апофемы грани:
Тела вращения: задача 14 профильного ЕГЭ
В треугольнике SQP стороны: Тела вращения: задача 14 профильного ЕГЭ, Тела вращения: задача 14 профильного ЕГЭ
Определим радиус вписанной в него окружности.
Тела вращения: задача 14 профильного ЕГЭ
Тела вращения: задача 14 профильного ЕГЭ
Тела вращения: задача 14 профильного ЕГЭ
Как известно, радиус вписанной окружности можно определить через площадь:
Тела вращения: задача 14 профильного ЕГЭ
Тела вращения: задача 14 профильного ЕГЭ
Теперь, зная радиус, можно найти и площадь поверхности сферы:
Тела вращения: задача 14 профильного ЕГЭ
Ответ: Тела вращения: задача 14 профильного ЕГЭ

Задача 4.

Радиус основания конуса с вершиной Тела вращения: задача 14 профильного ЕГЭ равен 6, а длина его образующей равна 9. На окружности основания конуса выбраны точки Тела вращения: задача 14 профильного ЕГЭ и Тела вращения: задача 14 профильного ЕГЭ, делящие окружность на две дуги, длины которых относятся как 1:5. Найдите площадь сечения конуса плоскостью Тела вращения: задача 14 профильного ЕГЭ.

Задача14_3_7

Дуги окружности основания конуса и сечение

Длины дуг окружности пропорциональны центральным углам, поэтому Тела вращения: задача 14 профильного ЕГЭ, Тела вращения: задача 14 профильного ЕГЭ. Таким образом, поскольку радиус основания конуса равен 6, то треугольник MON правильный и длина хорды Тела вращения: задача 14 профильного ЕГЭ. Далее просто пользуемся формулой Герона для определения площади сечения:
Тела вращения: задача 14 профильного ЕГЭ

Тела вращения: задача 14 профильного ЕГЭ
Ответ: Тела вращения: задача 14 профильного ЕГЭ

Задача 5.

Две параллельные плоскости, расстояние между которыми 2, пересекают шар. Одна из плоскостей проходит через центр шара. Отношение площадей сечений шара этими плоскостями равно 0,84. Найдите радиус шара.

Задача14_3_8

Сфера и ее сечения

Площадь сечения шара плоскостью – окружность. Площадь окружности
Тела вращения: задача 14 профильного ЕГЭ
Большая окружность проходит через центр сферы, поэтому ее радиус – радиус сферы R.
Тогда отношение площадей:
Тела вращения: задача 14 профильного ЕГЭ
Тела вращения: задача 14 профильного ЕГЭ
Рассмотрим треугольник Тела вращения: задача 14 профильного ЕГЭ. В нем Тела вращения: задача 14 профильного ЕГЭ, Тела вращения: задача 14 профильного ЕГЭ, Тела вращения: задача 14 профильного ЕГЭ.
Это прямоугольный треугольник, поэтому
Тела вращения: задача 14 профильного ЕГЭ
Тела вращения: задача 14 профильного ЕГЭ
Или
Тела вращения: задача 14 профильного ЕГЭ
Тогда:
Тела вращения: задача 14 профильного ЕГЭ
Получили уравнение:
Тела вращения: задача 14 профильного ЕГЭ
Тела вращения: задача 14 профильного ЕГЭ
Тела вращения: задача 14 профильного ЕГЭ
Тела вращения: задача 14 профильного ЕГЭ
Ответ: Тела вращения: задача 14 профильного ЕГЭ

Егэ математика тела вращения

Егэ математика тела вращения

ЗАРЕГИСТРИРУЙТЕСЬ и ПОЛУЧИТЕ:

1. Прототипы заданий с ответами — более 1614 задач 1-11 профиль.

2. Решение 75 заданий ЕГЭ по теории вероятноcтей /файл PDF/.

3. ДЕМО-вариант книги «Самые хитрые задачи на ЕГЭ по математике».

4. Доступ к закрытому контенту сайта — всё самое «сладкое» — фишки и лайфхаки.

Чем вам это будет полезно?

Многие задачи научитесь решать всего за одну минуту.

С уважением, Александр Крутицких

Подготовка к ЕГЭ по математике Подробные решения заданий ЕГЭ по математике

Егэ математика тела вращения.

Matematikalegko. ru

03.03.2017 20:58:14

2017-03-03 20:58:14

Источники:

Https://matematikalegko. ru/shkolniku/matematika-v-tablicax/geometriya/stereometriya/tela-vrashheniya

Тела и поверхности вращения (геометрия) теория для подготовки к ЕГЭ по математике, профильный уровень » /> » /> .keyword { color: red; } Егэ математика тела вращения

Тела и поверхности вращения, теория ЕГЭ по математике

Тела и поверхности вращения, теория ЕГЭ по математике

Данный блок теории по математике посвящён теме «Тела и поверхности вращения» и ориентирован на подготовку и успешную сдачу ЕГЭ по математике.

Данное пособие призвано восполнить этот пробел. Оно содержит около двухсот пятидесяти задач на нахождение объемов и площадей поверхностей тел вращения, решение которых не только способствует закреплению основных формул, выработке соответствующих вычислительных умений и навыков учащихся, но, что более важно, развивает пространственные представления и пространственное мышление.

Т. к. задания ЕГЭ по математике меняются почти каждый год, решено не привязывать теорию к заданиям, а выдавать тематическими разделами.

Тела и поверхности вращения, теория ЕГЭ по математике.

Ctege. info

10.12.2017 7:55:27

2017-12-10 07:55:27

Источники:

Https://ctege. info/matematika-teoriya-ege/tela-i-poverhnosti-vrascheniya-teoriya-ege-po-matematike. html

Тела вращения в задачах ЕГЭ | Методическая разработка по геометрии (11 класс) по теме: | Образовательная социальная сеть » /> » /> .keyword { color: red; } Егэ математика тела вращения

Тела вращения в задачах ЕГЭметодическая разработка по геометрии (11 класс) по теме

Тела вращения в задачах ЕГЭ
Методическая разработка по геометрии (11 класс) по теме

Подборка 80 геометрических задач из различных вариантов части В ЕГЭ по математике, состоящая из разделов «Цилиндр», «Конус», «Сфера и шар», «Комбинации тел» (по 20 задач в каждом).

Скачать:

ВложениеРазмер

tela_vrashcheniya_v_zadachakh_ege._tsilindr. pdf 223.59 КБ
tela_vrashcheniya_v_zadachakh_ege._konus. pdf 117.74 КБ
tela_vrashcheniya_v_zadachakh_ege._sfera_i_shar. pdf 224.53 КБ
tela_vrashcheniya_v_zadachakh_ege._kombinatsii_tel. pdf 221.62 КБ

Предварительный просмотр:

Чтобы пользоваться предварительным просмотром создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts. google. com

Предварительный просмотр:

Чтобы пользоваться предварительным просмотром создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts. google. com

Предварительный просмотр:

Чтобы пользоваться предварительным просмотром создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts. google. com

Предварительный просмотр:

Чтобы пользоваться предварительным просмотром создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts. google. com

По теме: методические разработки, презентации и конспекты

Урок по геометрии на тему: Решение задач по теме «Тела вращения».

Цели: 1. Образовательная: — повторить с учащимися формулыпо телам вращения, элементытел вращения и их свойства, формировать умение пользоваться алгоритмом для вычисления площади поверхности и объе.

Решение задач по теме: «Тела вращения

Цели урока: • систематизировать знания учащихся; • обобщить изученный материал; • рассмотреть задачи на комбинацию тел; • проверить умения и навыки при решении задач на нахождение объемов тел.

Решение задач стереометрии. Многогранники. Тела вращения. Комбинации тел.

Данная презентация поможет учителю подготовить учащихся к контрольной работе по стереометрии «Многогранники. Тела вращения. Комбинация тел. Площади поверхности фигур» Все слайды содержат задач.

Зачёт по теме «Тела вращения. Решение задач»

Зачёт рассчитан на 2 урока. Задачи разных уровней сложности с ответами ( для удобства учителя0.

Задачи к уроку по теме «Тела вращения»

При обучении геометрии большое значение имеет умение решать задачи, требующее установление соотношений между данными и искомыми. При решении таких задач проявляется уровень математического развит.

Задачи по теме «Тела вращения»

Задачи по теме «Тела вращения&quot.

Презентация к уроку «Задачи по теме «Тела вращения» на вычисление объёмов и площади поверхности»

Данный урок является одним из уроков, отведенных в 11 классе на подготовку к ЕГЭ. Презентация к уроку по математике «Задачи по теме «Тела вращения» на вычисление объёмов и площа.

Тела вращения в задачах ЕГЭ
Методическая разработка по геометрии (11 класс) по теме

Подборка 80 геометрических задач из различных вариантов части В ЕГЭ по математике, состоящая из разделов «Цилиндр», «Конус», «Сфера и шар», «Комбинации тел» (по 20 задач в каждом).

ВложениеРазмер

tela_vrashcheniya_v_zadachakh_ege._tsilindr. pdf 223.59 КБ
tela_vrashcheniya_v_zadachakh_ege._konus. pdf 117.74 КБ
tela_vrashcheniya_v_zadachakh_ege._sfera_i_shar. pdf 224.53 КБ
tela_vrashcheniya_v_zadachakh_ege._kombinatsii_tel. pdf 221.62 КБ

Предварительный просмотр:

Чтобы пользоваться предварительным просмотром создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts. google. com

Предварительный просмотр:

Чтобы пользоваться предварительным просмотром создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts. google. com

Предварительный просмотр:

Чтобы пользоваться предварительным просмотром создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts. google. com

Предварительный просмотр:

Чтобы пользоваться предварительным просмотром создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts. google. com

Цели урока систематизировать знания учащихся; обобщить изученный материал; рассмотреть задачи на комбинацию тел; проверить умения и навыки при решении задач на нахождение объемов тел.

Nsportal. ru

17.09.2018 18:52:39

2018-09-17 18:52:39

Источники:

Https://nsportal. ru/shkola/geometriya/library/2012/12/17/tela-vrashcheniya-v-zadachakh-ege

По теме: методические разработки, презентации и конспекты

Решение задач по теме: «Тела вращения

Цели урока:
• систематизировать знания учащихся;
• обобщить изученный материал;
• рассмотреть задачи на комбинацию тел;
• проверить умения и навыки при решении задач на нахождение объемов тел …

Задачи к уроку по теме «Тела вращения»

При обучении геометрии большое значение имеет умение решать задачи, требующее установление соотношений между данными и искомыми. При решении таких задач проявляется уровень математического развит…

Понравилась статья? Поделить с друзьями:
  • Тела вращения презентация 11 класс егэ
  • Тела вращения задания егэ
  • Тела вращения егэ профиль
  • Тела вращения егэ математика
  • Тела вращения в задачах егэ акчурина ответы