Теория к 7 заданию егэ по математике базовый уровень


Простейшие уравнения


В задании №7 базового уровня ЕГЭ по математике необходимо решить простейшие уравнения. Для этого нам понадобятся знания логарифмов, степеней и методы решения квадратных уравнений. Перейдем к рассмотрению и разбору подобных примеров.


Разбор типовых вариантов заданий №7 ЕГЭ по математике базового уровня


Вариант 7МБ1

[su_note note_color=”#defae6″]

Найдите корень уравнения  image001

[/su_note]

Алгоритм выполнения
  1. Раскрыть скобки с левой и с правой стороны равенства, применив формулы приведения.
  2. Все, выражения, содержащие переменную перенести в левую часть, а не содержащие в правую.
  3. Преобразовать левую часть.
  4. Преобразовать правую часть.
  5. Решить уравнение относительно x, то есть найти неизвестный множитель.
Решение:

Раскроем скобки с левой и с правой стороны равенства, применив формулы приведения.

Квадрат суммы двух выражений равен сумме квадратов этих выражений плюс удвоенное произведение первого и второго выражений.

(x + 3)2 = x2 + 2 · x · 3 + 32 = x2 + 6x + 9

Квадрат разности двух выражений равен сумме квадратов этих выражений минус удвоенное произведение первого и второго выражений.

(x – 9)2 = x2 – 2 · x · 9 + 92 = x2 – 18x + 81

После преобразования выражение примет вид:

x2 + 6x + 9 = x2 – 18x + 81

Все выражения, содержащие переменную перенесем в левую часть, а не содержащие – в правую.

При переносе из одной части равенства в другую знак меняется на противоположный.

x2 + 6x – x2 + 18x = 81 – 9

Преобразуем левую часть. Приведем подобные слагаемые. Объединим в скобки, сохранив знаки, те выражения, где содержится x2 и x.

x2 + 6x – x2 + 18x = (x2 – x2) + (6x +18x) = 0 + 24x = 24x

Выражение примет вид:

24x = 81 – 9

Преобразуем правую часть. 81 – 9 = 72

Выражение примет вид:

24x = 72

Решим уравнение относительно x, то есть найдем неизвестный множитель. Для того чтобы найти неизвестный множитель нужно произведение разделить на известный множитель.

x = 72 : 24

x = 3

Решение в общем виде:

Раскроем скобки в уравнении, получим:

image002

 

 

 

Ответ: 3.


Вариант 7МБ2

[su_note note_color=”#defae6″]

Найдите корень уравнения  image001

[/su_note]

Алгоритм выполнения
  1. Раскрыть скобки с левой и с правой стороны равенства, применив формулы приведения.
  2. Все, выражения, содержащие переменную перенести в левую часть, а не содержащие в правую.
  3. Преобразовать левую часть.
  4. Преобразовать правую часть.
  5. Решить уравнение относительно x, то есть найти неизвестный множитель.
Решение:

Раскроем скобки с левой и с правой стороны равенства, применив формулы приведения.

Квадрат суммы двух выражений равен сумме квадратов этих выражений плюс удвоенное произведение первого и второго выражений.

(x + 2)2 = x2 + 2 · x · 2 + 22 = x2 + 4x + 4

Квадрат разности двух выражений равен сумме квадратов этих выражений минус удвоенное произведение первого и второго выражений.

(x – 8) 2 = x2 – 2 · x · 8 + 82 = x2 – 16x + 64

После преобразования выражение примет вид:

x2 + 4x + 4 = x2 – 16x + 64

Все выражения, содержащие переменную перенесем в левую часть, а не содержащие – в правую.

При переносе из одной части равенства в другую знак меняется на противоположный.

x2 + 4x – x2 + 16x = 64 – 4

Преобразуем левую часть. Приведем подобные слагаемые. Объединим в скобки, сохранив знаки, те выражения, где содержится x2 и x.

x2 + 4x – x2 + 16x = (x2 – x2) + (4x +16x) = 0 + 20x = 20x

Выражение примет вид:

20x = 64 – 4

Преобразуем правую часть. 64 – 4 = 60

Выражение примет вид:

20x = 60

Решим уравнение относительно x, то есть найдем неизвестный множитель. Для того чтобы найти неизвестный множитель нужно произведение разделить на известный множитель.

x = 60 : 20

x = 3

Решение в общем виде:

Раскроем скобки, получим:

image002

Ответ: 3.


Вариант 7МБ3

[su_note note_color=”#defae6″]

Найдите корень уравнения  image001

[/su_note]

Алгоритм выполнения
  1. Перенести вычитаемое в правую сторону равенства с противоположным знаком.
  2. Преобразовать правую часть с учетом свойства: loga x + loga y = loga (x · y).
  3. Приравнять логарифмические выражения. Можно так поступить, так как основания логарифмов в левой и правой части одинаковы.
  4. Решить уравнение относительно x.
Решение:

Перенесем вычитаемое в правую сторону равенства с противоположным знаком.

Преобразуем правую часть с учетом свойства: loga x + loga y = loga (x · y).

Выполним преобразование:

Приравняем логарифмические выражения. Можно так поступить, так как основания логарифмов в левой и правой части одинаковы.

Решим уравнение относительно x.

Ответ: 1.


Вариант 7МБ4

[su_note note_color=”#defae6″]

Найдите корень уравнения 3x− 3 = 81.

[/su_note]

Алгоритм выполнения
  1. Привести выражения в степенях к одинаковому основанию. В данном случае – это 3. Теперь необходимо вспомнить, какой степенью тройки является 81.
  2. Когда основания равны, можно приравнять значения степеней

Если вы забыли, то для этого необходимо делить 81 на 3 до тех пор, пока не получим 3. Чтобы получить три из 81, нам нужно поделить 81 на 3 три раза: при первом делении мы получим 27, при втором – 9, при третьем – три.

Значит, 81 это три в четвертой степени. Запишем это:

Решение:

3x− 3 = 34

х – 3 = 4

Откуда:

х = 7

Ответ: 7


Вариант 7МБ5

[su_note note_color=”#defae6″]

Найдите корень уравнения log2( x − 3) = 6 .

[/su_note]

Алгоритм выполнения
  1. Логарифм по основанию два показывает нам число, в степень которого нам необходимо возвести основание, то есть двойку, чтобы получить число под логарифмом.
Решение:

x − 3 = 26

x − 3 = 64

x = 67

Ответ: 67


Вариант 7МБ6

[su_note note_color=”#defae6″]

Найдите отрицательный корень уравнения x− x − 6 = 0.

[/su_note]

Алгоритм выполнения
  1. Вычислить дискриминант
  2. Найти корни
  3. Выбрать необходимый корень

D = b− 4ac

Решение:

D = -(1)− 4 • 1 • (-6) = 25

x = (- b ±√D) : 2a

x = (1 + 5) : 2 = 3

x = (1 – 5) : 2 = -2

Так как нам необходим отрицательный корень – ответ -2

Ответ: -2.


Вариант 7МБ7

[su_note note_color=”#defae6″]

Решите уравнение х2 = –2х + 24.

Если уравнение имеет больше одного корня, в ответе укажите больший из них.

[/su_note]

Алгоритм выполнения
  1. Переносим влево часть ур-ния, стоящую справа от знака «=». Получаем кв.уравнение стандартного вида.
  2. Поскольку уравнение является приведенным, используем для нахождения корней т.Виета.
  3. Записываем в качестве ответа большее из полученных 2 чисел.
Решение:

х2 = –2х +24

х2 +2х – 24 = 0

По т.Виета х1+х2=–b, x1·x2=c. В нашем ур-нии b=2, c=24. Подбираем подходящую пару чисел, получаем: х1=–6, х2=4.

Поскольку требуется указать больший из корней, то ответом будет 4.

Ответ: 4


Вариант 7МБ8

[su_note note_color=”#defae6″]

Найдите корни уравнения 4х–6 = 64.

[/su_note]

Алгоритм выполнения
  1. Представляем 64 как степень с основанием 4, т.е. приводим выражения справа и слева к степеням с одинаковым основанием.
  2. Опускаем одинаковые основания и переходим к равенству показателей. Ур-ние стало простейшим линейным.
  3. Находим корень ур-ния.
Решение:

4х–6 = 64

4х–6 = 43

х – 6 = 3

х = 9

Ответ: 9


Вариант 7МБ9

[su_note note_color=”#defae6″]

Найдите корень уравнения log3 (2x – 5) = 2.

[/su_note]

Алгоритм выполнения
  1. Преобразуем часть уравнения справа от знака «=», используя св-ва логарифмов logxx=1 и logxyn=nlogxy.
  2. Переходим от равенства логарифмов к равенству выражений, стоящих под их знаками.
  3. Решаем полученное линейное ур-ние.
Решение:

log3 (2x – 5) = 2

log3 (2x – 5) = 2 · log33

log3 (2x – 5) = log332

2x – 5 = 32

2x – 5 = 9

2x = 14

x=7

Ответ: 7


Вариант 7МБ10

[su_note note_color=”#defae6″]

Найдите корень уравнения
C:UsersКсеньяDesktopматме4.jpg

[/su_note]

Алгоритм выполнения
  1. Преобразовываем обе части ур-ния: приводим их к степеням с основанием 3. Для этого используем св-во степеней (1/а)х–х.
  2. Поскольку основания степеней слева и справа в ур-нии теперь одинаковы, то можем их опустить и приравнять показатели.
  3. Решаем полученное линейное ур-ние.
Решение:

x + 9 = –2

x = –2–9

x = 11

Ответ: 11


Вариант 7МБ11

[su_note note_color=”#defae6″]

Найдите корень уравнения (х8) 2 = (х – 2)2.

[/su_note]

Алгоритм выполнения
  1. Раскрываем скобки слева и справа, используя ф-лу сокращенного умножения (ху)2=х2–2хуу2.
  2. Переносим влево часть уравнения справа от знака «=». Справа получаем 0.
  3. Приводим подобные слагаемые. В результате уравнение стало линейным.
  4. Решаем полученное уравнение.
Решение:

(х8) 2 = (х – 2)2

х2 – 2 · х ·8 + 82 = х2 – 2 · х · 2 + 22

х2 – 16х + 64 = х2 – 4х + 4

х2 – 16х +64 – х2 + 4х – 4 = 0

–12х + 60 = 0

–12х = –60

х = 5

Ответ: 5


Вариант 7МБ12

[su_note note_color=”#defae6″]

Найдите корень уравнения
C:UsersКсеньяDesktopматме6.jpg

[/su_note]

Алгоритм выполнения
  1. Преобразовываем обе части ур-ния так, чтобы привести их к степеням с одинаковым основанием 7. Для выражения слева применяем св-во степеней (1/а)х–х.
  2. Применяем св-во показат.уравнений: если степени с одинаковыми основаниями равны, то равны и их показатели. Отсюда переходим к линейному ур-нию.
  3. Решаем его.
Решение:

–(x–5) = 2

5 – x = 2

–x = 2 – 5

x = 5 – 2

x = 3

Ответ: 3


Вариант 7МБ13

[su_note note_color=”#defae6″]

Решите уравнение х2 – 25 = 0

[/su_note]

Алгоритм выполнения
  1. Переносим 25 в правую часть ур-ния.
  2. Выражаем из ур-ния х путем извлечения корня из 25.
  3. Определяем корни, сравниваем их, определяем больший.
Решение:

х2 – 25 = 0

х2 = 25

х = ±√25

х1 = –5, х2 = 5

Для ответа берем 5.

Ответ: 5


Вариант 7МБ14

[su_note note_color=”#defae6″]

Найдите корень уравнения
C:UsersКсеньяDesktopматме8.jpg

[/su_note]

Алгоритм выполнения
  1. Применим св-во логарифмических равенств: если логарифмы с одинаковыми основания равны, то равны и их подлогарифменные выражения. В результате получаем равенство из выражений, стоящих под знаком логарифма.
  2. Решаем полученное линейное ур-ние.
Решение:

log5 (24 – 7x) = log5 3

24 – 7x = 3

–7x = 3 – 24

7x = 21

x = 3

Ответ: 3


Вариант 7МБ15

[su_note note_color=”#defae6″]

Найдите корень уравнения
C:UsersКсеньяDesktopматме9.jpg

[/su_note]

Алгоритм выполнения
  1. Приводим обе части ур-ния к степеням с основанием 2. При этом для преобразования выражения слева используем св-во степеней (1/а)х–х.
  2. Получив слева и справа степени с одинаковым основанием, опускаем это основание и приравниваем показатели этих степеней. Получаем линейное ур-ние.
  3. Решаем его.
Решение:

2–(x–8) = 23

x+8 = 3

x = 3–8

x = 5

Ответ: 5


Вариант 7МБ16

[su_note note_color=”#defae6″]

Найдите корень уравнения C:UsersКсеньяDesktopматме10.jpg

[/su_note]

Алгоритм выполнения
  1. К левой части уравнения применяем св-во логарифмов loga(x/y)=logax–logay.
  2. Поскольку в обеих частях ур-ния имеем логарифмы по одинаковым основаниям, то можем их знаки, оставив только подлогарифменные выражения. Получаем линейное ур-ние.
  3. Решаем его.
Решение:

log3 (2x + 4) – log3 2 = log3 5

log3 (2x + 4)/2 = log3 5

log3 (x + 2) = log3 5

x + 2 = 5

x = 3

Ответ: 3

Даниил Романович | Просмотров: 11.2k

Практика по заданию №7 ЕГЭ по математике базового уровня — вычисления и преобразования.

Для выполнения задания №7 необходимо уметь выполнять вычисления и преобразования.

Практика

Источник Задания
time4math.ru Скачать задания
math100.ru Вычисления и преобразования

Коды проверяемых элементов содержания (по кодификатору) — 1.1–1.4

Уровень сложности задания — базовый

Максимальный балл за выполнение задания — 1

Примерное время выполнения задания выпускником, изучавшим математику на базовом уровне (в мин.) — 7

Связанные страницы:

Задание 1 ЕГЭ по математике база — действия с дробями

Задание 2 ЕГЭ по математике база — про­стей­шие текстовые задачи

Задание 3 ЕГЭ по математике база — размеры и единицы измерения

Задание 6 ЕГЭ по математике база — про­стей­шие текстовые задачи

Задание 4 ЕГЭ по математике база — чтение графиков и диаграмм

  • Взрослым: Skillbox, Хекслет, Eduson, XYZ, GB, Яндекс, Otus, SkillFactory.
  • 8-11 класс: Умскул, Лектариум, Годограф, Знанио.
  • До 7 класса: Алгоритмика, Кодланд, Реботика.
  • Английский: Инглекс, Puzzle, Novakid.
  • Оценивание (первичные баллы) — 1
  • Время на выполнение (мин) — 7
  • Сложность — базовая

Теория по заданию 7

3.1.1. Функция, область определения функции

3.1.2. Множество значений функции

3.1.3. График функции. Примеры функциональных зависимостей в реальных процессах и явлениях

3.2.1. Монотонность функции. Промежутки возрастания и убывания

3.2.5. Точки экстремума (локального максимума и минимума) функции

3.2.6. Наибольшее и наименьшее значения функции

4.1.1. Понятие о производной функции, геометрический смысл производной

4.1.2. Физический смысл производной, нахождение скорости для процесса, заданного формулой или графиком

6.2.1. Табличное и графическое представление данных

  • Взрослым: Skillbox, Хекслет, Eduson, XYZ, GB, Яндекс, Otus, SkillFactory.
  • 8-11 класс: Умскул, Лектариум, Годограф, Знанио.
  • До 7 класса: Алгоритмика, Кодланд, Реботика.
  • Английский: Инглекс, Puzzle, Novakid.

Решите уравнения

1 2+9x=4x+3 Смотреть видеоразбор >>
2 2(3-2x)-7=-3x+8 Смотреть видеоразбор >>
3 x^2+11x=-28. Если уравнение имеет более одного корня, в ответе укажите меньший из них. Смотреть видеоразбор >>
4 x^2=3x. Если уравнение имеет более одного корня, в ответе укажите больший из них. Смотреть видеоразбор >>
5 4^{x-11}=frac{1}{16} Смотреть видеоразбор >>
6 log_3(x-3)+log_32=log_310 Смотреть видеоразбор >>
7 5x-2=10x+4 Смотреть видеоразбор >>
8 (x-8)^2=(x-2)^2 Смотреть видеоразбор >>
9 x^2+8=6x. Если уравнение имеет более одного корня, в ответе укажите больший из них. Смотреть видеоразбор >>
10 sqrt{3x-8}=5 Смотреть видеоразбор >>
11 (frac{1}{7})^{x-5}=49 Смотреть видеоразбор >>
12 log_3(2x+4)-log_32=log_35 Смотреть видеоразбор >>
13 1+8(3x+7)=9 Смотреть видеоразбор >>
14 x^2-7x-18=0. Если уравнение имеет более одного корня, в ответе укажите больший из них. Смотреть видеоразбор >>
15 x^2=9. Если уравнение имеет более одного корня, в ответе укажите меньший из них. Смотреть видеоразбор >>
16 sqrt{13-x}=3 Смотреть видеоразбор >>
17 log_3(2x-5)=2 Смотреть видеоразбор >>
18 1+8(-x+10)=9 Смотреть видеоразбор >>
19 x^2+10x+21=0. Если уравнение имеет более одного корня, в ответе укажите меньший из них. Смотреть видеоразбор >>
20 x^2-4=0. Если уравнение имеет более одного корня, в ответе укажите больший из них. Смотреть видеоразбор >>
21 8^{5+x}=64 Смотреть видеоразбор >>
22 log_5(-2x+9)=2 Смотреть видеоразбор >>
23 5-6(-2x+5)=-1 Смотреть видеоразбор >>
24 x^2=-2x+24. Если уравнение имеет более одного корня, в ответе укажите больший из них. Смотреть видеоразбор >>
25 x^2+3x=0. Если уравнение имеет более одного корня, в ответе укажите меньший из них. Смотреть видеоразбор >>
26 (frac{1}{3})^{x-9}=frac{1}{9} Смотреть видеоразбор >>
27 log_2(-5x+3)=-1 Смотреть видеоразбор >>

Задание №7 ЕГЭ по математике базового уровня

Простейшие уравнения

В задании №7 базового уровня ЕГЭ по математике необходимо решить

Простейшие (Protozoa) — тип одноклеточных животных.

Разбор типовых вариантов заданий №7 ЕГЭ по математике базового уровня

Вариант 7МБ1

Корень — осевой, обычно подземный вегетативный орган высших сосудистых растений, обладающий неограниченным ростом в длину и положительным геотропизмом. Корень осуществляет закрепление растения в почве и обеспечивает поглощение и проведение воды с растворёнными минеральными веществами к стеблю и листьям.

Алгоритм выполнения
  1. Раскрыть скобки с левой и с правой стороны равенства, применив формулы приведения.
  2. Все, выражения, содержащие переменную перенести в левую часть, а не содержащие в правую.
  3. Преобразовать левую часть.
  4. Преобразовать правую часть.
  5. Решить уравнение относительно x, то есть найти неизвестный множитель.
Решение:

Квадрат суммы двух выражений равен сумме квадратов этих выражений плюс удвоенное произведение первого и второго выражений.

(x + 3) 2 = x 2 + 2 · x · 3 + 3 2 = x 2 + 6x + 9

Квадрат разности двух выражений равен сумме квадратов этих выражений минус удвоенное произведение первого и второго выражений.

(x – 9) 2 = x 2 – 2 · x · 9 + 9 2 = x 2 – 18x + 81

После преобразования выражение примет

Вид — группа особей, сходных по морфолого-анатомическим, физиолого-экологическим, биохимическим и генетическим признакам, занимающих естественный ареал, способных свободно скрещиваться между собой и давать плодовитое потомство.

x 2 + 6x + 9 = x 2 – 18x + 81

Все выражения, содержащие переменную перенесем в левую часть, а не содержащие – в правую. При переносе из одной части равенства в другую знак меняется на противоположный.

x 2 + 6x – x 2 + 18x = 81 – 9

Преобразуем левую часть. Приведем подобные слагаемые. Объединим в скобки, сохранив знаки, те выражения, где содержится x 2 и x.

x 2 + 6x – x 2 + 18x = (x 2 – x 2 ) + (6x +18x) = 0 + 24x = 24x

Выражение примет вид:

Преобразуем правую часть. 81 – 9 = 72

Выражение примет вид:

Решим уравнение относительно x, то есть найдем неизвестный множитель. Для того чтобы найти неизвестный множитель нужно произведение разделить на известный множитель.

Решение в общем виде:

Вариант 7МБ2

Алгоритм выполнения
  1. Раскрыть скобки с левой и с правой стороны равенства, применив формулы приведения.
  2. Все, выражения, содержащие переменную перенести в левую часть, а не содержащие в правую.
  3. Преобразовать левую часть.
  4. Преобразовать правую часть.
  5. Решить уравнение относительно x, то есть найти неизвестный множитель.
Решение:

Квадрат суммы двух выражений равен сумме квадратов этих выражений плюс удвоенное произведение первого и второго выражений.

(x + 2) 2 = x 2 + 2 · x · 2 + 2 2 = x 2 + 4x + 4

Квадрат разности двух выражений равен сумме квадратов этих выражений минус удвоенное произведение первого и второго выражений.

(x – 8) 2 = x 2 – 2 · x · 8 + 8 2 = x 2 – 16x + 64

После преобразования выражение примет вид:

x 2 + 4x + 4 = x 2 – 16x + 64

Все выражения, содержащие переменную перенесем в левую часть, а не содержащие – в правую. При переносе из одной части равенства в другую знак меняется на противоположный.

x 2 + 4x – x 2 + 16x = 64 – 4

Преобразуем левую часть. Приведем подобные слагаемые. Объединим в скобки, сохранив знаки, те выражения, где содержится x 2 и x.

x 2 + 4x – x 2 + 16x = (x 2 – x 2 ) + (4x +16x) = 0 + 20x = 20x

Выражение примет вид:

Преобразуем правую часть. 64 – 4 = 60

Выражение примет вид:

Решим уравнение относительно x, то есть найдем неизвестный множитель. Для того чтобы найти неизвестный множитель нужно произведение разделить на известный множитель.

Решение в общем виде:

Вариант 7МБ3

Алгоритм выполнения
  1. Перенести вычитаемое в правую сторону равенства с противоположным знаком.
  2. Преобразовать правую часть с учетом свойства: logax + logay = loga (x · y).
  3. Приравнять логарифмические выражения. Можно так поступить, так как основания логарифмов в левой и правой части одинаковы.
  4. Решить уравнение относительно x.
Решение:

Вариант 7МБ4

Найдите корень уравнения 3 x− 3 = 81.

Алгоритм выполнения
  1. Привести выражения в степенях к одинаковому основанию. В данном случае – это 3. Теперь необходимо вспомнить, какой степенью тройки является 81.
  2. Когда основания равны, можно приравнять значения степеней

Если вы забыли, то для этого необходимо делить 81 на 3 до тех пор, пока не получим 3. Чтобы получить три из 81, нам нужно поделить 81 на 3 три раза: при первом делении мы получим 27, при втором – 9, при третьем – три.

Значит, 81 это три в четвертой степени. Запишем это:

Решение:

Ответ: 7

Вариант 7МБ5

Найдите корень уравнения log2( x − 3) = 6 .

Алгоритм выполнения
  1. Логарифм по основанию два показывает нам число, в степень которого нам необходимо возвести основание, то есть двойку, чтобы получить число под логарифмом.
Решение:

Вариант 7МБ6

Найдите отрицательный корень уравнения x 2 − x − 6 = 0.

Алгоритм выполнения
  1. Вычислить дискриминант
  2. Найти корни
  3. Выбрать необходимый корень
Решение:

D = -(1) 2 − 4 • 1 • (-6) = 25

Так как нам необходим отрицательный корень – ответ -2

Вариант 7МБ7

Решите уравнение х 2 = –2х + 24.

Если уравнение имеет больше одного

Корень — осевой, обычно подземный вегетативный орган высших сосудистых растений, обладающий неограниченным ростом в длину и положительным геотропизмом. Корень осуществляет закрепление растения в почве и обеспечивает поглощение и проведение воды с растворёнными минеральными веществами к стеблю и листьям.

Алгоритм выполнения
  1. Переносим влево часть ур-ния, стоящую справа от знака «=». Получаем кв.уравнение стандартного вида.
  2. Поскольку уравнение является приведенным, используем для нахождения корней т.Виета.
  3. Записываем в качестве ответа большее из полученных 2 чисел.
Решение:

Поскольку требуется указать больший из корней, то ответом будет 4.

Вариант 7МБ8

Найдите корни уравнения 4 х–6 = 64.

Алгоритм выполнения
  1. Представляем 64 как степень с основанием 4, т.е. приводим выражения справа и слева к степеням с одинаковым основанием.
  2. Опускаем одинаковые основания и переходим к равенству показателей. Ур-ние стало простейшим линейным.
  3. Находим корень ур-ния.
Решение:

Вариант 7МБ9

Найдите корень уравнения log3 (2x – 5) = 2.

Алгоритм выполнения
  1. Преобразуем часть уравнения справа от знака «=», используя св-ва логарифмов logxx=1 и logxy n =nlogxy.
  2. Переходим от равенства логарифмов к равенству выражений, стоящих под их знаками.
  3. Решаем полученное линейное ур-ние.
Решение:

Вариант 7МБ10

Найдите корень уравнения

Алгоритм выполнения
  1. Преобразовываем обе части ур-ния: приводим их к степеням с основанием 3. Для этого используем св-во степеней (1/а) х =а –х .
  2. Поскольку основания степеней слева и справа в ур-нии теперь одинаковы, то можем их опустить и приравнять показатели.
  3. Решаем полученное линейное ур-ние.
Решение:

Вариант 7МБ11

Найдите корень уравнения (х8) 2 = (х – 2) 2 .

Алгоритм выполнения
  1. Раскрываем скобки слева и справа, используя ф-

Луб — это сложная проводящая ткань, по которой продукты фотосинтеза (органические вещества) транспортируются из листьев ко всем органам растения (к корневищам, плодам, семенам и т. д.).

Решение:

х 2 – 2 · х ·8 + 8 2 = х 2 – 2 · х · 2 + 2 2

Вариант 7МБ12

Найдите корень уравнения

Алгоритм выполнения
  1. Преобразовываем обе части ур-ния так, чтобы привести их к степеням с одинаковым основанием 7. Для выражения слева применяем св-во степеней (1/а) х =а –х .
  2. Применяем св-во показат.уравнений: если степени с одинаковыми основаниями равны, то равны и их показатели. Отсюда переходим к линейному ур-нию.
  3. Решаем его.
Решение:

Вариант 7МБ13

Решите уравнение х 2 – 25 = 0

Алгоритм выполнения
  1. Переносим 25 в правую часть ур-ния.
  2. Выражаем из ур-ния х путем извлечения корня из 25.
  3. Определяем корни, сравниваем их, определяем больший.
Решение:

Для ответа берем 5.

Вариант 7МБ14

Найдите корень уравнения

Алгоритм выполнения
  1. Применим св-во логарифмических равенств: если логарифмы с одинаковыми основания равны, то равны и их подлогарифменные выражения. В результате получаем равенство из выражений, стоящих под знаком логарифма.
  2. Решаем полученное линейное ур-ние.
Решение:

Вариант 7МБ15

Найдите корень уравнения

Алгоритм выполнения
  1. Приводим обе части ур-ния к степеням с основанием 2. При этом для преобразования выражения слева используем св-во степеней (1/а) х =а –х .
  2. Получив слева и справа степени с одинаковым основанием, опускаем это основание и приравниваем показатели этих степеней. Получаем линейное ур-ние.
  3. Решаем его.
Решение:

Вариант 7МБ16

Найдите корень уравнения

Репетитор по математике

Меня зовут Виктор Андреевич, — я репетитор по математике . Последние десять лет я занимаюсь только преподаванием. Я не «натаскиваю» своих учеников. Моя цель — помочь ребенку понять предмет, научить его мыслить, а не применять шаблоны, передать свои знания, а не просто «добиться результата».

Предусмотрен дистанционный формат занятий (через Skype или Zoom). На первом же уроке оцениваем уровень подготовки ребенка. Если ребенка устраивает моя подача материала, то принимаем решение о дальнейшем сотрудничестве — составляем расписание и индивидуальный план работы. После каждого занятия дается домашнее задание — оно всегда обязательно для выполнения. [в личном кабинете родители могут контролировать успеваемость ребенка]

Стоимость занятий

Набор на 2020/2021 учебный год открыт. Предусмотрен дистанционный формат.

Видеокурсы подготовки к ЕГЭ-2021

Решения авторские, то есть мои (автор ютуб-канала mrMathlesson — Виктор Осипов). На видео подробно разобраны все задания.

Теория представлена в виде лекционного курса, для понимания методик, которые используются при решении заданий.

Группа Вконтакте

В группу выкладываются самые свежие решения и разборы задач. Подпишитесь, чтобы быть в курсе и получать помощь от других участников.

Преимущества

Педагогический стаж

Сейчас существует много сайтов, где вам подберут репетитора по цене/опыту/возрасту, в зависимости от желаний. Но большинство анкет там принадлежат либо студентам, либо школьным учителям. Для них репетиторство — дополнительный временный заработок, из этого формируется отношение к деятельности. У студентов нет опыта и желания совершенствоваться, у школьных учителей — нет времени и сил после основной деятельности. Я занимаюсь только репетиторством с 2010 года. Все свои силы и знания трачу на совершенствование только в этой области.

Собственная методика

За время работы я накопил огромное количество материала для подготовки к итоговым экзаменам. Ребенку не будет даваться неадаптированная школьная программа. С каждым я разберу поэтапно специфичные примеры, темы, способы решений, необходимые для успешной сдачи ЕГЭ и ОГЭ. При этом это не будет «натаскиванием» на решение конкретных задач, но полноценная структурированная подготовка. Естественно, если таковые найдутся, устраню «пробелы» и в школьной программе.

Гарантированный результат

За время моей работы не было ни одного случая, где не прослеживалась бы четкая тенденция к улучшению знаний у ученика. Ни один откровенно не «завалил» экзамен. Каждый вырос в «понимании» математики в сравнении со своим первоначальным уровнем. Естественно, я не могу гарантировать, что двоечник за полгода подготовится на твердую «пять». Но могу с уверенностью сказать, что я подготовлю ребенка на его максимально возможный уровень за то время, что осталось до экзамена.

Индивидуальная работа

Все дети разные, поэтому способ и форма объяснения корректируются в зависимости от уровня понимания ребенком предмета. Индивидуальная работа с каждым учеником — каждому даются отдельные задания, теоретический материал.

Уравнения. Базовый уровень

Автор: Толмачева Надежда Алексеевна.

Шкала перевода баллов ОГЭ 2022

Рекомендации по переводу суммы первичных баллов за экзаменационные работы основного государственного экзамена (ОГЭ) в пятибалльную систему оценивания в 2022 году.

Итоги собеседования по русскому языку

98,7% девятиклассников, сдававших итоговое собеседование по русскому языку в основной срок 9 февраля, успешно справились с заданиями и получили «зачёт». Участие в итоговом собеседовании приняли 1 млн. 373 тыс. учащихся 9 классов из 1 млн. 462 тыс. зарегистрированных.

источники:

http://mathlesson.ru/node/151

http://4ege.ru/trening-matematika/55300-uravneniya-bazovyy-uroven.html

Единый государственный экзамен по математике базового уровня состоит из 20 заданий. В задании 7 проверяются навыки решения простейших уравнений. Школьник должен уметь решать квадратные, показательные, логарифмические, тригонометрические и другие уравнения. Здесь вы можете узнать, как решать задание 7 ЕГЭ по математике базового уровня, а также изучить примеры и способы решения на основе подробно разобранных заданий.

ЕГЭ база все задания (263)
ЕГЭ база задание 1 (5)
ЕГЭ база задание 2 (6)
ЕГЭ база задание 3 (45)
ЕГЭ база задание 4 (33)
ЕГЭ база задание 5 (2)
ЕГЭ база задание 6 (44)
ЕГЭ база задание 7 (1)
ЕГЭ база задание 8 (12)
ЕГЭ база задание 10 (22)
ЕГЭ база задание 12 (5)
ЕГЭ база задание 13 (20)
ЕГЭ база задание 15 (13)
ЕГЭ база задание 19 (23)
ЕГЭ база задание 20 (32)

Решите показательное уравнение

Решите показательное уравнение.

Задача входит в состав ЕГЭ по математике базового уровня для 11 класса под номером 7.

Простейшие уравнения


В задании №7 базового уровня ЕГЭ по математике необходимо решить простейшие уравнения. Для этого нам понадобятся знания логарифмов, степеней и методы решения квадратных уравнений. Перейдем к рассмотрению и разбору подобных примеров.


Разбор типовых вариантов заданий №7 ЕГЭ по математике базового уровня


Вариант 7МБ1

Найдите корень уравнения  image001

Алгоритм выполнения
  1. Раскрыть скобки с левой и с правой стороны равенства, применив формулы приведения.
  2. Все, выражения, содержащие переменную перенести в левую часть, а не содержащие в правую.
  3. Преобразовать левую часть.
  4. Преобразовать правую часть.
  5. Решить уравнение относительно x, то есть найти неизвестный множитель.
Решение:

Раскроем скобки с левой и с правой стороны равенства, применив формулы приведения.

Квадрат суммы двух выражений равен сумме квадратов этих выражений плюс удвоенное произведение первого и второго выражений.

(x + 3)2 = x2 + 2 · x · 3 + 32 = x2 + 6x + 9

Квадрат разности двух выражений равен сумме квадратов этих выражений минус удвоенное произведение первого и второго выражений.

(x — 9)2 = x2 — 2 · x · 9 + 92 = x2 — 18x + 81

После преобразования выражение примет вид:

x2 + 6x + 9 = x2 — 18x + 81

Все выражения, содержащие переменную перенесем в левую часть, а не содержащие – в правую.

При переносе из одной части равенства в другую знак меняется на противоположный.

x2 + 6x — x2 + 18x = 81 — 9

Преобразуем левую часть. Приведем подобные слагаемые. Объединим в скобки, сохранив знаки, те выражения, где содержится x2 и x.

x2 + 6x — x2 + 18x = (x— x2) + (6x +18x) = 0 + 24x = 24x

Выражение примет вид:

24x = 81 — 9

Преобразуем правую часть. 81 – 9 = 72

Выражение примет вид:

24x = 72

Решим уравнение относительно x, то есть найдем неизвестный множитель. Для того чтобы найти неизвестный множитель нужно произведение разделить на известный множитель.

x = 72 : 24

x = 3

Решение в общем виде:

Раскроем скобки в уравнении, получим:

image002

Ответ: 3.


Вариант 7МБ2

Найдите корень уравнения  image001

Алгоритм выполнения
  1. Раскрыть скобки с левой и с правой стороны равенства, применив формулы приведения.
  2. Все, выражения, содержащие переменную перенести в левую часть, а не содержащие в правую.
  3. Преобразовать левую часть.
  4. Преобразовать правую часть.
  5. Решить уравнение относительно x, то есть найти неизвестный множитель.
Решение:

Раскроем скобки с левой и с правой стороны равенства, применив формулы приведения.

Квадрат суммы двух выражений равен сумме квадратов этих выражений плюс удвоенное произведение первого и второго выражений.

(x + 2)2 = x2 + 2 · x · 2 + 22 = x2 + 4x + 4

Квадрат разности двух выражений равен сумме квадратов этих выражений минус удвоенное произведение первого и второго выражений.

(x — 8) 2 = x2 — 2 · x · 8 + 82 = x2 — 16x + 64

После преобразования выражение примет вид:

x2 + 4x + 4 = x2 — 16x + 64

Все выражения, содержащие переменную перенесем в левую часть, а не содержащие – в правую.

При переносе из одной части равенства в другую знак меняется на противоположный.

x2 + 4x — x2 + 16x = 64 — 4

Преобразуем левую часть. Приведем подобные слагаемые. Объединим в скобки, сохранив знаки, те выражения, где содержится x2 и x.

x2 + 4x — x2 + 16x = (x— x2) + (4x +16x) = 0 + 20x = 20x

Выражение примет вид:

20x = 64 — 4

Преобразуем правую часть. 64 — 4 = 60

Выражение примет вид:

20x = 60

Решим уравнение относительно x, то есть найдем неизвестный множитель. Для того чтобы найти неизвестный множитель нужно произведение разделить на известный множитель.

x = 60 : 20

x = 3

Решение в общем виде:

Раскроем скобки, получим:

image002

Ответ: 3.


Вариант 7МБ3

Найдите корень уравнения  image001

Алгоритм выполнения
  1. Перенести вычитаемое в правую сторону равенства с противоположным знаком.
  2. Преобразовать правую часть с учетом свойства: loga x + loga y = loga (x · y).
  3. Приравнять логарифмические выражения. Можно так поступить, так как основания логарифмов в левой и правой части одинаковы.
  4. Решить уравнение относительно x.
Решение:

Перенесем вычитаемое в правую сторону равенства с противоположным знаком.

Задание №7 ЕГЭ по математике базового уровня

Преобразуем правую часть с учетом свойства: loga x + loga y = loga (x · y).

Задание №7 ЕГЭ по математике базового уровня

Выполним преобразование:

Задание №7 ЕГЭ по математике базового уровня

Приравняем логарифмические выражения. Можно так поступить, так как основания логарифмов в левой и правой части одинаковы.

Задание №7 ЕГЭ по математике базового уровня

Решим уравнение относительно x.

Задание №7 ЕГЭ по математике базового уровня

Ответ: 1.


Вариант 7МБ4

Найдите корень уравнения 3x− 3 = 81.

Алгоритм выполнения
  1. Привести выражения в степенях к одинаковому основанию. В данном случае — это 3. Теперь необходимо вспомнить, какой степенью тройки является 81.
  2. Когда основания равны, можно приравнять значения степеней

Если вы забыли, то для этого необходимо делить 81 на 3 до тех пор, пока не получим 3. Чтобы получить три из 81, нам нужно поделить 81 на 3 три раза: при первом делении мы получим 27, при втором — 9, при третьем — три.

Значит, 81 это три в четвертой степени. Запишем это:

Решение:

3x− 3 = 34

х — 3 = 4

Откуда:

х = 7

Ответ: 7


Вариант 7МБ5

Найдите корень уравнения log2( x − 3) = 6 .

Алгоритм выполнения
  1. Логарифм по основанию два показывает нам число, в степень которого нам необходимо возвести основание, то есть двойку, чтобы получить число под логарифмом.
Решение:

x − 3 = 26

x − 3 = 64

x = 67

Ответ: 67


Вариант 7МБ6

Найдите отрицательный корень уравнения x− x − 6 = 0.

Алгоритм выполнения
  1. Вычислить дискриминант
  2. Найти корни
  3. Выбрать необходимый корень

D = b− 4ac

Решение:

D = -(1)− 4 • 1 • (-6) = 25

x = (- b ±√D) : 2a

x = (1 + 5) : 2 = 3

x = (1 — 5) : 2 = -2

Так как нам необходим отрицательный корень — ответ -2

Ответ: -2.


Вариант 7МБ7

Решите уравнение х2 = –2х + 24.

Если уравнение имеет больше одного корня, в ответе укажите больший из них.

Алгоритм выполнения
  1. Переносим влево часть ур-ния, стоящую справа от знака «=». Получаем кв.уравнение стандартного вида.
  2. Поскольку уравнение является приведенным, используем для нахождения корней т.Виета.
  3. Записываем в качестве ответа большее из полученных 2 чисел.
Решение:

х2 = –2х +24

х2 +2х – 24 = 0

По т.Виета х1+х2=–bx1·x2=c. В нашем ур-нии b=2, c=24. Подбираем подходящую пару чисел, получаем: х1=–6, х2=4.

Поскольку требуется указать больший из корней, то ответом будет 4.

Ответ: 4


Вариант 7МБ8

Найдите корни уравнения 4х–6 = 64.

Алгоритм выполнения
  1. Представляем 64 как степень с основанием 4, т.е. приводим выражения справа и слева к степеням с одинаковым основанием.
  2. Опускаем одинаковые основания и переходим к равенству показателей. Ур-ние стало простейшим линейным.
  3. Находим корень ур-ния.
Решение:

4х–6 = 64

4х–6 = 43

х – 6 = 3

х = 9

Ответ: 9


Вариант 7МБ9

Найдите корень уравнения log3 (2x – 5) = 2.

Алгоритм выполнения
  1. Преобразуем часть уравнения справа от знака «=», используя св-ва логарифмов logxx=1 и logxyn=nlogxy.
  2. Переходим от равенства логарифмов к равенству выражений, стоящих под их знаками.
  3. Решаем полученное линейное ур-ние.
Решение:

log3 (2x – 5) = 2

log3 (2x – 5) = 2 · log33

log3 (2x – 5) = log332

2x – 5 = 32

2x – 5 = 9

2x = 14

x=7

Ответ: 7


Вариант 7МБ10

Найдите корень уравнения
C:UsersКсеньяDesktopматме4.jpg

Алгоритм выполнения
  1. Преобразовываем обе части ур-ния: приводим их к степеням с основанием 3. Для этого используем св-во степеней (1/а)х–х.
  2. Поскольку основания степеней слева и справа в ур-нии теперь одинаковы, то можем их опустить и приравнять показатели.
  3. Решаем полученное линейное ур-ние.
Решение:

x + 9 = –2

x = –2–9

x = 11

Ответ: 11


Вариант 7МБ11

Найдите корень уравнения (х – 8) 2 = (х – 2)2.

Алгоритм выполнения
  1. Раскрываем скобки слева и справа, используя ф-лу сокращенного умножения (ху)2=х2–2хуу2.
  2. Переносим влево часть уравнения справа от знака «=». Справа получаем 0.
  3. Приводим подобные слагаемые. В результате уравнение стало линейным.
  4. Решаем полученное уравнение.
Решение:

(х – 8) 2 = (х – 2)2

х2 – 2 · х ·8 + 82 = х2 – 2 · х · 2 + 22

х2 – 16х + 64 = х2 – 4х + 4

х2 – 16х +64 – х2 + 4х – 4 = 0

–12х + 60 = 0

–12х = –60

х = 5

Ответ: 5


Вариант 7МБ12

Найдите корень уравнения
C:UsersКсеньяDesktopматме6.jpg

Алгоритм выполнения
  1. Преобразовываем обе части ур-ния так, чтобы привести их к степеням с одинаковым основанием 7. Для выражения слева применяем св-во степеней (1/а)х–х.
  2. Применяем св-во показат.уравнений: если степени с одинаковыми основаниями равны, то равны и их показатели. Отсюда переходим к линейному ур-нию.
  3. Решаем его.
Решение:

–(x–5) = 2

5 – x = 2

–x = 2 – 5

x = 5 – 2

x = 3

Ответ: 3


Вариант 7МБ13

Решите уравнение х2 – 25 = 0

Алгоритм выполнения
  1. Переносим 25 в правую часть ур-ния.
  2. Выражаем из ур-ния х путем извлечения корня из 25.
  3. Определяем корни, сравниваем их, определяем больший.
Решение:

х2 – 25 = 0

х2 = 25

х = ±√25

х1 = –5, х2 = 5

Для ответа берем 5.

Ответ: 5


Вариант 7МБ14

Найдите корень уравнения
C:UsersКсеньяDesktopматме8.jpg

Алгоритм выполнения
  1. Применим св-во логарифмических равенств: если логарифмы с одинаковыми основания равны, то равны и их подлогарифменные выражения. В результате получаем равенство из выражений, стоящих под знаком логарифма.
  2. Решаем полученное линейное ур-ние.
Решение:

log5 (24 – 7x) = log5 3

24 – 7x = 3

–7x = 3 – 24

7x = 21

x = 3

Ответ: 3


Вариант 7МБ15

Найдите корень уравнения
C:UsersКсеньяDesktopматме9.jpg

Алгоритм выполнения
  1. Приводим обе части ур-ния к степеням с основанием 2. При этом для преобразования выражения слева используем св-во степеней (1/а)х–х.
  2. Получив слева и справа степени с одинаковым основанием, опускаем это основание и приравниваем показатели этих степеней. Получаем линейное ур-ние.
  3. Решаем его.
Решение:

2–(x–8) = 23

x+8 = 3

x = 3–8

x = 5

Ответ: 5


Вариант 7МБ16

Найдите корень уравнения C:UsersКсеньяDesktopматме10.jpg

Алгоритм выполнения
  1. К левой части уравнения применяем св-во логарифмов loga(x/y)=logax–logay.
  2. Поскольку в обеих частях ур-ния имеем логарифмы по одинаковым основаниям, то можем их знаки, оставив только подлогарифменные выражения. Получаем линейное ур-ние.
  3. Решаем его.
Решение:

log3 (2x + 4) – log3 2 = log3 5

log3 (2x + 4)/2 = log3 5

log3 (x + 2) = log3 5

x + 2 = 5

x = 3

Ответ: 3

Понравилась статья? Поделить с друзьями:
  • Теория история егэ карты
  • Теория инноваций мгту билеты к экзамену
  • Теория игр экзамен ответы
  • Теория игр программирование егэ информатика
  • Теория игр помощь на экзамене