Теория к егэ по физике по темам

Готовиться к ЕГЭ по физике 2023 необходимо заранее. В идеале вы должны знать теорию, уметь читать графики и схемы, решать практические задачи.

Структура итогового испытания

Госэкзамен состоит из 30 заданий, которые поделены на две части. Чтобы вы имели представление о структуре тестов, мы предлагаем вам обратить к следующей таблице.

Задания Тип ответа
3–5, 9–11, 14-16, 20 Целое число или десятичная дробь
1, 2, 6, 7, 12, 13, 17, 18 Последовательность
8, 19, 21-23 Две цифры
24–30 Требует развернутого ответа с описанием алгоритма решения

Блоки теории единого государственного экзамена по физике:

  • Механика.
  • Физика молекулярная.
  • Квантовая физика и составные части астрофизики.
  • Электродинамика и спецтеория относительности.

Конечно, выпускнику придется выучить большое количество материала. Для сдачи ЕГЭ по физике необходимо хорошо знать всю учебную программу, поэтому подготовку следует начинать как можно раньше.

Важно не только хорошо разбираться в физике, но еще и отлично знать математику. Данная дисциплина значительно упростит решение практических заданий.

Принципы подготовки

Начинайте с теоретических материалов, а затем переходите изучению понятий и принципов. Разобравшись с какой-то определенной темой, переходите к решению практических задач. Большим подспорьем будут онлайн-тесты, позволяющие проверить знания и выявить явные пробелы.

Физика — теория ЕГЭ


  • 23.02.2020

    Критерии оценивания ЕГЭ по физике 2020


    (11408)


  • 11.03.2019

    Критерии оценивания ЕГЭ 2019 по физике


    (9419)


  • 30.07.2018

    Типичные ошибки к ЕГЭ по физике


    (8505)


  • 20.03.2018

    Критерии оценивания ЕГЭ 2018 по физике


    (23364)


  • 14.12.2016

    Теория по физике на тему «Электрический ток в различных средах»


    (11173)


  • 14.12.2016

    Теория по физике на тему «Последовательное и параллельное соединения»


    (5421)


  • 14.12.2016

    Теория по физике на тему «Напряженность электрического поля»


    (6688)


  • 14.12.2016

    Теория по физике на тему «Погрешность»


    (11503)


  • 14.12.2016

    Теория по физике на тему «Теорема Гаусса»


    (5990)


  • 14.12.2016

    Теория по физике на тему «Магнетизм»


    (7925)


  • 14.12.2016

    Теория по физике на тему «Действие магнитного поля»


    (5257)


  • 08.11.2016

    Теория по физике на тему «Законы сохранения»


    (4732)


  • 06.11.2016

    Теория по физике на тему «Основные понятия кинематики»


    (4488)


  • 06.11.2016

    Теория по физике на тему «Криволинейное движение»


    (3914)


  • 02.11.2016

    Рекомендации по подготовке к ЕГЭ по физике от ФИПИ


    (5640)


  • 25.09.2016

    Теория по физике на тему «Законы Ньютона»


    (5580)


  • 25.09.2016

    Теория по физике на тему «Энергия»


    (3889)


  • 25.09.2016

    Теория по физике на тему «Вес тела. Невесомость.»


    (3968)


  • 25.09.2016

    Теория по физике на тему «Динамика»


    (3873)


  • 25.09.2016

    Теория по физике на тему «Закон всемирного тяготения»


    (3905)


  • 25.09.2016

    Теория по физике на тему «Масса и плотность вещества»


    (3630)


  • 25.04.2015

    Теория к заданиям 28-32 ЕГЭ по физике (часть С), экспресс-курс


    (16917)


  • 08.11.2014

    Формулы по физике для ЕГЭ


    (144073)


  • 30.09.2014

    Рекомендации по оценке заданий с развёрнутым ответом ЕГЭ 2014 по физике


    (8409)


  • 13.04.2014

    Методические рекомендации по оцениванию заданий егэ по физике с развернутым ответом часть С


    (9364)


  • 13.04.2014

    Обновлённые форумы по ФИЗИКЕ


    (8241)


  • 13.04.2014

    Полный сборник формул для ЕГЭ по физике


    (21215)


  • 05.03.2014

    Алгоритмы для решения задач ЕГЭ по физике


    (22168)


  • 05.03.2014

    Алгоритм решения задач ЕГЭ по теме «Квантовая физика». — физика


    (7344)


  • 05.03.2014

    Алгоритм решения задач ЕГЭ по калориметрии — физика


    (5644)


  • 05.03.2014

    Алгоритм решения задач ЕГЭ по кинематике — физика


    (6974)


  • 05.03.2014

    Алгоритм решения задач ЕГЭ по статике — физика


    (6082)


  • 05.03.2014

    Алгоритм решения задач ЕГЭ на закон сохранения импульса — физика


    (6151)


  • 05.03.2014

    Алгоритм решения задач ЕГЭ на закон сохранения механической энергии — физика


    (5126)


  • 05.03.2014

    Алгоритм решения задач ЕГЭ по динамике — физика


    (5207)


  • 28.01.2014

    Критерии проверки и оценивания экзаменационных работ ЕГЭ по физике


    (21327)


  • 06.01.2014

    Таблицы по физике для подготовки к ЕГЭ


    (12260)


  • 28.11.2013

    Все формулы и законы по физике для подготовки к ЕГЭ: полный школьный курс


    (21649)


  • 07.11.2013

    Формулы ЕГЭ по физике. Сборник формул по физике


    (23836)


  • 05.11.2013

    Теория задания А1 ЕГЭ по физике. Готовимся и решаем А1.


    (15951)


  • 30.09.2013

    Полная теория по Кинематике, теория и практика ЕГЭ по физике


    (65565)


  • 30.09.2013

    Краткая теория ЕГЭ по физике на тему «Кинематика» — теория и практика ЕГЭ


    (193067)


  • 30.09.2013

    Обучающие задания ЕГЭ по физике на тему «Кинематика», с ответами — теория и практика


    (84048)


  • 30.09.2013

    Практические задания ЕГЭ по физике на тему «Кинематика» с ответами — теория и практика


    (53758)


  • 30.09.2013

    Контрольная работа ЕГЭ по физике на тему «Кинематика» с ответами — теория и практика


    (42149)


  • 30.09.2013

    Полная теория по Динамике, теория и практика ЕГЭ по физике


    (34272)


  • 30.09.2013

    Краткая теория ЕГЭ по физике на тему «Динамика» — теория и практика ЕГЭ


    (79896)


  • 30.09.2013

    Обучающие задания ЕГЭ по физике на тему «Динамика», с ответами — теория и практика


    (36875)


  • 30.09.2013

    Практические задания ЕГЭ по физике на тему «Динамика» с ответами — теория и практика


    (27382)


  • 30.09.2013

    Контрольная работа ЕГЭ по физике на тему «Динамика» с ответами — теория и практика


    (31556)


  • 30.09.2013

    Полная теория по Статике и Гидростатике, теория и практика ЕГЭ по физике


    (30669)


  • 30.09.2013

    Краткая теория ЕГЭ по физике на тему «Статика и Гидростатика» — теория и практика ЕГЭ


    (59784)


  • 30.09.2013

    Обучающие задания ЕГЭ по физике на тему «Статика и Гидростатика», с ответами — теория и практика


    (27992)


  • 30.09.2013

    Практические задания ЕГЭ по физике на тему «Статика и Гидростатика» с ответами — теория и практика


    (23654)


  • 30.09.2013

    Контрольная работа ЕГЭ по физике на тему «Статика и Гидростатика» с ответами — теория и практика


    (25952)


  • 30.09.2013

    Полная теория по Законам сохранения в Механике, теория и практика ЕГЭ по физике


    (19561)


  • 30.09.2013

    Краткая теория ЕГЭ по физике на тему «Законы сохранения энергии в механике» — теория и практика ЕГЭ


    (52238)


  • 30.09.2013

    Обучающие задания ЕГЭ по физике на тему «Законы сохранения энергии в механике», с ответами — теория и практика


    (24871)


  • 30.09.2013

    Практические задания ЕГЭ по физике на тему «Законы сохранения энергии в механике» с ответами — теория и практика


    (22185)


  • 30.09.2013

    Контрольная работа ЕГЭ по физике на тему «Законы сохранения энергии в механике» с ответами — теория и практика


    (22995)


  • 30.09.2013

    Полная теория по Механическим колебаниям, теория и практика ЕГЭ по физике


    (26132)


  • 30.09.2013

    Краткая теория ЕГЭ по физике Механические колебания — теория и практика ЕГЭ


    (49971)


  • 30.09.2013

    Обучающие задания ЕГЭ по физике Механические колебания, с ответами — теория и практика


    (24076)


  • 30.09.2013

    Практические задания ЕГЭ по физике на тему «Механические колебания» с ответами — теория и практика


    (20928)


  • 30.09.2013

    Контрольная работа ЕГЭ по физике на тему «Механические колебания» с ответами — теория и практика


    (24716)


  • 30.09.2013

    Полная Молекулярно-Кинетическая теория, теория и практика ЕГЭ по физике


    (44404)


  • 30.09.2013

    Краткая теория ЕГЭ по физике Основы МКТ — теория и практика ЕГЭ


    (60519)


  • 30.09.2013

    Обучающие задания ЕГЭ по физике Основы МКТ, с ответами — теория и практика


    (27462)


  • 30.09.2013

    Практические задания ЕГЭ по физике на тему «Основы МКТ» с ответами — теория и практика


    (21097)


  • 30.09.2013

    Контрольная работа ЕГЭ по физике на тему «Основы МКТ» с ответами — теория и практика


    (22781)


  • 30.09.2013

    Полная теория по Термодинамике, теория и практика ЕГЭ по физике


    (30221)


  • 30.09.2013

    Краткая теория ЕГЭ по физике Термодинамика — теория и практика ЕГЭ


    (52316)


  • 30.09.2013

    Обучающие задания ЕГЭ по физике Термодинамика, с ответами — теория и практика


    (25543)


  • 30.09.2013

    Практические задания ЕГЭ по физике на тему «Термодинамика» с ответами — теория и практика


    (20291)


  • 30.09.2013

    Контрольная работа ЕГЭ по физике на тему «Термодинамика» с ответами — теория и практика


    (22390)


  • 29.09.2013

    Полная теория Электростатики, ЕГЭ по физике


    (12200)


  • 29.09.2013

    Теория по физике Электростатика — теория и практика ЕГЭ по физике раздел «Электростатика».


    (73598)


  • 29.09.2013

    Обучающие задания ЕГЭ по физике на тему «Электростатика» с ответами — теория и практика ЕГЭ по физике раздел «Электростатика».


    (28007)


  • 29.09.2013

    Практические задания ЕГЭ по физике на тему «Электростатика» с ответами — теория и практика ЕГЭ по физике раздел «Электростатика».


    (21967)


  • 29.09.2013

    Контрольная работа ЕГЭ по физике на тему «Электростатика» с ответами — теория и практика ЕГЭ по физике раздел «Электростатика».


    (30071)

Автор курса — профессиональный репетитор по физике и математике, автор учебных пособий для подготовки к ЕГЭ Игорь Вячеславович Яковлев. Оригиналы статей находятся на сайте автора .
Автор статей о секретах решения задач ЕГЭ по физике — В. З. Шапиро.

Благодарим за то, что пользуйтесь нашими статьями.
Информация на странице «Полный онлайн курс по физике ЕГЭ + Секреты решения заданий ЕГЭ по физике» подготовлена нашими редакторами специально, чтобы помочь вам в освоении предмета и подготовке к ЕГЭ и ОГЭ.
Чтобы успешно сдать необходимые и поступить в высшее учебное заведение или техникум нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими статьями из разделов нашего сайта.

Публикация обновлена:
09.03.2023

Вся теория для подготовки к ЕГЭ по физике в одном месте. Очень удобно работать — файлы разделены по вопросам экзаменационного листа. Выбирайте нужную тему, открывайте материал и учите или повторяйте, не теряя времени на сбор данных из разных источников.

Информация в файлах подана схематически — быстро запоминается, легко разложить все по полочкам. Важные определения выделены шрифтом, чтобы вы не запутались. Графики для наглядности помогут лучше сориентироваться и разобраться в физических процессах, явлениях.

Все формулы, которые нужно знать для успешного прохождения испытания, мы вынесли в отдельный файл. Скачайте его себе на смартфон, чтобы повторять их в любое время там, где вам это удобно.

Раздел содержит теорию для ЕГЭ по физике на 2021 учебный год. Тем, кто хочет более подробно изучать предмет, предлагаем просмотреть материалы прошлых лет.

Материалы для подготовки к ЕГЭ по математике Д. Д. Гущина

Лицензионное соглашение

Все опубликованные ниже материалы для подготовки к ЕГЭ по математике могут быть использованы в некоммерческих целях при условии сохранения авторства. Без письменного согласия автора
ЗАПРЕЩАЕТСЯ:

  1. Публикация материалов в любой форме, в том числе их размещение в компьютерных сетях и на веб-сайтах.
  2. Распространение неполных или измененных материалов.
  3. Включение материалов в сборники на любых носителях информации.
  4. Получение коммерческой выгоды от продажи или другого использования материалов.

Скачивание материалов означает, что вы приняли условия этого лицензионного соглашения.

Трёхуровневый видеокурс «Готовимся к ЕГЭ по математике»:
перейти

Избранные лекции и вебинары для учителей и учащихся:
перейти

Справочные материалы по математике

Оригинал страницы: http://mathnet.spb.ru

Как сдать ЕГЭ по физике? Безусловно, усердно готовиться! Вполне возможно самостоятельное углублённое повторение материала, начиная с 7 класса, усваивая теорию, и запоминая формулы по темам и сверяя их с кодификатором на сайте ФИПИ.

Для упешной сдачи ЕГЭ по физике необходимо научиться решать задачи по основным разделам физики, входящим в программу полной средней школы. На нашем сайте вы можете самостоятельно  пройти тестирование по тематическим тестам ЕГЭ по физике. В них  включены задания базового и повышенного уровня сложности. Пройдя их, вы определите необходимость более подробного повторения того или иного раздела физики и совершенствования навыков решения задач для успешной сдачи ЕГЭ по физике. 

Важным этапом подготовки к ЕГЭ по физике 2023 года является ознакомление с демонстрационным вариантом ЕГЭ по физике 2023 года. Демоверсия 2023 года опубликована на сайте Федерального института педагогических измерений (ФИПИ). Демонстрационный вариант составляется с учетом всех поправок и особенностей предстоящего экзамена по предмету в будущем 2023 году.

Что же представляет собой демонстрационный вариант ЕГЭ по физике? Демоверсия содержит типовые задания, которые по своей структуре, качеству, тематике, уровню сложности и объёму полностью соответствуют заданиям будущих реальных вариантов КИМ по физике 2023 года. Ознакомиться с демонстрационным вариантом ЕГЭ по физике 2023 можно на сайте ФИПИ: www.fipi.ru

В содержании теоретического материала ЕГЭ 2023 по физике произошли незначительные изменения: в кодификаторе появилось определение центра масс и закон Кулона для двух точечных тел в диэлектрике.
В первой части интегрированные задания, включающие в себя элементы содержания не менее чем из трёх разделов курса физики, которые располагались под номерами 1 и 2 в КИМ ЕГЭ 2022 г. перенесены на номера 20 и 21 соответственно, а 1 и 2 задания вернулись к тем, какими и были всегда: кинематика и динамика базового уровня.

Во второй части задание 24 электростатика ( была механика ), 25 — термодинамика, 26 — оптика, 28 — комбинированная на электродинамику и механику, 29 — фотоэффект.

Расширена тематика 30 заданий — расчетных задач высокого уровня по механике. Кроме задач на применение законов Ньютона и законов сохранения в механике добавлены задачи по статике.

Целесообразно при участии в основном потоке сдачи ЕГЭ ознакомиться с экзаменационными материалами досрочного периода ЕГЭ  по физике, публикуемыми на сайте ФИПИ после проведения досрочного экзамена. При подготовке следовать «Методическим рекомендациям для выпускников по самостоятельной подготовке к ЕГЭ по физике», ежегодно публикуемым на сайте ФИПИ.
Для выпускников, достойно подготовленных к экзамену, будет хорошим решение принять участие в досрочном ЕГЭ 2023: немногочисленность участников, спокойная обстановка и шанс на участие в основном этапе ЕГЭ

Фундаментальные теоретические знания по физике крайне необходимы для успешной сдачи ЕГЭ по физике. Важно, чтобы эти знания были систематизированы. Достаточным и необходимым условием освоения теории является овладение материалом, изложенным в школьных учебниках по физике. Для этого требуются систематические занятия, направленные на изучение всех разделов курса физики. Особое внимание следует уделить подготовке к расчётным и качественным задачам, входящих в ЕГЭ по физике в части задач повышенной и высокой сложности с развёрнутым ответом, решение которых необходимо для получения высокого балла за экзамен 75+

Только глубокое, вдумчивое изучение материала с осознанным его усвоением: знание физических законов, процессов и явлений в совокупности с навыком решения задач обеспечат успешную сдачу ЕГЭ по физике и возможность поступления в выбранный Вами университет

Если Вам нужна подготовка к ЕГЭ или ОГЭ по физике, вам будет рада помочь репетитор по физике — Виктория Витальевна. 

Формулы ЕГЭ по физике 2023

  • Кинематика
  • Динамика
  • Молекулярная физика и термодинамика
  • Электродинамика
  • Оптика
  • Квантовая физика
  • Ядерная физика

Механика — один из самых значимых и наиболее широко представленных в заданиях ЕГЭ раздел физики. Подготовка по этому разделу занимает  значительную  часть времени подготовки к ЕГЭ по физике

Кинематика

Равномерное движение:

v = const        Sx = vx t

x = x0 + Sx      x = x0 + vx t

Равноускоренное движение:

ax = (vx  — v0x)/t

vx = v0x + axt

Sx = v0xt + axt2/2           Sx =( vx2 — v0x2)/2ax

x = x0 + Sx                     x = x0 + v0xt + axt2/2

Свободное падение:

y = y0 + v0yt + gyt2/2           vy = v0y + gyt            S= v0yt + gyt2/2

Путь, пройденный телом, численно равен площади фигуры под графиком скорости.

Средняя скорость:

vср = S/t                     S = S1 + S2 +…..+ Sn                    t = t1 + t+ …. + tn

Закон сложения скоростей:

Вектор скорости тела относительно неподвижной системы отсчёта равен геометрической сумме скорости тела относительно подвижной системы отсчёта и скорости самой подвижной системы отсчёта относительно неподвижной.

Движение тела, брошенного под углом к горизонту     

Уравнения скорости:

vx = v0x = v0cosa

vy = v0y + gyt = v0sina — gt

Уравнения координат:

x = x0 + v0xt = x0 + v0cosa t

y = y0 + v0yt + gyt2/2 = y+ v0sina t + gyt2/2

Ускорение свободного падения:   gx = 0         g= — g

Движение по окружности

aц = v2/R =ω 2R        v =ω R          T = 2πR/v

Статика

Момент силы  М = Fl , где l — плечо силы F — кратчайшее расстояние от точки опоры до линии действия силы

Условия равновесия рычага:

Сумма моментов сил, вращающих рычаг по часовой стрелке, равна сумме моментов сил, вращающих против часовой стрелки

М+ М2 +… + Мn   = Мn+1 + Мn+2+ …..

Равнодействующая всех сил, приложенных к рычагу равна нулю

Закон Паскаля: Давление, производимое на жидкость или газ передаётсяв любую точку одинаково во всех напрвлениях

Давление жидкости на глубине h :    p =   ρgh ,  учитывая давление атмосферы:   p = p0 +  ρgh 

Закон Архимеда :   FАрх = P вытесн  —   Сила Архимеда равна весу жидкости в объёме погружённого тела

Сила Архимеда  FАрх =  ρg Vпогруж   —    выталкивающая сила

Подъёмная сила  F под = FАрх — mg

Условия плавания тел: 

FАрх  >  mg  —  тело всплывает

FАрх = mg  —   тело плавает

FАрх < mg  —  тело тонет

Динамика

Первый закон Ньютона:

Существуют инерциальные системы отсчёта, относительно которых свободные тела сохраняют свою скорость.

Второй закон Ньютона:          F = ma

Второй закон Ньютона в импульсной форме:     FΔt = Δp      Импульс силы равен изменению импульса тела

Третий закон Ньютона:   Сила действия равна силе противодействи. Силы равны по модулю и противоположны по направлению     F1 = F2

Сила тяжести        Fтяж = mg

Вес тела       P = N  ( N — сила реакции опоры)

Сила упругости Закон Гука       Fупр  = kΙΔxΙ

Сила трения      Fтр = µ N

Давление     p = Fд/S        [  1 Па  ]

Плотность тела    ρ = m/V          [  1 кг/м3  ]

Закон Всемирного тяготения          F = G m1 m2/R2

Fтяж = GMзm/Rз2 = mg            g = GMз/Rз2

По Второму закону Ньютона:  maц = GmMз/(Rз + h)2

 mv2/(Rз + h) = GmMз/(Rз + h)2

 — первая космическая скорость  

     —   вторая космическая скорость    

Работа силы    A = FScosα

Мощность    N = A/t = Fvcosα 

Кинетическая энергия              Eк = m ʋ2/2 = P2/2m

Теорема о кинетической энергии:    A =  ΔЕк

Потенциальная энергия           Eп = mgh   —    энергия тела над Землёй на высоте h

Еп = kx2/2    —     энергия упруго деформированного тела  

А = —  Δ Eп     —      работа потенцильных сил

Закон сохранения механической энергии

 ΔЕ = 0                    ( Ек1 + Еп1  = Ек2 + Еп2 )

Закон сохранения энергии

 ΔЕ = Асопр                   ( Асопр  —  работа всех непотенциальных сил )

Колебания и волны

Механические колебания

Т  период колебаний — время одного полного колебания [ 1с ]

 ν — частота колебаний — число колебаний за единицу времени  [ 1Гц ]

T = 1/ ν

ω — циклическая частота  [1 рад/с ]

ω = 2πν = 2π/T   T = 2π/ω  

Период колебаний математического маятника:     T = 2π(l/g)1/2

Период колебаний пружинного маятника:     T = 2π(m/k)1/2

Уравнение гармонических колебаний:  x = xm sin(ωt +φ0)

Уранение скорости:   ʋ = x, = xmωcos(ωt + φ= ʋmcos(ωt + φ0)     ʋm = xmω 

Уравнение ускорения:    a = ʋ, = — xmω2sin(ωt + φ0 )       am = xmω2

Энергия гармонических колебаний       m ʋm2/2 = kxm2/2 = m ʋ2/2 + kx2/2 = const

Волна — распространение колебаний в пространстве

скорость волны  ʋ =  λ /T

Уранение бегущей волны

x = xmsinωt  —  уравнение колебаний 

x — смещение в любой момент времени,  xm — амплитуда колебаний

ʋ — скорость распространения колебаний

Ϯ — время, через которое придут колебания в точку x:     Ϯ = x/ʋ

Уранение бегущей волны:   x = xm sin(ω( t —  Ϯ )) = xm sin(ω( t —  x/ʋ ))

— смещение в любой момент времени

Ϯ — время запаздывания колебаний в данной точке

Молекулярная физика и термодинамика

Количество вещества  v = N/NA

Молярная масса   M = m0NA

Число молей     v = m/M

Число молекул     N = vNA = NAm/M

Основное уравнение МКТ    p = m0nvср2/3

Температура — мера средней кинетической энергии молекул   Eср = 3kT/2

Зависимость давления газа от концентрации и температуры   p = nkT

Связь давления со средней кинетической энергией молекул  p = 2nEср/3

Связь температур   T = t + 273

Уравнение состояния идеального газа      pV = mRT/M = vRT = NkT  —  уравнение Менделеева 

p =  ρRT/M

p1V1//T= p2V2/T2 = const   для постоянной массы газа  —   уравнение Клапейрона

Закон Дальтона:  Давление смеси газов равно сумме давлений газов, находящихся в сосуде

p = p1 + p2 + …

Газовые законы

Закон Бойля-Мариотта:    pV = const       если  T = const   m = const

Закон Гей-Люссака:    V/T = const       если   p = const     m = const

Закон Шарля:     p/T = const       если     V = const      m = const

Относительная влажность воздуха 

     φ = ρ/ρ0· 100% 

Внутренняя энергия       U = 3mRT/2M    

Изменение внутренней энергии   ΔU = 3mRΔT/2M   

Об изменении внутренней энергии судим по изменению абсолютной температуры!!!

Работа газа в термодинамике       A‘ = pΔV

Работа внешних сил над газом        A = — A’

Расчёт количества теплоты

Количество теплоты, необходимое для нагревания вещества (выделяющееся при его охлаждении)        Q = cm(t2 — t1)

с — удельная теплоёмкость вещества

Количество теплоты, необходимое для плавления кристаллического вещества при температуре плавления        Q = λm

λ — удельная теплота плавления

Количество теплоты необходимое для превращения жидкости в пар      Q = Lm

L — удельная теплота парообразования

Количество теплоты, выделяющееся при сгорании топлива      Q = qm

q — удельная теплота сгорания топлива

Перый закон термодинамики       ΔU = Q + A               

                                                           Q = ΔU + A’

Q — количество теплоты, полученное газом

Перый закон термодинамики для изопроцессов:

Изотермический процесс:  T = const

Q = A’

Изохорный процесс:   V = const

ΔU =Q

Изобарный процесс:    p = const

ΔU = Q + A

Адиабатный процесс:     Q = 0      (в теплоизолированной системе)

ΔU = A

КПД тепловых двигателей

η = (Q1 — Q2) /Q1 = A’/Q1= 1 — Q2/Q1

Q1 — количество теплоты, полученное от нагревателя

Q2 — количество теплоты, отданное холодильнику

Максимальное значение КПД теплового двигателя (цикл Карно:)     η =(T1 — T2)/T1

T1 — температура нагревателя

T2 — температура холодильника

Уравнение теплового балланса:   Q1 + Q2 + Q3 + … = 0             ( Qполуч = Qотд )

Электродинамика

Наряду с механикой электординамика занимает значительную часть заданий ЕГЭ и требует интенсивной подготовки для успешной сдачи экзамена по физике.

Электростатика

Закон сохранения электрического заряда

В замкнутой системе алгебраическая сумма электрических зарядов всех частиц сохраняется

Закон Кулона       F = kq1q2/R2  = q1q2/4πε0R2 — сила взаимодействия двух точечных зарядов в вакууме

Одноимённые заряды отталкиваются, а разноимённые притягиваются

Напряжённость — силовая характеристика электрического поля точечного заряда

E = F/q

E = kq0/R2   — модуль напряжённости поля точечного заряда q0 в вакууме

Направление вектора Е совпадает с направлением силы, действующей на положительный заряд в данной точке поля

Принцип суперпозиций полей:   Напряжённость в данной точке поля равна векторной сумме напряжённостей полей, действующих в этой точке:           

    φ =  φ1 + φ2 + …

Работа электрического поля при перемещении заряда  A = qE( d1 — d2) = — qE(d2 — d1) =q(φ1 — φ2) = qU

A = — ( Wp2 — Wp1)

Wp = qEd = qφ —  потенциальная энергия заряда в данной точке поля

Потенциал  φ = Wp/q =Ed

Разность потенциалов — напряжение:     U = A/q    

Связь напряжённости и разности потенциалов   E = U/d

Электроёмкость

C = q/U    

C =εε0S/d    —  электроёмкость плоского конденсатора

Энергия плоского конденсатора:  Wp = qU/2 = q2/2C = CU2/2

Параллельное соединение конденсаторов:   q = q1 +q2 + … ,     U= U2 = …,      С = С1 + С2 + …  

Последовательное соединение соединение конденсаторов:   q1 = q2 = …,   U = U1 + U2 + …,    1/С =1/С1 +1/С2 + … 

Законы постоянного тока

Определение силы тока:        I = Δq/Δt      

Закон Ома для участка цепи:        I = U/R

Расчёт сопротивления проводника:       R = ρl/S

Законы полследовательного соединения проводников:

I = I1 = I2             U = U+ U2               R = R1 + R2

U1/U= R1/R2

Законы параллельного соединения проводников:

I = I1 + I2             U = U1 =  U2               1/R = 1/R1 +1/R2 + …                        R = R1R2/(R+ R2)  —  для 2-х проводников

I1/I= R2/R1

Работа электрического поля      A = IUΔt     
Мощность электрического тока       P = A/Δt = IU I2R = U2/R     

Закон Джоуля-Ленца                   Q = I2RΔt       —           количество теплоты, выделяемое проводником с током

ЭДС источника тока        ε = Aстор/q

Закон Ома для полной цепи           

IR = Uвнеш — напряжение на внешней цепи

Ir = Uвнутр — напряжение внутри источника тока

Электромагнетизм

Магнитное поле — особая форма материя, вознкающая вокруг движущихся зарядов и действующая на движущиеся заряды

Магнитная индукция — силовая характеристика магнитного поля

B = Fm/IΔl        

Fm = BIΔl

Сила Ампера — сила, действуюшая на проводник с током в магнитном поле

F= BIΔlsinα

Направление силы Ампера определяется по правилу левой руки: 

Если 4 пальца левой руки направить по направлению тока в проводнике так, чтобы линии магнитной индукции входили в ладонь, тогда большой палец, отогнутый на 90 градусов укажет направление действия силы Ампера

Сила Лоренца- сила, действующая на электрический заряд, движущийся в магнитном поле

Fл = qBʋsinα

Направление силы Лоренца определяется по правилу левой руки:

Если 4 пальца левой руки направить по направлению движения положительного заряда ( против движения отрицательного), так, чтобы магнитные линии входили в ладонь, тогда отгнутый на 90 градусов большой палец укажет направление силы Лоренца

Магнитный поток     Ф = BScosα      [ Ф ] = 1 Вб  

Правило Ленца: 

Возникающий в замкнутом контуре индукционный ток своим магнитным полем препятствует тому изменению магнитного потока, котрым он вызван

Закон электромагнитной индукции:

ЭДС индукции в замкнутом контуре равна по модулю скорости изменения магнитного потока через повернхность, ограниченную контуром   

ЭДС индукции в движушихся проводниках:

Индуктивность L = Ф/I            [ L ] = 1 Гн

Ф = LI

ЭДС самоиндукции:

Энергия магнитного поля тока :    Wm = LI2/2

Энергия электрического поля:     Wэл = qU/2 = CU2/2 = q2/2C

Электромагнитные колебания — гармонические колебания заряда и тока в колебательном контуре

q = qm sinω0 — колебания заряда на конденсаторе

u = Umsinω0t   —  колебания напряжения на конденсаторе

Um = qm/C

i = q’ = qmω0cosω0t   колебания силы тока в катушке

Imax = qmω0     амплитуда силы тока

Формула Томсона   

Закон сохранения энергии в колебательном контуре

CU2/2 + LI2/2 = CU2max/2 = LI2max/2 = Const

Переменный электрический ток:

Ф = BScosωt

e = — Ф’ = BSωsinωt = Emsinωt

u = Umsinωt

i = Imsin(ωt +π​/2) 

Свойства электромагнитных волн 

Оптика

Закон отражения:     Угол отражения равен углу падения    

Закон преломления:      sinα/sinβ = ʋ1/ ʋ2 = n  

— относительный показатель преломления второй среды к первой

n = n2/n1     

n1 — абсолютный показатель преломления первой среды       n= c/ʋ1

n2 — абсолютный показатель преломления второй среды       n2 = c/ʋ2

При переходе света из одной среды в другую меняется его длина волны, частота остаётся неизменной   v=  v2    n1 λ1 = n1 λ2

Полное отражение

Явление полного внутреннего отражения наблюдается при переходе света из более плотонй среды в менее плотную, когда угол преломления достигает 90°  

Предельный угол полного отражения: sinα0 = 1/n = n2/n1

Формула тонкой линзы  1/F = 1/d + 1/f

d — расстояние от предмета до линзы

f — расстояние от линзы до изображения

F — фокусное расстояние

Оптическая сила линзы    D = 1/F

Увеличение линзы    Г = H/h = f/d 

h — высота предмета

H — высота изображения

Дисперсия — разложение белого цвета в спектр — зависимость показателя преломления света от его цвета

Интерференция — сложение волн в пространстве

Условия максимумов:   Δd = k λ   —  целое число длин волн

Условия минимумов:     Δd = ( 2k + 1) λ/2  —  нечётное число длин полуволн

 Δd разность хода двух волн

Дифракция — огибание волной препятствия

Дифракционная решётка 

dsinα = k λ  —  формула дифракционной решётки

d — постоянная решётки

dx/L = k λ         

x — расстояние от центрального максимума до изображения

L — расстояние от решётки до экрана

Квантовая физика

Энергия фотона   E = hv

Уравнение Эйнштейна для фотоэффекта    hv = Aвых + mʋ2/2

mʋ2/2 = eUз                Uз —  запирающее напряжение

Красная граница фотоэффекта:     hv = Aвых          vmin = Aвых/h            λmax = c/vmin

Энергия фотоэлектронов определяется частотой света и не зависит от интенсивности света. Интенсивность пропорциональна числу квантов в пучке света и определяет число фотоэлектронов

Импульс фотонов 

E = hv = mc2

m = hv/c2          p = mc = hv/c = h/ λ    —    импульс фотонов

Квантовые постулаты Бора:

Атом может находиться только в определённых квантовых состояниях, в которых не излучает  

Энергия излучённого фотона при переходе атома из стационарного состояния с энергией Еk в стационарное состояние с энергией Еn :

hv = Ek — En

Энергетические уровни атома водорода     En = — 13,55/n2 эВ,   n =1, 2, 3,…

Ядерная физика

Закон радиоактивного распада. Период полураспада T — время, за которое распадается половина из большого числа имеющихся радиоактивных ядер

N = N0 · 2 -t/T

Энергия связи атомных ядер Есв = ΔMc2 = ( ZmP +Nmn — Mя )с2

Радиоактивность

Альфа-распад:    

Бетта-распад:       электронный

Бетта-распад:           позитронный

Астрофизика 

Физическая природа тел солнечной системы

Физическая природа звёзд

Связь между физическими характеристиками звёзд

Диаграмма Герцшпрунга-Рессела

Ускорние свободного падения вблизи поверхности планеты:     

 g = GM/R2

G — гравитационная постоянная

M — масса планеты

R — радиус планеты

Первая космическая скорость:

       

Вторая космическая скорость:  

Ускорение свободного падения   g = v22/2R = v12/R

Второй закон Ньютона : 

maц = mv12/R = mg = GMm/R2

Тесты для подготовки к ЕГЭ по механике представлены по разделам:

  • кинематика 
  • динамика 
  • законы сохранения
  • статика и гидростатика

Тесты для подготовки к ЕГЭ по молекулярной физике и термодинамике:

  • молекулярная физика и термодинамика

Тесты для подготовки к ЕГЭ по электродинамике:

  • электродинамика

Тесты для подготовки к ЕГЭ по оптике:

  • оптика

Тесты для подготовки к ЕГЭ по квантовой физике:

  • квантовая физика 

Понравилась статья? Поделить с друзьями:
  • Теория к егэ по профильной математике 2023 к каждому заданию
  • Теория ко второму заданию по русскому языку егэ 2022
  • Теория к 7 заданию егэ по математике базовый уровень
  • Теория квалификации преступлений вопросы к экзамену
  • Теория к 10 заданию егэ по математике профильный уровень 2022