Теория по органике для егэ по химии

Теория строения органических соединений: гомология и изомерия (структурная и пространственная). Взаимное влияние атомов в молекулах

Теория химического строения органических соединений А. М. Бутлерова

Подобно тому, как для неорганической химии основой развития являются Периодический закон и Периодическая система химических элементов Д. И. Менделеева, для органической химии основополагающей стала теория строения органических соединений А. М. Бутлерова.

Основным постулатом теории Бутлерова является положение о химическом строении вещества, под которым понимается порядок, последовательность взаимного соединения атомов в молекулы, т.е. химическая связь.

Под химическим строением понимают порядок соединения атомов химических элементов в молекуле согласно их валентности.

Этот порядок может быть отображен при помощи структурных формул, в которых валентности атомов обозначаются черточками: одна черточка соответствует единице валентности атома химического элемента. Например, для органического вещества метана, имеющего молекулярную формулу $СН_4$, структурная формула выглядит так:

Основные положения теории А. М. Бутлерова

  1. Атомы в молекулах органических веществ связаны друг с другом согласно их валентности. Углерод в органических соединениях всегда четырехвалентен, а его атомы способны соединяться друг с другом, образуя различные цепи.
  2. Свойства веществ определяются не только их качественным и количественным составом, но и порядком соединения атомов в молекуле, т. е. химическим строением вещества.
  3. Свойства органических соединений зависят не только от состава вещества и порядка соединения атомов в его молекуле, но и от взаимного влияния атомов и групп атомов друг на друга.

Теория строения органических соединений является динамичным и развивающимся учением. По мере развития знаний о природе химической связи, о влиянии электронного строения молекул органических веществ стали пользоваться, кроме эмпирических и структурных, электронными формулами. В таких формулах указывают направление смещения электронных пар в молекуле.

Квантовая химия и химия строения органических соединений подтвердили учение о пространственном направлении химических связей (цис- и трансизомерия), изучили энергетические характеристики взаимных переходов у изомеров, позволили судить о взаимном влиянии атомов в молекулах различных веществ, создали предпосылки для прогнозирования видов изомерии и направления и механизма протекания химических реакций.

Органические вещества имеют ряд особенностей:

  1. В состав всех органических веществ входят углерод и водород, поэтому при горении они образуют углекислый газ и воду.
  2. Органические вещества построены сложно и могут иметь огромную молекулярную массу (белки, жиры, углеводы).
  3. Органические вещества можно расположить в ряды сходных по составу, строению и свойствам гомологов.
  4. Для органических веществ характерной является изомерия.

Изомерия и гомология органических веществ

Свойства органических веществ зависят не только от их состава, но и от порядка соединения атомов в молекуле.

Изомерия — это явление существования разных веществ — изомеров с одинаковым качественным и количественным составом, т.е. с одинаковой молекулярной формулой.

Различают два вида изомерии: структурную и пространственную (стереоизомерию). Структурные изомеры отличаются друг от друга порядком связи атомов в молекуле; стереоизомеры — расположением атомов в пространстве при одинаковом порядке связей между ними.

Выделяют следующие разновидности структурной изомерии: изомерию углеродного скелета, изомерию положения, изомерию различных классов органических соединений (межклассовую изомерию).

Структурная изомерия

Изомерия углеродного скелета обусловлена различным порядком связи между атомами углерода, образующими скелет молекулы. Как уже было показано, молекулярной формуле $С_4Н_{10}$ соответствуют два углеводорода: н-бутан и изобутан. Для углеводорода $С_5Н_{12}$ возможны три изомера: пентан, изопентан и неопентан:

$СН_3—СН_2—{СН_2}↙{пентан}—СН_2—СН_3$

С увеличением числа атомов углерода в молекуле число изомеров быстро растет. Для углеводорода $С_{10}Н_{22}$ их уже $75$, а для углеводорода $С_{20}Н_{44}$ — $366 319$.

Изомерия положения обусловлена различным положением кратной связи, заместителя, функциональной группы при одинаковом углеродном скелете молекулы:

$CH_2={CH-CH_2}↙{бутен-1}-CH_3$ $CH_3-{CH=CH}↙{бутен-2}-CH_3$

${CH_3-CH_2-CH_2-OH}↙{н-пропиловый спирт(пропанол-1)}$

Изомерия различных классов органических соединений (межклассовая изомерия) обусловлена различным положением и сочетанием атомов в молекулах веществ, имеющих одинаковую молекулярную формулу, но принадлежащих к разным классам. Так, молекулярной формуле $С_6Н_{12}$ соответствует ненасыщенный углеводород гексен-1 и циклический углеводород циклогексан:

Изомерами являются углеводород, относящийся к алкинам, — бутин-1 и углеводород с двумя двойными связями в цепи бутадиен-1,3:

$CH≡C-{CH_2}↙{бутин-1}-CH_2$ $CH_2={CH-CH}↙{бутадиен-1,3}=CH_2$

Диэтиловый эфир и бутиловый спирт имеют одинаковую молекулярную формулу $С_4Н_{10}О$:

${CH_3CH_2OCH_2CH_3}↙{text»диэтиловый эфир»}$ ${CH_3CH_2CH_2CH_2OH}↙{text»н-бутиловый спирт (бутанол-1)»}$

Структурными изомерами являются аминоуксусная кислота и нитроэтан, отвечающие молекулярной формуле $С_2Н_5NO_2$:

Изомеры этого типа содержат различные функциональные группы и относятся к разным классам веществ. Поэтому они отличаются по физическим и химическим свойствам значительно больше, чем изомеры углеродного скелета или изомеры положения.

Пространственная изомерия

Пространственная изомерия подразделяется на два вида: геометрическую и оптическую. Геометрическая изомерия характерна для соединений, содержащих двойные связи, и циклических соединений. Так как свободное вращение атомов вокруг двойной связи или в цикле невозможно, заместители могут располагаться либо по одну сторону плоскости двойной связи или цикла (цис-положение), либо по разные стороны (транс-положение). Обозначения цис- и транс- обычно относят к паре одинаковых заместителей:

Геометрические изомеры различаются по физическим и химическим свойствам.

Оптическая изомерия возникает, если молекула несовместима со своим изображением в зеркале. Это возможно, когда у атома углерода в молекуле четыре различных заместителя. Этот атом называют асимметрическим. Примером такой молекулы является молекула $α$-аминопропионовой кислоты ($α$-аланина) $СН_3СН(NH_2)COOH$.

Молекула $α$-аланина ни при каком перемещении не может совпасть со своим зеркальным отражением. Такие пространственные изомеры называются зеркальными, оптическими антиподами, или энантиомерами. Все физические и практически все химические свойства таких изомеров идентичны.

Изучение оптической изомерии необходимо при рассмотрении многих реакций, протекающих в организме. Большинство этих реакций идет под действием ферментов — биологических катализаторов. Молекулы этих веществ должны подходить к молекулам соединений, на которые они действуют, как ключ к замку, следовательно, пространственное строение, взаимное расположение участков молекул и другие пространственные факторы имеют для течения этих реакций большое значение. Такие реакции называются стереоселективными.

Большинство природных соединений являются индивидуальными энантиомерами, и их биологическое действие резко отличается от свойств их оптических антиподов, полученных в лаборатории. Подобное различие в биологической активности имеет огромное значение, так как лежит в основе важнейшего свойства всех живых организмов — обмена веществ.

Гомологическим рядом называется ряд веществ, расположенных в порядке возрастания их относительных молекулярных масс, сходных по строению и химическим свойствам, где каждый член отличается от предыдущего на гомологическую разность $CH_2$. Например: $CH_4$ — метан, $C_2H_6$ — этан, $C_3H_8$ — пропан, $C_4H_{10}$ — бутан и т. д.

Типы связей в молекулах органических веществ. Гибридизация атомных орбиталей углерода. Радикал. Функциональная группа.

Типы связей в молекулах органических веществ.

В органических соединениях углерод всегда четырехвалентен. В возбужденном состоянии в его атоме происходит разрыв пары $2s^3$-электронов и переход одного из них на р-орбиталь:

Такой атом имеет четыре неспаренных электрона и может принимать участие в образовании четырех ковалентных связей.

На основании приведенной электронной формулы валентного уровня атома углерода можно было бы ожидать, что на нем находится один $s$-электрон (сферическая симметричная орбиталь) и три $р$-электрона, имеющих взаимно перпендикулярные орбитали ($2р_х, 2р_у, 2p_z$-орбиталь). В действительности же все четыре валентных электрона атома углерода полностью эквивалентны и углы между их орбиталями равны $109°28’$. Кроме того, расчеты показывают, что каждая из четырех химических связей углерода в молекуле метана ($СН_4$) на $25%$ является $s-$ и на $75%$ — $p$-связью, т.е. происходит смешивание $s-$ и $р-$состояний электронов. Это явление называют гибридизацией, а смешанные орбитали — гибридными.

Атом углерода в $sp^3$-валентном состоянии имеет четыре орбитали, на каждой из которых находится по одному электрону. В соответствии с теорией ковалентной связи он имеет возможность образовывать четыре ковалентные связи с атомами любых одновалентных элементов ($СН_4, CHCl_3, CCl_4$) или с другими атомами углерода. Такие связи называются $σ$-связями. Если атом углерода имеет одну $С—С$ связь, то он называется первичным ($Н_3С—СН_3$), если две — вторичным ($Н_3С—СН_2—СН_3$), если три — третичным (), а если четыре — четвертичным ().

Одной из характерных особенностей атомов углерода является их способность образовывать химические связи за счет обобщения только $р$-электронов. Такие связи называются $π$-связями. $π$-связи в молекулах органических соединений образуются только в присутствии $σ$-связей между атомами. Так, в молекуле этилена $Н_2С=СН_2$ атомы углерода связаны $σ-$ и одной $π$-связью, в молекуле ацетилена $НС=СН$ — одной $σ-$ и двумя $π$-связями. Химические связи, образовавшиеся с участием $π$-связей, называются кратными (в молекуле этилена — двойная, в молекуле ацетилена — тройная), а соединения с кратными связями — ненасыщенными.

Явление $sp^3$-, $sp^2$- и $sp$ — гибридизации атома углерода.

При образовании $π$-связей изменяется гибридное состояние атомных орбиталей атома углерода. Так как образование $π$-связей происходит за счет р-электронов, то в молекулах с двойной связью электроны будут иметь $sp^2$-гибридизацию (была $sp^3$, но один р-электрон отходит на $π$-орбиталь), а с тройной — $sp$-гибридизацию (два р-электрона отошли на $π$-орбиталь). Характер гибридизации изменяет направленность $σ$-связей. Если при $sp^3$-гибридизации они образовывают пространственно разветвленные структуры ($а$), то при $sp^2$-гибридизации все атомы лежат в одной плоскости и углы между $σ$-связями равны $120°$(б), а при $sp$-гибридизации молекула линейна (в):

При этом оси $π$-орбиталей перпендикулярны оси $σ$-связи.

Как $σ$-, так и $π$-связи являются ковалентными, значит, должны характеризоваться длиной, энергией, пространственной направленностью и полярностью.

Характеристики одинарных и кратных связей между атомами С.

Молекула Тип гибридизации Валентный угол Длина связи, нм Энергия связи, кДж/моль
$CH_3-CH_3$ $sp^3$ $109°5’$ $0.154$ $369$
$CH_2=CH_2$ $sp^2$ $120°$ $0.134$ $712$
$CH≡CH$ $sp^3$ $180°$ $0.120$ $962$

Радикал. Функциональная группа.

Одной из особенностей органических соединений является то, что в химических реакциях их молекулы обмениваются не отдельными атомами, а группами атомов. Если эта группа атомов состоит только из атомов углерода и водорода, то она называется углеводородным радикалом, если же она имеет атомы других элементов, то она называется функциональной группой. Так, например, метил ($СН_3$—) и этил ($С_2Н_5$—) являются углеводородными радикалами, а оксигруппа (—$ОН$), альдегидная группа (), нитрогруппа (—$NO_2$) и т. д. являются функциональными группами спиртов, альдегидов и азотсодержащих соединений соответственно.

Как правило, функциональная группа определяет химические свойства органического соединения и поэтому является основой их классификации.

1 ТЕОРЕТИЧЕСКИЕ ОСНОВЫ ХИМИИ
1.1 Современные представления о строении атома
1.1.1 Строение электронных оболочек атомов элементов первых четырех периодов: s-, p- и d-элементы. Электронная конфигурация атома. Основное и возбужденное состояние атомов.
1.2 Периодический закон и периодическая система химических элементов Д.И. Менделеева
1.2.1 Закономерности изменения химических свойств элементов и их соединений по периодам и группам периодической таблицы химических элементов.
1.2.2 Общая характеристика металлов IА–IIIА групп в связи с их положением в периодической системе химических элементов Д.И. Менделеева и особенностями строения их атомов.
1.2.3 Характеристика переходных элементов (меди, цинка, хрома, железа) по их положению в периодической системе химических элементов Д.И.Менделеева и особенностям строения их атомов.
1.3 Химическая связь и строение вещества
1.3.1 Ковалентная химическая связь, ее разновидности и механизмы образования. Характеристики ковалентной связи (полярность и энергия связи). Ионная связь. Металлическая связь. Водородная связь.
1.3.2 Электроотрицательность. Степень окисления и валентность химических элементов.
1.3.3 Вещества молекулярного и немолекулярного строения. Тип кристаллической решётки. Зависимость свойств веществ от их состава и строения.
1.4 Химическая реакция
1.4.1 Классификация химических реакций в неорганической и органической химии.
1.4.2 Тепловой эффект химической реакции. Термохимические уравнения.
1.4.3 Скорость реакции, ее зависимость от различных факторов.
1.4.4 Обратимые и необратимые химические реакции. Химическое равновесие. Смещение химического равновесия под действием различных факторов.
1.4.5 Электролитическая диссоциация электролитов в водных растворах. Сильные и слабые электролиты.
1.4.6 Реакции ионного обмена.
Особенности взаимодействия кислых солей со щелочами.
1.4.7 Гидролиз солей. Среда водных растворов: кислая, нейтральная, щелочная.
Необратимый гидролиз бинарных соединений.
1.4.8 Реакции окислительно-восстановительные. Коррозия металлов и способы защиты от нее.
1.4.9 Электролиз расплавов и растворов (солей, щелочей,кислот).
2 НЕОРГАНИЧЕСКАЯ ХИМИЯ
2.1 Классификация неорганических веществ. Номенклатура неорганических веществ (тривиальная и международная).
2.2 Химические свойства простых веществ — металлов
2.2.1 Характерные химические свойства щелочных металлов.
2.2.2 Характерные химические свойства бериллия, магния и щелочноземельных металлов.
2.2.3 Характерные химические свойства алюминия.
2.2.4 Химические свойства переходных металлов (меди, цинка, хрома, железа).
2.3 Химические свойства простых веществ — неметаллов
2.3.1 Химические свойства водорода и галогенов.
2.3.2 Химические свойства кислорода и серы.
2.3.3 Химические свойства азота и фосфора.
2.3.4 Химические свойства углерода и кремния.
2.4 Характерные химические свойства оксидов: основных, амфотерных, кислотных.
2.5 Характерные химические свойства оснований и амфотерных гидроксидов.
2.6 Характерные химические свойства кислот.
2.7 Характерные химические свойства солей: средних, кислых, основных, комплексных (на примере соединений алюминия и цинка).
3 ОРГАНИЧЕСКАЯ ХИМИЯ
3.1 Теория строения органических соединений: гомология и изомерия (структурная и пространственная). Взаимное влияние атомов в молекулах.
3.2 Типы связей в молекулах органических веществ. Гибридизация атомных орбиталей углерода. Радикал. Функциональная группа.
3.3 Классификация органических веществ. Номенклатура органических веществ (тривиальная и международная).
3.4 Характерные химические свойства углеводородов: алканов, циклоалканов, алкенов, диенов, алкинов, ароматических углеводородов (бензола и толуола).
3.5 Характерные химические свойства предельных одноатомных и многоатомных спиртов, фенола.
3.6 Характерные химические свойства альдегидов, предельных карбоновых кислот, сложных эфиров.
3.7 Характерные химические свойства азотсодержащих органических соединений: аминов и аминокислот.
3.8 Биологически важные вещества: жиры, белки, углеводы (моносахарады, дисахариды, полисахариды)
3.8.1 Жиры.
3.8.2 Белки.
3.8.3 Углеводы (моносахариды, дисахариды, полисахариды).
3.9 Взаимосвязь органических соединений.
4 МЕТОДЫ ПОЗНАНИЯ В ХИМИИ. ХИМИЯ И ЖИЗНЬ
4.1 Экспериментальные основы химии
4.1.1 Правила работы в лаборатории. Лабораторная посуда и оборудование. Правила безопасности при работе с едкими, горючими и токсичными веществами, средствами бытовой химии.
4.1.2 Методы разделения смесей и очистки веществ.
4.1.3 Определение характера среды водных растворов веществ. Индикаторы.
4.1.4 Качественные реакции на неорганические вещества и ионы.
4.1.5 Качественные реакции органических соединений.
4.1.7 Основные способы получения углеводородов.
4.1.8 Основные способы получения кислородсодержащих соединений.
4.2 Общие представления о промышленных способах получения важнейших веществ
4.2.1 Понятие о металлургии: общие способы получения металлов.
4.2.2.1 Общие научные принципы химического производства (на примере промышленного получения аммиака, серной кислоты, метанола).
4.2.3 Природные источники углеводородов, их переработка.
4.2.4 Высокомолекулярные соединения. Реакции полимеризации и поликонденсации. Полимеры. Пластмассы, волокна, каучуки.
4.3 Рачеты по химическим формулам и уравнениям реакций
4.3.1 Расчеты с использованием понятия «массовая доля вещества в растворе».
4.3.2 Расчеты объемных отношений газов при химических реакциях.
4.3.3 Расчеты массы вещества или объема газов по известному количеству вещества, массе или объему одного из участвующих в реакции веществ.
4.3.4 Расчеты теплового эффекта реакции.
4.3.5 Расчеты массы (объема, количества вещества) продуктов реакции, если одно из веществ дано в избытке (имеет примеси).
4.3.6 Расчеты массы (объема, количества вещества) продукта реакции, если одно из веществ дано в виде раствора с определенной массовой долей растворенного вещества.

Органическая химия – это химия углерода и его соединений с другими элементами.

В молекулах органических веществ могут присутствовать также атомы: водорода Н, кислорода О, азота N, серы S, фосфора P, галогенов, металлов и других элементов.

Количество известных органических соединений в настоящее время превышает 20 миллионов.

Углерод в органических веществах

Атомы углерода могут соединяться друг с другом с образованием цепей различного строения (разветвленные, неразветвленные, замкнутые) и длины (от двух до сотен тысяч атомов углерода).

В органических веществах углерод имеет валентность IV (образует 4 связи).

  • Атом углерода может образовывать одинарные, двойные и тройные связи.

CH3-CH3               CH2=CH2               CH≡CH

В основе современной органической химии лежит теория строения органических соединений.

Основные положения теории строения органических соединений

Атомы в молекулах соединены друг с другом в определенной последовательности согласно их валентностям.  Последовательность межатомных связей в молекуле называется ее химическим строением и отражается структурной формулой (формулой строения).

  • Свойства веществ зависят не только от вида и числа атомов в молекуле, но и от их взаимного расположения – т.е. от строения молекулы.

Это приводит к тому, что вещества одного и того же состава могут иметь разное строение, т. е. к появлению изомерии.

Изомеры – это вещества, имеющие одинаковый состав (число атомов каждого типа), но разное взаимное расположение атомов – разное строение.

Например, формуле C4H10 соответствуют два изомерных соединения н-бутан с линейным углеродным скелетом и изобутан (2-метилпропан) с разветвленным скелетом

н-Бутан

CH3-CH2-CH2-CH3

Изобутан

CH3-CH(CH3)-CH3

При этом температура кипения н-бутана -0,5оС, а изобутана -11,4оС.

  • По свойствам данного вещества можно определить строение его молекулы, а по строению молекулы – определить свойства.
  • Атомы и группы атомов в молекуле оказывают взаимное влияние друг на друга. Это отражается на химических и физических свойствах вещества.

Формулы строения органических веществ

Состав органического вещества можно описать химическими формулами.

Химические формулы органических веществ бывают следующих типов:

Простейшая формула – может быть получена опытным путем через определение соотношения количества атомов химических элементов в веществе.

Например, простейшая формула метана CH4, а вот бензола – СН.

Истинная формула (брутто-формула) – показывает истинный состав молекулы, но не показывает ее структуру. Истинная формула показывает точное количество атомов каждого элемента в одной молекуле.

Например, истинная формула бензола C6H6.

Полная (развернутая) структурная формула однозначно описывает порядок соединения атомов в молекуле. 

Например, полная структурная формула бутана:

Сокращенная структурная формулаэто структурная формула, в которой не указываются связи между углеродом и водородом.

Например, сокращенная структурная формула бутана:

CH3-CH2-CH2-CH3

Типы углеродных атомов в составе органических молекул

Типы углеродных атомов в составе органических молекул

Атомы углерода

Первичные Вторичные Третичные Четвертичные
Атомы углерода, которые в углеродной цепи соединены с одним атомом углерода Атомы углерода, которые в углеродной цепи соединены с двумя атомами углерода Атомы углерода, которые в углеродной цепи соединены с тремя атомами углерода Атомы углерода, которые в углеродной цепи соединены с четырьмя атомами углерода

Типы связей в молекулах органических веществ

Одна из характеристик химических связей — тип перекрывания орбиталей атомов в молекуле.
По характеру перекрывания различают σ-(сигма) и π‑(пи) связи.

σ-Связь — это связь, в которой перекрывание орбиталей происходит вдоль оси, соединяющей ядра атомов.

σ-Связь может быть образована любыми типами орбиталей (s, p, d, гибридизованными).

σ-Связь — это основная связь в молекуле, которая преимущественно образуется между атомами.

Между двумя атомами возможна только одна σ-связь.

Виды σ-связей

π-Связь — это связь, в которой перекрывание орбиталей происходит в плоскости, перпендикулярной оси, соединяющей ядра атомов, сверху и снизу от оси связи.

π-Связь образуется при перекрывании только р- (или d) орбиталей, перпендикулярных линии связи и параллельных друг другу.

π-Связь является дополнительной к σ-связи, она менее прочная и легче разрывается при химических реакциях.

Одинарная связь

С–С, С–Н, С–О

Двойная связь

С=С, С=О

Тройная связь

С≡С, С≡N

σ-связь σ-связь + π-связь σ-связь + две π-связи

Гибридизация атомных орбиталей углерода

Электронная формула атома углерода в основном состоянии: 

+6С 1s22s22p2

+6С  1s   2s   2p 

В возбужденном состоянии: один электрон переходит с 2s-подуровня на 2р-подуровень.

+6С* 1s22s12p3

+6С* 1s2   2s1  2p3 

Таким образом, в возбужденном состоянии углерод содержит четыре неспаренных электрона, может образовать четыре химические связи и проявляет валентность IV в соединениях.

При образовании четырех химических связей атомом углерода происходит гибридизация атомных орбиталей.

Гибридизация атомных орбиталей — это выравнивание электронной плотности атомных орбиталей разного типа с образованием новых, молекулярных орбиталей, форма и энергия которых одинаковы.

В гибридизацию вступают атомные орбитали с небольшой разницей в энергии (как правило, орбитали одного энергетического уровня). В зависимости от числа и типа орбиталей, участвующих в гибридизации, для атома углерода возможны sp3, sp2 и sp-гибридизация.

sp3-Гибридизация

В sp3-гибридизацию вступают одна s-орбиталь и три p-орбитали. При этом образуются четыре sp3-гибридные орбитали:

Изображение с портала orgchem.ru

Четыре sp3-гибридные орбитали атома углерода взаимно отталкиваются, и располагаются в пространстве так, чтобы угол между орбиталями был максимально возможным.

Поэтому четыре гибридные орбитали углерода в состоянии sp3-гибридизации направлены в пространстве под углом 109о 28’  друг к другу, что соответствует тетраэдрическому строению.

Например, в молекуле метана CH4 атомы водорода располагаются в пространстве в вершинах тетраэдра, центром которого является атом углерода. Валентный угол Н–С–Н в метане равен 109о 28’

Молекулам линейных алканов с большим числом атомов углерода соответствует зигзагообразное расположение атомов углерода.

Например, пространственное строение н-бутана

sp2-Гибридизация

В sp2-гибридизацию вступают одна s-орбиталь и две p-орбитали. Одна p-орбиталь не гибридизуется:

Три sp2-гибридные орбитали атома углерода взаимно отталкиваются, и располагаются в пространстве так, чтобы угол между орбиталями был максимально возможным.

Поэтому три sp2-гибридные орбитали атома углерода направлены в пространстве под углом 120о друг к другу, что соответствует плоскому строению (треугольник).

При этом негибридная р-орбиталь располагается перпендикулярно плоскости, в которой расположены три гибридные sp2— орбитали.

Изображение с портала orgchem.ru

Например, молекула этилена C2H4 имеет плоское строение. Сигма-связь между атомами углерода образуется за счет перекрывания sp2-гибридных орбиталей. Пи-связь между атомами углерода образуется за счет перекрывания негибридных р-орбиталей.

Модель молекулы этилена:

sp-Гибридизация

В sp-гибридизацию вступают одна s-орбиталь и одна p-орбиталь. Две p-орбитали не  вступают в гибридизацию:

Две sp-гибридные орбитали атома углерода направлены в пространстве под углом 180о друг к другу, что соответствует линейному строению.

Изображение с портала orgchem.ru

При этом две р-орбитали располагаются перпендикулярно друг другу и перпендикулярно линии, на которой расположены гибридные орбитали.

Например, молекула ацетилена имеет линейное строение.

Изомерия

Изомеры – это вещества, имеющие одинаковый состав (число атомов каждого типа), но разное взаимное расположение атомов – разное строение.

Изомерия – это явление существования веществ с одинаковым составом, но различным строением.

Например, формуле C4H10 соответствуют два изомерных соединения н-бутан с линейным углеродным скелетом и изобутан (2-метилбутан) с разветвленным скелетом:

При этом температура кипения н-бутана –0,5оС, а изобутана –11,4оС.

Виды изомерии

Различают два основных вида изомерии: структурную и пространственную (стереоизомерию).

   Структурные изомеры отличаются друг от друга взаимным расположением атомов в молекуле;  стереоизомеры — расположением атомов в пространстве.

Структурная изомерия

Структурные изомеры – соединения с одинаковым составом, но различным порядком связывания атомов, т.е. с различным химическим строением. Молекулярная формула у структурных изомеров одинаковая, а структурная различается.

1. Изомерия углеродного скелета: вещества различаются строением углеродной цепи, которая может быть линейная или разветвленная.

Например, молекулярной формуле С5Н12 соответствуют три изомера:

2. Изомерия положения обусловлена различным положением кратной связи, функциональной группы или заместителя при одинаковом углеродном скелете молекул.

2.1. Изомерия положения функциональной группы. Например, существует два изомерных предельных спирта с общей формулой С3Н8О: пропанол-1 (н-пропиловый спирт) пропанол-2 (изопропиловый спирт):

2.2. Изомерия положения кратной связи может быть вызвана различным положением кратной (двойной или тройной)  связи в непредельных соединениях. Например, в бутене-1 и бутене-2:

2.3. Межклассовая изомерия – ещё один вид структурной изомерии, когда вещества из разных классов веществ имеют одинаковую общую формулу.

Например, формуле С2Н6О соответствуют: спирт (этанол) и простой эфир (диметиловый эфир):

Пространственная изомерия

Пространственные изомеры – это вещества с одинаковым составом и химическим строением, но с разным пространственным расположением атомов в молекуле. Виды пространственной изомерии – геометрическая (цистранс) и оптическая изомерия.

1. Геометрическая изомерия (или цис-транс-изомерия)

Геометрическая изомерия характерна для соединений, в которых различается положение заместителей относительно плоскости двойной связи или цикла.

Например, для алкенов и циклоалканов.

Двойная связь не имеет свободного вращения вокруг своей оси.

Поэтому заместители у атомов углерода при двойной связи могут быть расположены либо по одну сторону от плоскости двойной связи (цис-изомер), либо по разные стороны от плоскости двойной связи (транс-изомер). При этом никаким вращением нельзя получить из цис-изомера транс-изомер, и наоборот.

Например, бутен-2 существует в виде цис— и транс-изомеров

1,2-Диметилпропан также образует цис-транс-изомеры:

Геометрические изомеры различаются по физическим свойствам (температура кипения и плавления, растворимость, дипольный момент и др.). Например, температура кипения цис-бутена-2 составляет 3,73 оС, а транс-бутена-2 0,88оС.

При этом цистранс-изомерия характерна для соединений, в которых каждый атом углерода при двойной связи С=С (или в цикле) имеет два различных заместителя.

Например, в молекуле бутена-1 CH2=CH-CH2-CH3 заместители у первого атома углерода при двойной связи (два атома водорода) одинаковые, и цистранс-изомеры бутен-1 не образует. А вот в молекуле бутена-2 CH3CH=CH-CH3 заместители у каждого атома углерода при двойной связи разные (атом водорода и метильная группа CH3), поэтому бутен-2 образует цис— и транс-изомеры.

Таким образом, для соединений вида СH2=СHR и СR2=СHR’ цистранс-изомерия не характерна.

2. Оптическая изомерия

Оптические изомеры – это пространственные изомеры, молекулы которых соотносятся между собой как предмет и несовместимое с ним зеркальное изображение.

Оптическая изомерия свойственна молекулам веществ, имеющих асимметрический атом углерода.

Асимметрический атом углерода — это атом углерода, связанный с четырьмя различными заместителями.

Такие молекулы обладают оптической активностью — способностью к вращению плоскости поляризации света при прохождении поляризованного луча через раствор вещества.

Например, оптические изомеры образует 3-метилгексан:

Классификация органических соединений

Классификацию органических веществ определяют строение углеродной цепи (углеродного скелета) и наличие и особенности строения функциональных групп.

Углеродный скелетэто последовательность соединенных между собой атомов углерода в органической молекуле.

Функциональная группа – это атом или группа атомов, которая определяет принадлежность молекулы к определенному классу органических веществ и химические свойства, соответствующие данному классу веществ.

Классификация органических веществ по составу

Углеводороды Кислородсодержащие вещества Азотсодержащие вещества
Состоят из атомов углерода и водорода Содержат также атомы кислорода Содержат также атомы азота

Углеводороды

Углеводороды– это вещества, состав которых отражается формулой СхНу, то есть в их составе только атомы углерода и водорода.

В зависимости от типа связей между атомами С, они делятся на предельные или насыщенные (все связи одинарные) и непредельные (ненасыщенные)  — в молекуле присутствуют двойные и тройные связи.

Кроме того, углеводороды делятся на циклические (углеродная цепь образует кольцо) и ациклические или алифатические (углеродная цепь не замкнута в кольцо).

Углеводороды
Предельные (содержат только одинарные связи) Непредельные (содержат двойные или тройные связи между атомами углерода)
Алканы Циклоалканы Алкены Алкадиены Алкины Ароматические углеводороды
Углеводороды с открытой (незамкнутой)  углеродной цепью Атомы углерода соединены в замкнутый цикл Одна двойная связь Две двойные связи Одна тройная связь Циклические углеводороды с тремя двойными связями (бензольное кольцо)
CnH2n+2 CnH2n CnH2n CnH2n-2 CnH2n-2 CnH2n-6
Этан

CH3-CH3

Циклобутан

Этилен

CH2=CH2

Дивинил

CH2=CН-СН=СH2

Ацетилен

СН≡СН

Бензол

Ациклические углеводороды
С неразветвленной цепью С разветвленной углеродной цепью
н-Бутан

CH3-CH2-CH2-CH3

Изобутан

Кислородсодержащие органические вещества

Так как кислород имеет валентность II, он может образовать либо 2 одинарные связи, либо одну двойную. Соответственно, в органической молекуле он соединяется с водородом и углеродом.

Основные функциональные группы, содержащие кислород:

  • группа –О-Н (гидроксильная)
  • группа >С=О (карбонильная)
  • группа –СОО- (карбоксильная)

Кислородсодержащие органические вещества

Группа ОН Группа С=О Группа -СОО-
Гидроксил Карбонил Карбоксил
Спирт Фенол Альдегид Кетон Карбоновая кислота Сложный эфир
R-OH
Метанол

CH3-OH

Фенол

Ацетальдегид

Пропанон

Уксусная кислота

Метилацетат

Азотсодержащие органические вещества

Азотсодержащие вещества можно также разделить на классы по наличию определенных функциональных групп.

  • амины – содержат группы –NН2, –NH–, либо -N< ,
  • нитрилы (группа –СºN),
  • азотистые гетероциклы.

Некоторые органические вещества содержат и азот, и кислород.

К ним относятся:

  • нитросоединения –NO2
  • амиды –CONH2,
  • аминокислоты – полифункциональные соединения, которые содержат и карбоксильную группу –COOH, и аминогруппу –NH2
Азотсодержащие вещества
Амины Нитрилы Нитросоединения Амиды Аминокислоты Гетероциклы
-NH2

-NH-

-N<

-C≡N R-NO2 R-C(NH2)=O -NH2, -COOH
Метиламин

CH3-NH2

Нитрил уксусной кислоты

CH3-C≡N

Нитрометан

CH3-NO2

Амид уксусной кислоты

CH3-C(NH2)=O

Аминоуксусная кислота

CH2(NH2)-COOH

Пиррол

Другие органические вещества

Органические соединения очень многочисленны и разнообразны.

К важным классам органических соединений также относятся галогенопроизводные органические вещества R–Hal ,которые содержат также атомы галогенов (хлора, фтора, брома и др.).

В состав органических соединений также могут входить несколько одинаковых или различных функциональных групп.

Гомологи. Гомологический ряд

Органические вещества разных классов тесно взаимосвязаны.

Соединения, содержащие одинаковые функциональные свойства, проявляют схожие химические и физические свойства.

Вещества, которые содержат одинаковые функциональные группы, имеют сходное строение, но отличаются друг от друга на одну или несколько групп –СH2–, образуют гомологический ряд.

Гомологи – это вещества, которые входят в один и тот же гомологический ряд.

Группу  –СH2– называют гомологической разностью.

1 лист.

Реакции к основным темам курса 10 класса  (для запоминания), проф. класс.

1. Алканы (предельные, насыщенные). Общая формула – СпН2п+2.

М (СпН2п+2)=(14п+2)г/моль, σ-связи, SP3-гибридизация, <109’28», тетраэдр.

1. р.галогенирования (р. замещения по радикальному механизму) проходит на свету:                         R-Н + Вr2 →R-Вr + НВr (галогены только в газообразном состоянии);

2. р. нитрования – р. Коновалова (р. замещения, радик. мех-зм):

R-Н + НО – NО2(разб) −→ R-NО2 + Н2О                                            │

внимание: замещение атомов водорода у третичного атома (—с—) проходит легче,                                                           чем у вторичного атома(—с—) и тем более первичного атома (с—).

3. р. изомеризации (у С4Н10 и следующих) в присутствии катализатора – AlCl3:

 СН3-СН2-СН2-СН3 —→ СН3-СН (СН3)-CН3

4.крекинг (разрыв связей между атомами углеродов, радик. мех-зм) под действием температуры и катализатора:

С8Н18→С4Н104Н8   

5. р. элиминирования – образование веществ с кратными связями за счет отрыва атомов или групп атомов: 2СН4→С2Н4↑+2Н2↑ при t=5000С-10000С

        2СН4→С2Н2↑+3Н2↑ при t=10000С-15000С

        2СН4→2С+4Н2↑ при t>15000С (пиролиз)

6. р. ароматизации – получение ароматических углеводородов за счёт отрыва атомов водородов в присутствии катализаторов: С6Н12 → С6Н6 + 3Н2

7. р. горения — ( + О2)   СпН2п+2 + (3п+1)/2О2 → пСО2↑ + (п+1) Н2О + Q (экзотерм.)

. р. окисления метана ( +[О]) даёт продукты, в зависимости от условий:

                                                                       СН4   из воздуха→ СН3ОН

        →НСНО

        →НСООН        

8. р. Вюрца («удвоение») 2СН3Cl + 2Na → 2NaCl + C2H6, в кислой среде.

9. получение алканов: а) С+2Н2 → СН4↑ под действием эл. разряда;

б) СН3-СООNa + NaOH → CH4↑ + Na2CO3 при спекании сухих веществ

в) Al4C3 + 12НОН → 3СН4↑ + 4Al(ОН)3↓; г) Al4C3 + 12НСl→ 3СН4↑ + 4AlСl3.

2. Циклоалканы (предельные). Общая формула – СпН2п.

М (СпН2п)= 14п г/моль, σ-связи, SP3-гибридизация, <от 60′ до 109′, цикл.

1. р. присоединения (+Н2, +Вr2,+НI) у циклов с 3,4 5 атомами углерода

                          C3H6 + Br2 = Br-CH2-CH2-CH2Br;

2. р. замещения – аналогично алканам (циклы с 6 и > атомами углерода);

3. р. элиминирования (дегидрирования)   С6Н12 → С6Н6 + 3Н2↑(катализ: Ni, t)

4. р. окисления – на примере циклогексана сильным окислителем:

С6Н12 + 4[О] → СН2-СН2-СООН

                                     │

                                     СН2-СН2-СООН (адипиновая кислота)

        3. Алкены (непредельные). Общая формула – СпН2п.

М (СпН2п)= 14п г/моль, σ- и π-связи, SP2-гибридизация, < 120′, треугольник.

1.р. присоединение Н2, НГ, Г2 и Н2О (разрыв С=С связи, электрофильный мех-зм)

 а) гидрогалогенирование:СН2=СН2 + НBr → СН3-СН2Br

в случае несимметричной π-связи по правилу Марковникова (Н к СН2):

2 лист

СН3-СН=СН2 + НBr → СН3-СНBr-СН3;     продолжение см. дальше.

б) гидратация:СН3-С=СН2 + НОН → СН3-С(ОН)-СН3 (в присутствии минерал кислот) 

           │          │        

                                 СН3             СН3

в) галогенирование (обесцвечивание раствора бромной воды – Br2) – качественная реакция на кратную связь, как и реакция с раствором КМпО4:

СН2 = СН2 + Br2  → BrСН2-СН2Br

 г)гидрирование: СН3-СН=СН2 + Н2 → СН3-СН2-СН3 (катализатор – Ni, t)

2.р. замещения (радикальный мех-зм) – замещение атома Н на соседнем с двойной связью атоме углерода, при t=5000С:  СН3-СН=СН2 + Cl2 → ClСН2-СН=СН3 + НCl

3.р. окисления:а) мягкое – холодным раствором КМпО4(р. Вагнера)

             СН2 = СН2 + [О] + Н2О → СН2ОН-СН2ОН (упрощенная запись)

или    3СН2 = СН2 + 2КМпО4 + 4Н2О → 3СН2ОН-СН2ОН + 2МпО2↓ + 2КОН

        б)жесткое – кипящим раствором КМпО4 в кислой среде

        СН3-СН=СН-СН3 + 4[О] → 2 СН3-СООН

4.р. полимеризации: пСН2=СН2 → ( — СН2-СН2 — ) в кислой среде.

5.получение алкенов: а) С7Н16 —→ C4Н10 + CН3-CН=CН2 (t,Kat);

 б) СН3-СН2-СНBr-СН3 + КОН (спирт)→СН3-СН=СН-СН3 + КBr + Н2О

в) СН3-СН-СН3 → СН3-СН=СН2 + Н2О (t=1500С, в кислой среде) по правилу Зайцева

        │

        ОН

г) СН2Br- СНBr-СН3 + 2К → СН2=СН-СН3 + 2КBr – синтез ВюрцаКрафтса

д) СН3-СН2-СН3 → СН3-СН=СН2 + Н2↑ в присутствии Kat – Cr2O3

        4. Алкадиены (непредельные). Общая формула – СпН2п-2.

М (СпН2п-2)= (14п-2) г/моль, σ- и 2π-связи, SP2-гибридизация.

1. р. присоединения:        →СН2Br-СНBr-СН=СН2 (присоединение по 1,2)

СН2=СН-СН=СН2 + Br2 →[

        → СН2Br-СН=СН=СН2Br (присоединение по 1,4)

2. р. полимеризации: пСН2=СН-СН=СН2 → (-СН2-СН=СН-СН2-) в кислоте

3. диеновый синтез – р. Дильса-Альдера- р.циклизации

       СН2-СН=СН-СН2 + СН2=СН2 → С6Н10 при нагревании, под давлением.

4. получение алкадиенов:

а) СН3-СН2-СН2-СН3 → СН2=СН-СН=СН2 + 2Н2↑ при t, Kat – Cr2O3;

б) 2С2Н5ОН → СН2=СН-СН=СН2 + Н2↑ + 2Н2О при t, Kat – Al2O3, ZnO р. Лебедева. 

                5. Алкины (непредельные). Общая формула – СпН2п-2.

М (СпН2п-2)= (14п-2) г/моль, σ- и 2π-связи, SP-гибридизация, линейное строение

обладают слабыми кислотными свойствами

1.р. электрофильного присоединения (медленнее, чем у алкенов) — Br2, Н2 и НСl

СН≡СН + Br2 → СНBr=СНBr, далее СНBr=СНBr+ Br2 → СНBr2-СНBr2

2.р. гидратации – р. Кучерова, в кислой среде, Kat – Hg2+

любой алкин образует кетон СН3-С≡СН + НОН →СН3-С (СН3)=О,

             только ацетилен   СН≡СН + НОН →СН3-СНО  — альдегид

3. р. окисления раствором КМпО4: R-C≡C-R’ + 3[О] + HOH → R-COOH + R’-COOH

4.р. гидрирования СН3-С≡СН + Н2 → СН3-СН=СН2, далее СН3-СН=СН2 2 →С3Н8

3 лист

при нагревании, в присутствии катализатора – Pt, Pd

                                                   продолжение см дальше

5.слабые кислотные свойства у алкинов с «концевой» кратной связью:

2СН≡СН + 2Na → 2NaC≡CNa + H2, с аммиачным раствором оксида серебра

        СН≡СН + [Ag(NH3)2]OH → AgC≡CAg + 4NH3 + 2H2O

6. р. полимеризации:  СН≡СН + СН≡СН → СН2=СН-СН=СН2, катализатор –NH4CL

или р. Зелинского 3СН≡СН → С6Н6, условия – активир-ый уголь акт, t=6000С)

7. а): СаС2 + 2НОН → С2Н2↑ + Са(ОН)2↓; б) СаС2 + 2НCL → С2Н2↑ + СаCL2;

в) 2СН4 → С2Н2↑ + 3H2 при t=15000С

        6. Арены (непредельные, циклические, ароматические).

Общая формула – СпН2п-6,     М (СпН2п-6)= (14п-6) г/моль,

локализованное π-облако, SP2-гибридизация, циклическое строение

1. Р. электрофильного замещения:

а) галогенирование: С6Н6 + CL2 → С6Н5CL + НCL , катализатор – АLCL3

б) нитрование: С6Н6 + НО – NО2 → С6Н5-NО2 + Н2О, в присутствии H2SO4

в) алкилирование — р. Фриделя-Крафтса – удлинение цепи атомов углерода

   С6Н6 + RCl → C6H5-R + HCl, где R – CnH2n+1 (радикалы), катализатор — АLCL3

2. р. присоединения в жёстких условиях – свет, катализаторNi (присоединение Н2)    а) С6Н6 + 3Н2 → С6Н12

         б) С6Н6 + 3CL2 → С6Н6CL6 на свету

3. для гомологов бензола:

а) замещение атомов водорода в цикле          (катализаторы  FeBr3 и H2SO4)

С6Н5-СН3 + Br2  → оС6Н4(Br)СН3 +НBr в ортоположении, т.е. 1-бром-2-метилбензол                  

а также               →пС6Н4(Br)СН3 +НBr в параположении, т.е. 1-бром-4-метилбензол

помнить:         у гомологов бензола замещение в цикле атомов водорода

происходит с равной вероятностью в положении 2, 4, 6 относительно имеющегося радикала     в присутствии катализаторов FeBr3 и H2SO4.

б) С6Н5-СН3 + 3НО – NО2 → С6Н2(NО2)3 + 3Н2О         1-метил-2,4,6,-тринитробензол.

в) присоединение 2 С6Н5-СН3+ 5Н2 → 2 С6Н11-СН3 или        −СН3, метилциклогексан.

г) радикальное замещение в боковую цепь на свету:

                                С6Н5-СН3 + Br2 → С6Н5-СН2Br + НBr

д) окисление кислым раствором КМпО4

    С6Н5-СН3 + 2[О] → С6Н-СООН       — упрощенная запись, полная запись:

     5С6Н5-СН3 + 6КМпО4 + 9H2SO4 → 5С6Н5-СООН + 3К2SO4 + 6МпSO4 + 14Н2О

электронно-ионный баланс:

   С6Н5-СН30 + 2Н2О0 −6е —_→ С6Н5-СООН0 + 6Н+ │5

   МпО4 + 8Н+ +5е→ Мп2+ + 4Н2О                        │6

4. получение аренов: а) С6Н14 → С6Н6 + 4Н2↑,   условия: t, Р, катализатор – Сr2O3

                                    б) С6Н12→ С6Н6 + 3Н2↑,   условия: t, катализатор – Pd

                                  в) 3СН≡СН→ С6Н6, условия – активир-ый уголь акт, t=6000С)

               г) С6Н5-СООNa + NaOH → C6H6 + Na2CO3 при спекании сухих веществ.

4 лист

        Кислородсодержащие соединения.            

                1. Одноатомные спирты — алканолы (предельные).

Общая формула – R-ОН или СпН2п+2О,     М (СпН2п+2О)= (14п+18) г/моль,

Наличие гидроксогруппы — ОН в молекулах спиртов проявляется в слабых кислотных и основных свойств.

1. проявляют кислотные свойства (только реакции с щелочными Ме), убывающие от первичных к третичным спиртам:                2 С2Н5ОН + 2К → 2 С2Н5ОК + Н2↑;

2. слабые основные свойства, возрастающие от первичных к третичным спиртам:

  R – ОН + НBr → R – Br + H2O

3. р. этерификации – взаимодействие с кислотами и образование сложных эфиров:

         Н+

RСООН + НОR’ ↔ RСООR’ + Н2О (в кислой среде);

4. р. окисления подкисленными растворами КМпО4 или  К2Сr2О7: а) первичные окисляются в 2 стадии до кислот т.к. имеют 2 атома [Н] на углероде при ОН-группе:                       1стад.                                                     2 стад.

  R — СН2 – ОН + [О] → R — СН2 = О (альдегид); …+ [О] → R – СООН (кислота);

б) вторичные окисляются до кетонов т.к. имеют1 атом [Н] на углероде при ОН-группе:                       1стад.

 R — СН – ОН + [О] → R — С = О

       │                                  │

        R’                                  R’

5. р. дегидратации в присутствии раствора Н2SO4 (Al2O3, H3PO4 конц) зависит от температуры:

а) при t > 1500С – внутримолекулярная 2О отрывается от 1 молекулы):

СН3 – СН2 – СН2 – ОН (+Н2SO4) → СН3 – СН = СН2 + Н2О, продукт — алкен

б) при t < 1500С – межмолекулярная 2О отрывается от 2 молекул):

СН3 – СН2 –– ОН +  СН3 – СН2 –– ОН (+Н2SO4) → СН3 –СН2 — О – СН2 – СН3+ Н2О,

                                                                                          продукт – простой эфир.

Различные классы спиртов дегидратируются при различных условиях:

первичные: СН2 – СН2 (конц. Н2SO4 при нагревании) → СН2 = СН2

        │        │

        Н        ОН

вторичные: СН2 – СН – СН3 (конц. Н2SO4 при подогреве)  СН2 = СН

                     │         │                                                                   │

                        Н      ОН                                                                СН3

                                  СН3                                                        СН3

        │                                                           │

третичные: СН2 –  С – СН3 (конц. Н2SO4 на холоде)  СН2 = С

        │        │                                                          │

                       Н         ОН                                                       СН3

6.Галогенирование: в присутствии PCl5, SOCl2 или HCL

СН3 – СН2 – ОН + SOCl2 → СН3 – СН2 – Cl + SO2 + HCL

6. Получение: а) СН3 – СН=СН2 + НОН → СН3 – С (СН3)Н — ОН (из алкенов);

5 лист

б) R – Br + NaOH (раствор) → R – ОН + NaBr (щелочной гидролиз галогеналканов); в) R – СНО + 2[Н] → R — СН2 – ОН (из альдегидов);      

г) С≡О + 2Н2 (t, p, ZnO) → СН3ОН (из синтез-газа);

д) С6Н12О6 (брожение) → С2Н5ОН + 2СО2↑.                см. продолжение.

7. качественные реакции на: а) предельные одноатомные спирты –  CuO, t

        С2Н5ОН + CuO → СН3 – СНО + Cu + Н2О    

 б) предельные многоатомные спирты – Cu (ОН)2, свежеприготовленный раствор

        2 СН2 – ОН  + Cu (OН)2 → (СН2 – О)2Cu + 2 Н2О

           │                       │

           СН2 – ОН                                    СН2 – ОН – ярко-синий раствор.

        2. Ароматические спирты – фенолы (циклические, непредельные).

Общая формула – R-(ОН)m или СпН2п-6-m(ОH)m,

    М (СпН2п-6-m(ОН)m)= (14п-6 +16m) г/моль,

SP2 – гибридизация

1. подвижность атома водорода и выраженные кислотные свойства –

а) реакции с Ме:  С6Н5ОН + К → С6Н5ОК + 0,5Н2 ↑;    

б) реакции со щелочами:    С6Н5ОН + КОН → С6Н5ОК + НОН;

в) реакция с р-ром карбоната натрия (фенол в нём растворяется, но в отличие от обычных кислот не образует диоксида углерода):

               С6Н5ОН(aq) + CO32-(aq) −→ C6H5O(aq) + HCO3(aq)

2. реакции с хлор-альдегидом: С6Н5ОН + СН3ССlO → С6Н5 – О – C(CH3)O + HCl;

3. р. электрофильного замещения протекают легче, чем у аренов:

С6Н5ОН + СН3 – С = О −→С6Н5 – О – С = О + НСl

                             │                                 │

                             Cl                                СН3

а) реакция с раствором бромной воды – 1-я качественная реакция на фенолы

С6Н5ОН + 3 Br2 → С6Н2(ОН)Br3↓ + 3НBr – 2,4,6 – трибромфенол (белая эмульсия)

б)  реакция нитрования — С6Н5ОН + 3 НО – NO2 → С6Н2(ОН)(NO2)3 + 3 НОН

в присутствии          Н2SO4        получается  2,4,6 – тринитрофенол,

в)  получение фенолформальдегидной смолы – р. поликонденсации

С6Н5ОН (фенол) + НСНО (формальдегид) →С6Н4(ОН) – СН2ОН  — 1-я стадия;

n С6Н4(ОН) – СН2ОН  + n С6Н5ОН →( С6Н4(ОН) – СН2 – С6Н4(ОН))n + n НОН.

4. реакция с раствором FeCl3 – 2-я качественная реакция на фенолы

          3 C6Н5ОН + FeCl3 → (С6Н5О-)3Fe + 3НCl (ярко-фиолетовый раствор).

4. Получение: а) из каменноугольной смолы;

 б) С6Н5 Br + КОН → С6Н5ОН + КBr

в) С6Н5 – СН (СН3)2 + 2 [О] → С6Н5 – ОН + (СН3)2СО.

3. Альдегиды. Общая формула – R-С = О или СпН2п О.Мr (СпН2пО) =(14п+16)

                                                                   │

                                                                    Н

SP2 – гибридизация

1.Реакции нуклеофильного присоединения:

6 лист

а) R – СНО + НСN −KCN→ R – CH(OH) – C ≡ N;

б) R – СНО + R’OH −H+→ R – CH – OH          −R’OH→ R – CH — OR’ + H2O

        │                 │

         OR’ (полуацеталь)            OR’ (ацеталь);

см. дальше

                                        ╔O                                ╔O  

в) R – СНО + NaHSO3 (:S – ONa) → R – CH – S — ONa

                                        │                          │   O╝  

                                        OH                       OH

г) р. восстановления                  R – СНО + H2 −LiAlH4→ R – CH2 – OH

 Внимание: водород легко присоединяется по связи С=С и очень трудно – по связи С=О.         LiAlH4  восстанавливает связи С=О до С – ОН, не затрагивая связь С=С.

           О                                            ОН

           ║           │                                  │

СН3 – С – Н + Н – О – СН3 → СН3 – СН – О – СН3, LiAlH4  — алюмогидрид лития.

2. Окисление:  легко окисляются в кислоты – качественные реакции на альдегиды – реакции «серебряного» и «медного» зеркала

а) R – CHO + 2 [Aq(NH3)2]OH → R – COO – NH4 + 2Aq↓ + 2NH3↑ + H2O:

реактив  [Aq(NH3)2]OH – реактив Толленса

б) R – CHO + 2 Cu(OH)2 → R – COOH + Cu2O↓ + 2H2O:

реактив Cu(OH)2 – реактив Фелинга

 или упрощённо — R – CHO + [О] → R – CОOН

3. Получение: а) из спиртов R–СН2-ОН + CuО −t→ R–СНО + Н2О + Cu

б) из дигалогензамещённых алканов:

R – CHCl2 + 2 NaОН → R – CHO + 2 NaCl + Н2О

  4. Кетоны.   Общая формула – R-С = О или СпН2п О.   Мr (СпН2пО) =(14п+16)

                                                              │

                                                              R

SP2 – гибридизация

1. Химические свойства отличаются от свойств альдегидов:

а) менее активны в реакциях нуклеофильного присоединения, чем альдегиды (с цианидом водорода в присутствии цианида калия)

R – С=О + НСN −KCN→ R – C (OH) – C ≡ N;

      │        │

       R        R

б) присоединение реактива Гриньяра – R – MqBr с образованием третичного спирта

R – С=О + R – MqBr −2HCl→ R – C (OH) – R + MqCl2 + HBr

      │        │

       R        R

в) гидрирование кетонов с образованием вторичных спиртов

7 лист

R – С=О + Н2− → R – CН (OH)

      │                             │

       R                             R

г) окисление с трудом, не взаимодействуют с соединениями серебра и меди

2. Иодоформный тест – если карбонильная группа связана со 2-ым атомом углерода от конца углеродной цепи   (со щелочным раствором иода)

СН3 – СО – R + I2 −OH-→ R – COO(aq) + CHI3(тв), жёлтый осадок, такой же, как и для CH3 – CH (OH)R.

  5. Карбоновые кислоты.   Общая формула – R-С = О или СпН2пО.  

                                                                                       │

 Мr (СпН2пО) =(14п+16)                                              ОН

SP2 – гибридизация

1. Диссоциируют, т.е. являются донором катиона водорода – слабые электролиты, самая сильная из них – муравьиная НСООН

R – СООН ↔ R – СОО+ Н+, сл-но, характерны свойства, типичные для кислот – взаимодействие с Ме, основными оксидами, основаниями и солями слабых кислот.

2. р.замещения группы ОН на хлор, взаимодействие с хлоридом Р(V)

R – СООН + РСl5 → R – С = О + POCl3 + HCl

                                          │

                                          Сl

3.межмолекулярная дегидратация в присутствии Р2О5 или НРО3

 R – СООН + Н – О – СО – R — Р2О5R – СО – О – СО — R + Н2О (ангидрид к-ты),

4. р. этерификации – образование сложных эфиров в присутствии Н2SO4

R – СООН + Н — О R′ − Н2SO4R – СО — О R′ + Н2О

                                             остаток кислоты        ↓ остаток спирта

5. получение амидов в реакциях с раствором аммиака, при нагревании

R – С = О + NH3 −t→ R – С = О + H2O

        │                                  │

       ОН                              NH2

6. р. замещения атома водорода у α–атома (С) на атом брома, в присутствии  Ркр

СН3 – СН2 – СООН + Br2 − Ркр→ CH3 – CHBr – COOH + HBr;

7. р. дегидратации и гидрирование, в присутствии LiAlH4  (см. «альдегиды»)

R – С = О + 2 Н2 −LiAlH4→ R – СН2ОН + Н2О        т.е. восстановление до спиртов.

       │

       ОН

8.Внимание: муравьиная кислота – самая сильная из органических кислот и

сильный восстановитель,

отсюда следует:

а) НСООН − Н2SO4СО2↑ + Н2О;

б) р. «зеркала»  НСООН + 2 [Ag(NH3)2]OH −t→ 2 Ag↓ + (NH4)2CO3 + 2NH3 + H2O

или упрощенно НСООН + Ag2О  −t→ 2Ag↓ + СО2↑ + Н2О;

в) НСООН + Cl2 → CO2↑ + 2HCl

9. Получение: а) из спиртов (окисление, т.е. + [О])

 R – СН2 – ОН + [О] → R – СНО (альдегид) и дальше + [О] → R – СООН (кислота);

б) из альдегидов – р. «серебряного и медного зеркала»

8 лист.

R – СНО +  [Ag(NH3)2]OH −t→ Ag↓ + R – СООNН4 + Н2О + NH3

б) из реактива Гриньяра (R – MgBr) – р. элиминирования и гидратации (последовательное взаимодействие с СО2 и Н2О):

R – MgBr + CO2 → R – COO – MgBr…….. + H2O → R – COOH + Mg (OH) Br

в) из трихлорзамещенного алкана (последовательное замещение атомов хлора на группы ОН из щелочей и дегидратация)

R – С (Cl)3 + 2 NaOH → 3NaCl + R – C(OH)3….→ R – COOH + H2O

R – C (OH)3 – трёхатомный спирт – вещество очень слабое и нестабильное.

продолжение см. дальше

  6. Сложные эфиры карбоновых кислот.   Общая формула – R-С = О

                                                                                                                   │

                                                                                                                   О R′

Мr (СпН2п+1СОО)(СпН2п+1)′ = (14п+46)

1. р. гидролиза: а) кислотного    СН3СООСН3 + НОН −H+→ СН3СООН + НОСН3

            (кислота)                       (спирт)

                           б) щелочного    СН3СООСН3 + NaOH → СН3СООNa + СН3ОН

р. гидролиза с Н2О идёт медленно, её катализируют (ускоряют) кислоты и щёлочи

2. р. восстановления, в присутствии LiAlH4  с образованием 2-х спиртов:

R – СОО — R′ + 4 [Н+] −LiAlH4→ R – CH2 – OH + R′ОН (аналогично альдегидам);

3. Получение: а) р. этерификации R – СООН + НО R′  Н2SO4R – СОО — R′ + Н2О

особенность: медленная реакция, обратимая, с низким выходом.

        б) р. ацилирования спирта хлоридом кислоты

СН3СОCl + НОСН2СН3 → СН3СООСН2СН3 + HCl (р. быстрая, хороший выход).

Хлорангидриды и ангидриды кислот

Эти два вида производных карбоновых кислот химически очень активны. Хлорангидриды даже более активны, чем ангидриды, и более летучи, что делает обращение с ними очень трудным. Они вступают в быструю реакцию на холоде с водой, аммиаком и с их производными, спиртами и аминами. В каждом случае атом водорода реагирующей молекулы замещается ацильной группой – это реакции ацилирования, а хлорангидриды и ангидриды кислот-ацилирующие агенты.

С хлорангидридами:

а) вода:       СН3СОCl + НОН               → СН3СО – ОН               (кислота)        + HCl;

б) спирт:    СН3СОCl + НОСН2СН3     → СН3СО – ОСН2СН3     (эфир)            + HCl;

в) аммиак:  СН3СОCl + 2Н−NH2          → СН3СО – NH2               (амид)       + NH4Cl;

г) амин:       СН3СОCl + НNHСН3        → СН3СО – NHСН3        (замещ. амид)  + HCl;

                                          ↑        

        этот атом водорода замещается на ацильную группу.

С ангидридами кислот:

а) вода:     СН3СОООССН3   + НОН               → СН3СО – ОН               +       СН3СООН;

б) спирт:   СН3СОООССН3   + НОСН2СН3    → СН3СО – ОСН2СН3    +       СН3СООН;

в) аммиак: СН3СОООCСН3 + Н−NH2            → СН3СО – NH2             +       СН3СООН;

г) амин:     СН3СОООCН3    + НNHСН3        → СН3СО – NHСН3        +       СН3СООН.

  7. Углеводы.        Общая формула – Сn (Н2О)m.                         Mr = 12n + 18m.

9 лист

1. Глюкоза – альдегидоспирт  СН2ОН – (СНОН)4 — СНО, т.е. имеет р. «зеркала»

СН2ОН – (СНОН)4 – СНО + 2 [Ag(NH3)2]OH −t→ СН2ОН – (СНОН)4 – СОО — NH4 + 3NH3 + H2O + 2 Ag↓

2. р. восстановления до многоатомных спиртов:

СН2ОН – (СНОН)4 – СНО + 2[Н] → СН2ОН – (СНОН)4 – СН2ОН         (сорбит);

3. синее окрашивание с Си(ОН)2, как у многоатомных спиртов;

4. р. межмолекулярной дегидратации со спиртами:      → простые эфиры;

5. р. этерификации с альдегидами                                   → сложные эфиры;

6. брожение: С6Н12О6 −дрожжи2 С2Н5ОН + 2 СО2↑             — спиртовое брожение;

        С6Н12О6 −→ 2 СН3 – СН (ОН) – СООН         — молочнокислое брожение.

  8. Азотсодержащие соединения – амины.               Общая формула – R- NH2,

 R – NH – R или N(R)3.          Мr (R- NH2) = (14п+17)

1. Амины обладают основными свойствами, поэтому, как основания,

а) реагируют с водой:          R- N:H2 + Н2О ↔ [R- NH3]+ ОН 

б) реагируют с кислотами:  R- N:H2 + Нδ+Cl δ- ↔ [R- NH3]+ Cl

2. Реакция  горения: 4 С2Н5 + N:H2 + 15О2 → 8СО2↑ + 2N2↑ + 14Н2О.

3. Р. нитрирования (с НО – NО) проходит по-разному:

а) у первичных аминов:

R- NH2 + НО – NО (NaNO2 + HCl) → R – OH + N2↑ + NaCl + H2O;

б) у вторичных аминов:

R2 – NH + НО – NО (NaNO2 + HCl) → R2N – N=O + NaCl + H2O.

4. Анилин – ароматический амин с формулой С6Н5 — NH2

 в реакции нитрирования:

С6Н5 — NH2 + НО – NО (NaNO2 + HCl) → [С6Н5 — N≡N]+Cl + NaCl + 2H2O;

5. Качественная реакция на анилин – реакция с раствором брома:

С6Н5 — NH2 + 3Br2 → C6H2Br3NH2↓ + 3 HBr

6. Получение аминов:

а) NH3 + CH3Cl −t→ CH3 – NH2 + HCl;

б) R – NO2 + 4 [H] −LiAlH4→ R – NH2 + 2H2O

7. Получение анилина:

 ) C6H5 – NO2 + 6 [H] −Fe + HCl→ C6H5 – NH2 + 2H2O

9. Азотсодержащие соединения – аминокислоты

                                 …β      α

   Общая формула – R – СН — СООН

        │

        NH2                      Мr (к-ты) = (14п+75)

1.Аминокислоты обладают амфотерными свойствами, поэтому реагируют:

а) с кислотами       H2N – CH2 – COOH + HCl       → Cl [NH3 – CH2 — COOH];

б) c щелочами        H2N – CH2 – COOH + NaOH   → NH2 – CH2 – COONa + H2O.

2. Р. этерификации – взаимодействие со спиртами:

H2N – CH2 – COOH + С2Н5OH −H+→  H2N – CH2 – COO – С2Н5 + Н2О

3. Р. поликонденсации — взаимодействие кислот между собой с образованием пептидов:                                                                                   пептидная связь

H2N – CH2 – COOH + HN – CH2 – COOH → H2N – CH2 – CON – CH2 – COOH

                                            │        Дипептид                                           │

                                            Н         Н

4. Получение: α- аминокислоты из α-хлорзамещенных карбоновых кислот

R – СН – СООН + 2 H3N → R – СН – СООН + NH4 Cl 

       │                                                    │

       Cl                                        NH2

Окислительно – восстановительные реакции в органической химии.

А. Углеводороды.

1. СН2 = СН – СН2 – СН3 + КМпО4 + Н2О → СН2 – СН – СН2 – СН3 + МпО2 + КОН

                 │        │

                                 ОН      ОН

2. С6Н5 – СН2 – СН3 + КМпО4 + Н24 → С6Н5СOOН + MnSO4 + K2SO4 + CO2 + H2O

3. СН2 = СН – СН2 – СН3 + КМпО4+ Н24 → HCOOH + CH3COOH + MnSO4 +                                                                                            K2SO4 + H2O

4. CH ≡ CH + КМпО4 + Н2О → H2C2O4 + MnO2 + KOH

5. С6Н5 – СН3 + КМпО4 + Н24 → С6Н5СOOН + MnSO4 + K2SO4 + H2O

6.

Органическая химия

Мы приступаем к новому разделу — органической химии. Совершенно необязательно (и даже преступно по отношению к собственному времени!) знать
наизусть, зубрить свойства органических веществ.

По мере изучения вы поймете, что свойства вещества определяются его строением, и научитесь легко предсказывать ход реакций ;)

Нафазолина нитрат

В этой связи особый интерес представляет теория химического строения, которая была создана А.М. Бутлеровым в 1861 году. Она включает в себя несколько
основных положений:

  • Атомы в молекуле соединены в определенной последовательности, в соответствии с их валентностью. Порядок связи атомов отражает
    химическое строение.
  • Зная свойства веществ, можно установить их химическое строение, и наоборот, зная строение вещества можно сделать вывод о его
    свойствах.
  • Атомы или группы атомов оказывают взаимное влияние друг на друга непосредственно или через другие атомы
  • Свойства вещества зависят от количественного и качественного состава, а также от химического строения молекулы

Теория Бутлерова о химическом строении

Алканы (парафины) — насыщенные углеводороды, имеющие линейное или разветвленное строение, содержащие только простые связи. Относятся к
алифатическим углеводородам, так как не содержат ароматических связей.

Алканы являются насыщенными соединениями — содержат максимально возможное число атомов водорода. Общая формула их гомологического ряда
— CnH2n+2.

Номенклатура алканов

Номенклатура (от лат. nomen — имя + calare — созывать) — совокупность названий индивидуальных химических веществ, а также правила составления
этих названий. Названия у алканов формируются путем добавления суффикса «ан»: метан, этан, пропан, бутан и т.д.

Номенклатура алканов

Гомологами называют вещества, сходные по строению и свойствам, отличающиеся на одну или более групп CH2

Перечисленные выше алканы, являются по отношению друг к другу гомологами, то есть составляют один гомологический ряд (греч. homólogos —
соответственный).

Названия алканов формируются по нескольким правилам. Если вы знаете их, можете пропустить этот пункт, однако я должен познакомить
читателя с ними. Итак, алгоритм составления названий следующий:

  • В структурной формуле вещества необходимо выбрать самую длинную (пусть и изогнутую на рисунке!) цепь атомов углерода
  • Атомы выбранной цепи нумеруют, начиная с того конца, к которому ближе разветвление (радикал)
  • В начале название перечисляют радикалы и другие заместители с указанием номеров атомов углерода, с которыми они
    связаны. Если в молекуле имеется несколько одинаковых радикалов, то цифрой указывают нахождение каждого из них в главной цепи
    и перед их названием соответственно ставят частицы ди-, три-, тетра- и т.д.
  • Основой названия служит наименование предельного углеводорода с тем же количеством атомов углерода, что и в главной цепи

Внимательно изучите составленные для различных веществ названия ниже.

Составление названия алканов

В углеводородной цепочке различают несколько типов атомов углерода, в зависимости от того, с каким числом других атомов углерода соединен данный
атом. Различают первичные, вторичные, третичные и четвертичные атомы углерода.

Типы атомов углерода

Изомерами (греч. isomeros — составленный из равных частей) называют вещества, имеющие одну молекулярную формулу, но отличающиеся по
строению (структурная изомерия) или расположению атомов в пространстве (пространственная изомерия).

Изомерия бывает структурной (межклассовая, углеродного скелета, положения функциональной группы или связи) и пространственной
(геометрической, оптической). По мере изучения классов органических веществ вы узнаете о всех этих видах.

Виды изомерии

В молекулах алканов отсутствуют функциональные группы, кратные связи. Для алканов возможна изомерия только углеродного скелета. Так у пентана
C5H12 существует 3 структурных изомера.

Изомеры пентана

Некоторые данные, касающиеся алканов, надо выучить:

  • В молекулах алканов присутствуют одиночные сигма-связи (σ-связи), длина которых составляет 0,154 нм
  • Тип гибридизации атомов углерода — sp3
  • Валентный угол (между химическими связями) составляет 109°28′

Молекула метана напоминает тетраэдр

Природный газ и нефть

Алканы входят в состав природного газа: метан 80-97%, этан 0.5-4%, пропан 0.2-1.5% , бутан 0.1-1%, пентан 0-1%. Состав нефти нельзя выразить
одной формулой, он непостоянен и зависит от месторождения.

В состав нефти входят алканы с длинными углеродными цепочками, например: C8H18, C12H26. Путем
крекинга из нефти получают алканы.

Природный газ и нефть

Получение алканов

В промышленности алканы получают путем:

  • Крекинга нефти
  • В ходе крекинга нефти получается один алкан и один алкен.

    C8H18 → C4H8 + C4H10

    C12H26 → C6H12 + C6H14

  • Гидрогенизацией угля (торфа, сланца)
  • C + H2 → (t, p) CH4

  • Гидрированием оксида углерода II
  • CO + H2 → (t, p, кат.) CH4 + H2O

В лабораторных условиях алканы получают следующими способами:

  • Синтез Дюма
  • Данный синтез заключается в сплавлении соли карбоновой кислоты с щелочью, в результате образуется алкан.

    Получение алканов

  • Реакция Вюрца
  • Эта реакция заключается во взаимодействии галогеналкана с металлическим натрием, калием или литием. В результате происходит удвоение углеводородного
    радикала, рост цепи осуществляется зеркально: в том месте, где находился атом галогена.

    Реакция Вюрца

  • Синтез Гриньяра
  • В ходе синтеза Гриньяра с помощью реактива Гриньяра (алкилмагнийгалогенида) получают различные органические соединения, в том числе несимметричные (в отличие от реакции Вюрца).

    Синтез Гриньяра

    На схеме выше мы сначала получили реактив Гриньяра, а потом
    использовали его для синтеза. Однако можно записать получение реактива Гриньяра и сам синтез в одну реакцию, как показано на примерах ниже.

    Реакция Гриньяра

  • Синтез Кольбе
  • В результате электролиза солей карбоновых кислот может происходить образование алканов.

    Синтез Кольбе

  • Разложение карбида алюминия
  • В результате разложения карбида алюминия образуется метан и гидроксид алюминия.

    Al4C3 + 12H2O → 3CH4 + 4Al(OH)3

  • Гидрированием ненасыщенных углеводородов
  • CH3-CH=CH2 + H2 → (t, p, Ni) CH3-CH2-CH3

    CH2=CH2 + H2 → (t, p, Ni) CH3-CH3

Химические свойства алканов

Алканы — насыщенные углеводороды, не вступают в реакции гидрирования (присоединения водорода), гидратации (присоединения воды). Для
алканов характерны реакции замещения, а не присоединения.

  • Галогенирование
  • Атом галогена замещает атом водорода в молекуле алкана. Запомните, что легче всего идет замещение у третичного атома углерода,
    чуть труднее — у вторичного и значительно труднее — у первичного.

    Галогенирование метана

    Реакции с хлором на свету происходят по свободнорадикальному механизму. На свету молекула хлора распадается на свободные радикалы,
    которые и осуществляют атаку на молекулу углеводорода.

    Галогенирование

  • Нитрование (реакция Коновалова)
  • Реакция Коновалова заключается в нитровании алифатических (а также ароматических) соединений разбавленной азотной кислотой. Реакция
    идет при повышенном давлении, по свободнорадикальному механизму.

    CH3-CH3 + HNO3(разб.) → CH3-CH2-NO2 + H2O

    Для удобства и более глубокого понимания, азотную кислоту — HNO3 — можно представить как HO-NO2.

    Нитрование, реакция Коновалова

  • Окисление
  • Все органические вещества, в их числе алканы, сгорают с образованием углекислого газа и воды.

    С3H8 + O2 → CO2 + H2O

    В ходе каталитического, управляемого окисления, возможна остановка на стадии спирта, альдегида, кислоты.

    CH4 + O2 → CH3-OH (метанол)

    Каталитическое окисление

  • Пиролиз
  • Пиролиз (греч. πῦρ — огонь + λύσις — разложение) — термическое разложение неорганических и органических соединений. Принципиальное
    отличие пиролиза от горения — в отсутствии кислорода.

    CH4 → (t > 1000°С) C + H2

    CH4 → (t = 1500-1600°С) CH≡CH + H2

    CH4 → (t = 1200°С, кат.) CH2=CH2 + H2

    C2H6 → (t = 1200°С, кат.) CH2=CH2 + H2

  • Изомеризация
  • В реакциях, по итогам которых образуются изомеры, используется характерный катализатор AlCl3.

    Реакция изомеризации

  • Крекинг
  • Вам уже известно, что в результате крекинга образуется один алкан и один алкен. Это не только способ получения алканов, но и их
    химическое свойство.

    C8H18 → (t) C4H10 + C4H8

    C14H30 → (t) C7H14 + C7H16

© Беллевич Юрий Сергеевич 2018-2023

Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение
(в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов
без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования,
обратитесь, пожалуйста, к Беллевичу Юрию.

24 января 2021

В закладки

Обсудить

Жалоба

Методическое пособие по органической химии. Подготовка к ЕГЭ

В пособии представлен собственный многолетний опыт педагога по подготовке учащихся профильных химико-биологических классов к ЕГЭ. Учтены последние аналитические оценки заданий ЕГЭ по органической химии и результаты экзаменов. Пособие позволяет гарантировано улучшить качество знаний учащихся.

Содержание

1. Изомерия и номенклатура органических соединений
2. Взаимное влияние атомов в молекулах органических соединений
3. Функциональный анализ органических соединений
4. Механизмы органических реакций
5. Окислительно-восстановительные реакции с участием органических веществ
6. Осуществление превращений по схеме
7. Решение задач на вывод формул органических соединений
8. Список источников и литературы.

mp-him.doc
mp-him.pdf

Автор: Людмила Рамановна Кочулева.

 Подготовка к ЕГЭ начинается с
психологического настроя на успех, обязательную сдачу ЕГЭ.

Поэтому не
лишними будут помощь психолога, советы родителей и учителей.

Теория к ЕГЭ. Методика самостоятельной подготовки к ЕГЭ

Download

ТЕОРИЯ ДЛЯ СДАЮЩИХ ЕГЭ

Дopoнькин ЕГЭ. Химия. Большой справочник

Adobe Acrobat Document
7.6 MB

Download

РАСПЕЧАТАТЬ И ИСПОЛЬЗОВАТЬ

Методические рекомендации по подготовке

Adobe Acrobat Document
375.5 KB

Download

ПРОРАБОТАТЬ И ПРИНЯТЬ К СВЕДЕНИЮ

анализ типичных ошибок ЕГЭ-2019 г.pdf

Adobe Acrobat Document
771.7 KB

Download

ПРОГРАММА ПОДГОТОВКИ К ЕГЭ ПО ХИМИИ.doc

Microsoft Word Document
129.5 KB

Download

ВНИМАНИЕ

Тривиальные названия органических вещест

Adobe Acrobat Document
340.1 KB

Download

Теория и тест для самостоятельной проработки.

Основные способы получения металлов.pptx

Microsoft Power Point Presentation
920.7 KB

Download

Все свойства органических веществ.

Реакции к основным темам курса 10 класса

Microsoft Word Document
158.0 KB

Download

Общие формулы. УЧИТЬ!!!

Общие формулы классов органических вещес

Adobe Acrobat Document
188.4 KB

Download

Металлы. Соединения металлов. УЧИТЬ!!!

Свойства металлов и их соединений.docx

Microsoft Word Document
2.5 MB

Download

Цепочки превращений.

Задание С3. Цепочки превращений..docx

Microsoft Word Document
674.8 KB

Download

Теория по основным классам неорганических соединений.

Основные классы и их свойства.doc

Microsoft Word Document
880.0 KB

Download

Нужно разобраться и выучить.

Ряд активности металлов.pdf

Adobe Acrobat Document
315.0 KB

Документация и подготовка к ЕГЭ

Download

таблица ПСХЭ.doc

Microsoft Word Document
396.5 KB

Download

Таблица растворимости некоторых веществ

Microsoft Word Document
578.5 KB

Дополнительная информация, теория к ЕГЭ

Download

Адреса сайтов подготовки.

Материалы для подготовки к ОГЭ и ЕГЭ.doc

Microsoft Word Document
15.2 KB

Download

Таблица. Качественные признаки веществ.d

Microsoft Word Document
44.8 KB

Download

Ряд ЭО. Названия кислот и остатков. Степ

Microsoft Word Document
518.7 KB

Download

Таблица ПСХЭ . С обозначением классов со

Microsoft Word Document
498.4 KB

Download

цвета оксидов.doc

Microsoft Word Document
24.0 KB

Download

Номенклатура неорганических веществ.doc

Microsoft Word Document
135.5 KB

Download

Определение ионов. Качественные реакции.

Microsoft Word Document
51.0 KB

Часть представленных здесь материалов взята с
сайта учителя химии Сикорской О.Э.

Like this post? Please share to your friends:
  • Теория по оптике для егэ по физике
  • Теория по окружности для егэ по математике
  • Теория по обществу егэ право
  • Теория по обществу егэ 2023
  • Теория по обществознанию егэ экзамен