Теория про логарифмы егэ

Логарифмы

Предыдущую статью о показательных уравнениях мы начали с уравнения 2x = 8. Там всё было ясно: x = 3.

А теперь рассмотрим уравнение 2x = 7.

По графику функции y = 2x мы видим, что это уравнение имеет корень, и притом единственный.


Ясно, что этот корень — не целое число (так как 22 = 4, 23 = 8). Более того, оказывается, что он не является даже рациональным числом, т. е. не представляется в виде обыкновенной дроби. Интуитивно мы чувствуем лишь, что он меньше 3, но не намного.

Этот корень обозначается log27 (читается: «логарифм семи по основанию два»). Он является иррациональным числом, т. е. бесконечной непериодической десятичной дробью. Калькулятор даёт: log27 = 2,807354922057604107…

Итак, наше число log27 — это показатель степени, в которую надо возвести 2, чтобы получить 7.

Теперь дадим общее определение логарифма. Пусть a > 0 и a ≠ 1 (условия те же, что и для основания показательной функции).

Определение. Логарифм положительного числа b по основанию a (обозначается logab) — это показатель степени, в которую надо возвести a, чтобы получить b.

Иными словами,

Например:

  так как  ;

, так как  ;

  так как  ;

, так как  .

Логарифм с основанием 10 называется десятичным и обозначается lg. Например, lg 100 = 2, lg 1000 = 3, lg 0,01 = −2.

Логарифм с основанием e называется натуральным и обозначается ln.

Обратите внимание: логарифм определён только для положительных чисел. Причина заключается в том, что показательная функция может принимать лишь положительные значения. Например, число log2(−4) не существует: в какую бы степень мы ни возводили 2, мы никогда не получим −4.

Не забывайте также про ограничения на основание логарифма: 0 < a < 1 или a > 1.

Основные формулы

По определению, logab — это показатель степени, в которую надо возвести число a, чтобы получить число b:

Формула (1) называется основным логарифмическим тождеством.
Вот еще один вариант записи основного логарифмического тождества:

logaax=x.

Перечислим свойства логарифмов. Они являются простыми следствиями правил действия со степенями. Все логарифмы ниже считаются определёнными.

Логарифм произведения — это сумма логарифмов:

loga(bc) = logab + logac. (2)

Логарифм частного — это разность логарифмов:

log_{a}frac{b}{c}=log_{a}b-log_{a}c. (3)

Показатель степени логарифмируемого числа «спрыгивает» перед логарифмом:

log_{a}b^{m}=mlog_{a}b. (4)

Показатель степени основания логарифма тоже «спрыгивает», но в виде обратного числа:

log_{a^{n}}b=frac{1}{n}log_{a}b. (5)

Формулы (4) и (5) вместе дают:

. (6)

В частности, если m = n, мы получаем формулу:

. (7)

Например, .

Наконец, важнейшая формула перехода к новому основанию:

. (8)

В частности, если c = b, то logbb = 1, и тогда:

. (9)

Приведём несколько примеров из банка заданий.
1. (применили формулу (2) суммы логарифмов).

2. (применили основное логарифмическое тождество(1)).

3. log^{2}_{sqrt{7}}49=(log_{sqrt{7}}49)^{2}=(log_{sqrt{7}}7^{2})^{2}=(2log_{sqrt{7}}7)^{2}=(2cdot 2)^{2}=16 (применили формулу (4)).

4. log_{0,8}3cdot log_{3}1,25=log_{0,8}3cdot frac{log_{0,8}1,25}{log_{0,8}3}=log_{0,8}1,25=log_{frac{4}{5}}frac{5}{4}=-1 (применили формулу (9), перейдя к новому основанию 0,8).

5. frac{9^{log_{5}50}}{9^{log_{5}2}}=9^{log_{5}50-log_{5}2}=9^{log_{5}25}=9^{2}=81 (применили формулу (3) разности логарифмов).

Немного истории

Теперь вы поняли, что такое логарифмы и как ими пользоваться. Но для чего они всё-таки нужны? Или это просто такая математическая игрушка с хитрой инструкцией по применению?

Понятие логарифма и логарифмические таблицы появились в 17 веке, и значение их было огромно.

Это в наши дни вычисления не представляют труда — у каждого есть калькулятор. А как считали в «докомпьютерные» времена?

Складывать и вычитать можно было на счётах, а вот умножать и делить приходилось «в столбик» — медленно и трудно.

В 15–17 веках, в эпоху великих географических открытий, стали бурно развиваться торговля, экономика и наука. Требования к математике росли: расчёты становились более сложными, а точность — например, для решения навигационных задач — нужна была всё более высокая.

Необходим был инструмент, позволяющий упростить и ускорить расчёты, и таким инструментом явились логарифмы.

Предположим, что b и c — большие числа, которые надо перемножить. Появление таблиц логарифмов (например, с основанием 10) существенно упростило эту задачу. Теперь вычислителю достаточно было найти по таблицам десятичные логарифмы чисел b и c, сложить их (на счётах) и получить логарифм произведения: lgb + lgc = lg(bc).

А затем по таблице логарифмов найти само произведение чисел b и c.

Недаром французский математик и астроном Лаплас сказал, что изобретение логарифмов удлинило жизнь вычислителей. Логарифмическая линейка (которой инженеры пользовались до 70-х годов двадцатого века) была не менее прогрессивным изобретением, чем современный калькулятор.

Но это еще не всё! Мы не занимались бы логарифмами, если бы они имели лишь историческую, «музейную» ценность. О неожиданных применениях логарифмов мы расскажем в следующей статье, посвящённой логарифмической функции.

Благодарим за то, что пользуйтесь нашими материалами.
Информация на странице «Логарифмы» подготовлена нашими редакторами специально, чтобы помочь вам в освоении предмета и подготовке к ЕГЭ и ОГЭ.
Чтобы успешно сдать необходимые и поступить в высшее учебное заведение или колледж нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими статьями из данного раздела.

Публикация обновлена:
09.03.2023

Что такое логарифм?

Нагляднее всего понять это с помощью графического решения уравнений. Начертим график

и с его помощью решим уравнения:

График функции №1

Отлично! А теперь решим уравнение

.

И в этом случае невозможно назвать точное значение, то есть мы понимаем, что корень больше одного и меньше двух, но более точных данных нет.

График функции №2

Вот такой корень и задается с помощью логарифма, а именно

(читается как «логарифм пяти по основанию три» или «логарифм по основанию три от пяти»).

Мы определили смысл — теперь перейдем к общему определению логарифма.

Логарифмом числа b по основанию a называют показатель степени с основанием a, равной b. То есть, попросту говоря, логарифм — это степень, в которую нужно возвести a для получения b. Однако у логарифма есть условия или ограничения, что основание а больше нуля и не равно единице, а также показатель b больше нуля.

Получай лайфхаки, статьи, видео и чек-листы по обучению на почту

Альтернативный текст для изображения

Реши домашку по математике на 5.

Подробные решения помогут разобраться в самой сложной теме.

Реши домашку по математике на 5.

Как решать примеры с логарифмами?

Рассмотрим пример, как решить логарифм:

Задаем вопрос: в какую степень нужно возвести 7, чтобы получить 49?

Ответ: во вторую степень. Значит,

.

Какие бывают виды логарифмов?

Логарифм по основанию 10 называется десятичным логарифмом и обозначается как

. Пример десятичного логарифма:

.

Логарифм по основанию e называется натуральным логарифмом и обозначается как

. Пример натурального логарифма:

.

Свойства и формулы логарифмов

  1. Эта формула называется основным логарифмическим тождеством.

    Пример:

    .

  2. Пример:

    .

  3. Пример:

    .

  4. Логарифм степени находится по формуле:

    .

    Видно, что показатель степени выносим перед логарифмом.

    Пример:

    .

  5. Показатель степени основания также выносим перед логарифмом, но в виде обратного числа, то есть, например, вместо 5 будет

    .

    Пример:

    .

  6. Если нужно перейти к другому основанию, то можно сделать это по формуле:

    . Свойство называется формулой перехода к новому основанию.

  7. А частным случаем предыдущей формулы является формула, которая позволяет менять местами основание и аргумент логарифма:

    .

Конечно, это не все свойства логарифмов, а только самые главные. Комбинируя свойства выше, можно получать все новые и новые формулы для логарифмов. Например, соединив 4-ю и 5-ю формулы, получим

. Но запоминать ее нет смысла, важно знать лишь базовые свойства логарифмов.

Применение логарифмических свойств в примерах

Пример 1

Найдите значение выражения

, если

.

Если видите частное в показателе логарифма, то распишите по 3-й формуле:

.

Решение

У каждого логарифма в показателе стоит степень, значит, поможет 4-я формула:

.

Первый логарифм можно вычислить по определению. И обратите внимание на второй логарифм: у него в основании стоит а, а в условии задачи дан логарифм с основанием b, значит, нужно а как-то заменить на b. Возможно ли это? Конечно, 7-я формула в помощь!

.

Подставьте числовое значение из условия, и все готово:

.

Отличный пример! Мы использовали практически все свойства логарифмов. А теперь попрактикуйтесь еще, но помните, что задача с подвохом!

Пример 2

Вычислите:

.

Получился ответ 27? Если да, то поздравляю: вы попались на удочку самых популярных ошибок! Какое бы задание вам ни встретилось, действия с логарифмами нужно производить только по определениям и правилам. В примере вы видите деление двух логарифмов. А есть ли какая-то формула, в которой записано деление двух логарифмов?

Конечно, это формула перехода к новому основанию, которую мы привели в пункте 6 выше. Применим ее к этому случаю и вычислим логарифм по определению, задав вопрос: в какую степень нужно возвести основание, чтобы получился показатель?

.

И получается ответ 4, а не 27.

Практическое применение логарифмов

Помните, выше мы говорили, что логарифм объединяет задания на ЕГЭ, галактики и рога горных козлов? И если с баллами на ЕГЭ все понятно, то про галактики и рога — интереснее.

Все дело в том, что существует логарифмическая спираль, которая задается по формуле:

. По этой логарифмической спирали растут рога горных козлов, закручены многие галактики (и даже та, в которой мы живем), а также раковины некоторых морских животных, усики растений, ураганы, смерчи и многое другое.

Галактика закручена по логарифмической спирали

Как видите, логарифмы имеют большое значение для нашей жизни — не только баллы на ЕГЭ!

Вопросы для самопроверки

Чтобы информация точно усвоилась, вспомните:

  1. Что такое логарифм?

  2. Какие ограничения есть у логарифма?

  3. Какие логарифмические свойства вы знаете?

  4. Какие бывают способы преобразования выражений с логарифмом?

  5. В чем практическое применение логарифмов?

На курсах по математике в онлайн-школе Skysmart мы всегда показываем, зачем нужны математические правила и формулы в реальной жизни — ведь так учиться гораздо интереснее! И подтянуть знания перед ЕГЭ тоже поможем: приходите на бесплатный вводный урок и все увидите сами.

Все знакомы, что такое степень числа (если нет, то вам сюда). В таблице приведены различные степени числа 2. Глядя на таблицу, ясно, что, например, число 32 – это 2 в пятой степени, то есть двойка, умноженная на саму себя пять раз.

Теперь при помощи этой таблицы введем понятие логарифма.

Логарифм от числа 32 по основанию 2 ((log_{2}(32))) – это в какую степень нужно возвести двойку, чтобы получить 32. Из таблицы видно, что 2 нужно возвести в пятую степень. Значит наш логарифм равен 5:

$$ log_{2}(32)=5;$$

Аналогично, глядя в таблицу получим, что:

$$log_{2}(4)=2;$$
$$log_{2}(8)=3;$$
$$log_{2}(16)=4;$$
$$log_{2}(64)=6;$$
$$log_{2}(128)=7.$$

Естественно, логарифм бывает не только по основанию 2, а по любым основаниям больших 0 и неравных 1. Можете так же создавать таблицы для разных чисел. Но, конечно, со временем вы это будете делать в уме.

Теперь дадим определение логарифма в общем виде:

Логарифмом положительного числа (b) по основанию положительно числа (a) называется степень (c), в которую нужно возвести число (a), чтобы получить (b)

$$log_{a}(b)=c;$$
$$a^{c}=b.$$

Будьте внимательны! В первое время обычно путают, что такое основание и то, что стоит под логарифмом (аргумент). Логарифм — это всегда функция, зависящая от двух переменных. Чтобы их не путать, помните определение логарифма – это степень, в которую нужно возвести основание, чтобы получить аргумент.

Но, конечно, вы часто будете сталкиваться не с такими простыми логарифмами, как в примерах с двойкой, а очень часто будет, что логарифм нельзя в уме посчитать. Действительно, что скажете про логарифм пяти по основанию два:

$$log_{2}(5)=???$$

Как его посчитать? При помощи калькулятора. Он нам покажет, что такой логарифм равен иррациональному числу:

$$log_{2}(5)=2,32192809…$$

Или логарифм шести по основанию 4:

$$log_{4}(6)= 1.2924812…$$

На уроках математики пользоваться калькулятором нельзя, поэтому на экзаменах и контрольных принято оставлять такие логарифмы в виде логарифма – не считая его, это не будет ошибкой!

Но иногда можно столкнуться с заданием, где нужно примерно оценить значение логарифма – это очень просто! Давайте для примера оценим логарифм (log_{4}(6)). Необходимо подобрать слева и справа от 6 такие ближайшие числа, логарифм от которых мы сможем посчитать, другими словами, надо найти степени 4-ки ближайшие к 6-ке:

$$ log_{4}(4) lt log_{4}(6) lt log_{4}(16);$$
$$ 1 lt log_{4}(6) lt 2. $$

Значит (log_{4}(6)) принадлежите промежутку от 1 до 2:

$$ log_{4}(6) in (1;2). $$

Как посчитать логарифм

Перед тем, как научиться считать логарифмы, нужно ввести несколько ограничений. Дело в том, что функция логарифма (log_{a}(b)) существует только при положительных значениях основания (a) и аргумента (b). И кроме этого на основание накладывается условие, что оно не должно быть равно (1).

$$ log_{a}(b) quad существует,;при quad a gt 0; ;b gt 0 ;a neq 1.$$

Почему так? Это следует из определения показательной функций. Показательная функция не может быть (0). А основание не равно (1), потому что тогда логарифм теряет смысл – ведь (1) в любой степени это будет (1).

При этих ограничениях логарифм существует.

В дальнейшем при решении различных логарифмических уравнений и неравенств вам это пригодится для ОДЗ.

Обратите внимание, что само значение логарифма может быть любым. Это же степень, а степень может быть любой – отрицательной, рациональной, иррациональной и т.д.

$$log_{3}(frac{1}{3})=-1;$$

Так как (вспоминайте определение отрицательной степени)

$$3^{-1}=frac{1}{3};$$

Теперь давайте разберем общий алгоритм вычисления логарифмов:

  • Во-первых, постарайтесь представить основание и аргумент (то, что стоит под логарифмом) в виде степеней с одинаковым основанием. Параллельно с этим избавляемся от всех десятичных дробей – переводим их в обыкновенные.
  • Разобраться в какую степень (x) нужно возвести основание, чтобы получить аргумент. Когда у вас там и там степени с одинаковым основанием, это сделать довольно просто.
  • (x) и будет искомым значением логарифма.

Давайте разберем на примерах.

Пример 1. Посчитать логарифм (9) по основанию (3): (log_{3}(9))

  • Сначала представим аргумент и основание в виде степени тройки:
    $$ 3=3^1, qquad 9=3^2;$$
  • Теперь надо разобраться в какую степень (x) нужно возвести (3^1), чтобы получить (3^2)
    $$ (3^1)^x=3^2, $$
    $$ 3^{1*x}=3^2, $$
    $$ 1*x=2,$$
    $$ x=2.$$
  • Вот мы и решили:
    $$log_{3}(9)=2.$$

Пример 2. Вычислить логарифм (frac{1}{125}) по основанию (5): (log_{5}(frac{1}{125}))

  • Представим аргумент и основание в виде степени пятерки:
    $$ 5=5^1, qquad frac{1}{125}=frac{1}{5^3}=5^{-3};$$
  • В какую степень (x) надо возвести (5^1), чтобы получить (5^{-3}):
    $$ (5^1)^x=5^{-3}, $$
    $$ 5^{1*x}=5^{-3},$$
    $$1*x=-3,$$
    $$x=-3.$$
  • Получили ответ:
    $$ log_{5}(frac{1}{125})=-3.$$

Пример 3. Вычислить логарифм (4) по основанию (64): (log_{64}(4))

  • Представим аргумент и основание в виде степени двойки:
    $$ 64=2^6, qquad 4=2^2;$$
  • В какую степень (x) надо возвести (2^6), чтобы получить (2^{2}):
    $$ (2^6)^x=2^{2}, $$
    $$ 2^{6*x}=2^{2},$$
    $$6*x=2,$$
    $$x=frac{2}{6}=frac{1}{3}.$$
  • Получили ответ:
    $$ log_{64}(4)=frac{1}{3}.$$

Пример 4. Вычислить логарифм (1) по основанию (8): (log_{8}(1))

  • Представим аргумент и основание в виде степени двойки:
    $$ 8=2^3 qquad 1=2^0;$$
  • В какую степень (x) надо возвести (2^3), чтобы получить (2^{0}):
    $$ (2^3)^x=2^{0}, $$
    $$ 2^{3*x}=2^{0},$$
    $$3*x=0,$$
    $$x=frac{0}{3}=0.$$
  • Получили ответ:
    $$ log_{8}(1)=0.$$

Пример 5. Вычислить логарифм (15) по основанию (5): (log_{5}(15))

  • Представим аргумент и основание в виде степени пятерки:
    $$ 5=5^1 qquad 15= ???;$$
    (15) в виде степени пятерки не представляется, поэтому этот логарифм мы не можем посчитать. У него значение будет иррациональное. Оставляем так, как есть:
    $$ log_{5}(15).$$

Внимание!

Как понять, что некоторое число (a) не будет являться степенью другого числа (b). Это довольно просто – нужно разложить (a) на простые множители.

$$16=2*2*2*2=2^4,$$

(16) разложили, как произведение четырех двоек, значит (16) будет степенью двойки.

$$ 48=6*8=3*2*2*2*2,$$

Разложив (48) на простые множители, видно, что у нас есть два множителя (2) и (3), значит (48) не будет степенью.

Теперь поговорим о наиболее часто встречающихся логарифмах. Для них даже придумали специально названия – десятичный логарифм и натуральный логарифм. Давайте разбираться.

Десятичный логарифм

На самом деле, все просто. Десятичный логарифм – это любой обыкновенный логарифм, но с основанием 10. Обозначается — (lg(a)).

Пример 6

$$ log_{10}(100)= lg(100)=2;$$
$$log_{10}(1000)=lg(1000)=3;$$
$$log_{10}(10)=lg(10)=1.$$

Натуральный логарифм

Натуральным логарифмом называется логарифм по основанию (e). Обозначение — (ln(x)). Что такое (e)? Так обозначают экспоненту, число-константу, равную, примерно, (2,718281828459…). Это число известно тем, что используется в многих математических законах. Просто запомните, что логарифмы с основанием (e) часто встречаются, и поэтому им придумали специальное название – натуральный логарифм.

Пример 7

$$ log_{e}(e^2)=ln(e^2)=2;$$
$$ log_{e}(e)=ln(e)=1;$$
$$ log_{e}(e^5)=ln(e^5)=5.$$

Натуральные и десятичные логарифмы подчиняются тем же самым свойствам и правилам, что и обыкновенные логарифмы.

У логарифмов есть несколько свойств, по которым можно проводить преобразования и вычисления. Кроме этих свойств, никаких операций с логарифмами делать нельзя.

Свойства логарифмов

$$1. ; log_{a}(1)=0;$$
$$2. ; log_{a}(a)=1;$$
$$3. ; log_{a}(b*c)=log_{a}(b)+ log_{a}(c);$$
$$4. ; log_{a}(frac{b}{c})= log_{a}(b)- log_{a}(c);$$
$$5. ; log_{a}(b^m)= m*log_{a}(b);$$
$$6. ; log_{a^m}(b)=frac{1}{m}* log_{a}(b);$$
$$ 7. ; log_{a}(b)=frac{ log_{c}(b)}{ log_{c}(a)}, ; b gt 0; ; c gt 0; ; c neq 1; $$
$$ 8. ; log_{a}(b)=frac{1}{log_{b}(a)};$$
$$ 9. ; a^{ log_{a}(b)}=b.$$

Давайте разберем несколько примеров на свойства логарифмов.

Пример 8. Воспользоваться формулой (3). Логарифм от произведения – это сумма логарифмов.

$$log_{a}(b*c)=log_{a}(b)+ log_{a}(c);$$
$$ log_{3}(12)=log_{3}(3*4)=log_{3}(3)+log_{3}(4)=1+log_{3}(4);$$
$$ log_{3}(2.7)+log_{3}(10)=log_{3}(2.7*10)=log_{3}(27)=3;$$

Пример 9. Воспользоваться формулой (4). Логарифм от частного – это разность логарифмов.

$$ log_{a}(frac{b}{c})= log_{a}(b)- log_{a}(c);$$
$$ log_{7}(98)-log_{7}(2)=log_{7}(frac{98}{2})=log_{7}(49)=2;$$

Пример 10. Формула (5,6). Свойства степени.

$$log_{a}(b^m)= m*log_{a}(b);$$
$$log_{a^m}(b)=frac{1}{m}* log_{a}(b);$$

Логично, что будет выполняться и такое соотношение:

$$log_{a^m}(b^n)=frac{n}{m}* log_{a}(b);$$

И если (m=n), то:

$$log_{a^m}(b^m)=frac{m}{m}* log_{a}(b);=log_{a}(b)$$
$$log_{4}(9)=log_{2^2}(3^2)=log_{2}(3);$$

Пример 11. Формулы (7,8). Переход к другому основанию.

$$ log_{a}(b)=frac{ log_{c}(b)}{ log_{c}(a)}, ; b gt 0;c gt 0;c neq 1; $$
$$ log_{a}(b)=frac{1}{log_{b}(a)};$$
$$log_{4}(5)=frac{1}{log_{5}(4)};$$
$$log_{4}(5)=frac{log_{7}(5)}{log_{7}(4)};$$

Логарифмические уравнения

Логарифмом положительного числа $b$ по основанию $а$, где $a>0, a ≠ 1$, называется показатель степени, в которую надо возвести число $а$, чтобы получить $b$.

$log_<2>8 = 3$, т.к. $2^3 = 8;$

Особенно можно выделить три формулы:

Основное логарифмическое тождество:

Это равенство справедливо при $b> 0, a> 0, a≠ 1$

Некоторые свойства логарифмов

Все свойства логарифмов мы будем рассматривать для $a> 0, a≠ 1, b> 0, c> 0, m$ – любое действительное число.

1. Для любого действительного числа $m$ справедливы равенства:

2. Для решения задач иногда полезно следующее свойство: Если числа $а$ и $b$ на числовой оси расположены по одну сторону от единицы, то $log_b>0$, а если по разные, то $log_b 0$

Представим обе части уравнения в виде логарифма по основанию 2

Если логарифмы по одинаковому основанию равны, то подлогарифмические выражения тоже равны.

Т.к. основания одинаковые, то приравниваем подлогарифмические выражения

Перенесем все слагаемые в левую часть уравнения и приводим подобные слагаемые

Проверим найденные корни по условиям: $<table x^2-3x-5>0; 7-2x>0;$

При подстановке во второе неравенство корень $х=4$ не удовлетворяет условию, следовательно, он посторонний корень

4. Уравнения вида $a^x=b$. Решаются логарифмированием обеих частей по основанию $а$.

Решить уравнение $log_5log_2(x+1)=1$

Сделаем в обеих частях уравнения логарифмы по основанию $5$

Т.к. основания одинаковые, то приравниваем подлогарифмические выражения

Далее представим обе части уравнения в виде логарифма по основанию $2$

ОДЗ данного уравнения $x+1>0$

Подставим вместо х в неравенство $31$ и проверим, получиться ли верное условие $32>0$, следовательно, $31$ корень уравнения.

Логарифмические уравнения

Прежде чем решать логарифмические уравнения, повторим еще раз определение логарифма и основные формулы.

Логарифм положительного числа b по основанию a — это показатель степени, в которую надо возвести a, чтобы получить b.

При этом 0,;a> 0,;aneq 1′ alt=’b> 0,;a> 0,;aneq 1′ />.

Обратим внимание на область допустимых значений логарифма:

Основное логарифмическое тождество:

Основные формулы для логарифмов:

(Логарифм произведения равен сумме логарифмов)

(Логарифм частного равен разности логарифмов)
(Формула для логарифма степени)

Формула перехода к новому основанию:

Мы знаем, как выглядит график логарифмической функции. Эта функция монотонна. Если основание логарифма больше единицы, логарифмическая функция монотонно возрастает. Если основание больше нуля и меньше единицы, логарифмическая функция монотонно убывает. И в любом случае каждое свое значение она принимает только один раз. Это значит, что если логарифмы двух чисел по какому-либо основанию равны, то равны и сами числа.

Все это пригодится нам в решении логарифмических уравнений.

Простейшие логарифмические уравнения

Основания логарифмов равны, сами логарифмы тоже равны – значит, равны и числа, от которых они берутся.
Обычно ученики запоминают это правило в краткой жаргонной формулировке: «Отбросим логарифмы!» Конечно, мы «отбрасываем» их не просто так, а пользуясь свойством монотонности логарифмической функции.

Решая логарифмические уравнения, не забываем про область допустимых значений логарифма. Помним, что выражение определено при 0,;a> 0,;aneq 1′ alt=’b> 0,;a> 0,;aneq 1′ />.

Очень хорошо, если вы, найдя корень уравнения, просто подставите его в уравнение. Если после такой подстановки левая или правая часть уравнения не имеют смысла – значит, найденное число не является корнем уравнения и не может быть ответом задачи. Это хороший способ проверки на ЕГЭ.

2. Решите уравнение:

В левой части уравнения – логарифм, в правой – число 7. Применив основное логарифмическое тождество, представим число 7 в виде . Дальше все просто.

3. Решите уравнение:

Видите число 2 перед логарифмом в правой части уравнения? Сейчас оно мешает вам «отбросить логарифмы». Что с ним сделать, чтобы в левой и правой частях были просто логарифмы по основанию 5? Конечно же, поможет формула для логарифма степени.

4. Решите уравнение:

Область допустимых значений: 0.’ alt=’4+x> 0.’ /> Значит, -4.’ alt=’x> -4.’ />

Представим 2 в правой части уравнения как — чтобы слева и справа в уравнении были логарифмы по основанию 5.

Функция монотонно возрастает и каждое свое значение принимает ровно один раз. Логарифмы равны, их основания равны. «Отбросим» логарифмы! Конечно, при этом -4′ alt=’x> -4′ />.

5. Решите уравнение:

Запишем решение как цепочку равносильных переходов. Записываем ОДЗ и «убираем» логарифмы:

0\ x^<2>-4> 0\ x^<2>+x=x^<2>-4 endright.Leftrightarrow left <beginx^<2>+x> 0\ x^<2>-4> 0\ x=-4 endright.Leftrightarrow x=-4′ alt=’log _<8>left ( x^<2>+x right )=log _<8>left ( x^<2>-4 right )Leftrightarrow left <beginx^<2>+x> 0\ x^<2>-4> 0\ x^<2>+x=x^<2>-4 endright.Leftrightarrow left <beginx^<2>+x> 0\ x^<2>-4> 0\ x=-4 endright.Leftrightarrow x=-4′ />
Ответ: –4.

Заметим, что решения логарифмических уравнений лучше всего записывать в виде цепочки равносильных переходов. Это поможет нам не забыть про область допустимых значений.

Перейдем от логарифма по основанию 4 (в показателе) к логарифму по основанию 2. Мы делаем это по формуле перехода к другому основанию:

Запишем решение как цепочку равносильных переходов.

0 endright.Leftrightarrow left <beginleft (2^<log _<2>left ( 4x+5 right )> right )^<frac<1><2>>=9\ x> -1frac<1> <4>endright.Leftrightarrow left <beginleft ( 4x+5 right )^<frac<1><2>>=9\ x> -1frac<1> <4>endright.Leftrightarrow left <beginsqrt<4x+5>=9\ x> -1frac<1> <4>endright.Leftrightarrow left <begin4x+5=81\ x> -1frac<1> <4>endright.Leftrightarrow left <beginx=19\ x> -1frac<1> <4>endright.’ alt=’2^<log _<4>left ( 4x+5 right )>=9Leftrightarrow left <begin2^frac<<log _<2>left ( 4x+5 right )>><2>=9\ 4x+5> 0 endright.Leftrightarrow left <beginleft (2^<log _<2>left ( 4x+5 right )> right )^<frac<1><2>>=9\ x> -1frac<1> <4>endright.Leftrightarrow left <beginleft ( 4x+5 right )^<frac<1><2>>=9\ x> -1frac<1> <4>endright.Leftrightarrow left <beginsqrt<4x+5>=9\ x> -1frac<1> <4>endright.Leftrightarrow left <begin4x+5=81\ x> -1frac<1> <4>endright.Leftrightarrow left <beginx=19\ x> -1frac<1> <4>endright.’ />

Обратите внимание: переменная х и под логарифмом, и в основании логарифма. Мы помним, что основание логарифма должно быть положительно и не равно 1.

ОДЗ:
0\ x> 0\ xneq 1 endright.’ alt=’left <begin12-x> 0\ x> 0\ xneq 1 endright.’ />

Теперь можно «убрать» логарифмы.

— посторонний корень, поскольку должно выполняться условие 0′ alt=’x> 0′ />.

8. Решите уравнение .

ОДЗ уравнения: 0′ alt=’x> 0′ />

Сделаем замену . Как и в алгебраических уравнениях, мы делаем замену переменной всегда, когда только возможно.

Вернемся к переменной х:

Выражение под логарифмом всегда положительно – поскольку к неотрицательной величине прибавляем 25. Выражение под корнем в правой части также положительно. Значит, х может быть любым действительным числом.

Представим сумму логарифмов в левой части как логарифм произведения. В правой части – перейдем к логарифму по основанию 3. И используем формулу логарифма степени.

Такое уравнение называется биквадратным. В него входят выражения и . Сделаем замену

Вернемся к переменной х. Получим:

. Мы нашли все корни исходного уравнения.

Логарифмические уравнения могут встретиться вам и в задании №1 Профильного ЕГЭ по математике, и в задании №12. И если в задании №1 нужно решить простейшее уравнение, то в задаче 12 решение состоит из двух пунктов. Второй пункт – отбор корней на заданном отрезке или интервале.

Поверните устройство

  1. Классы
  2. ЕГЭ (профиль)
  3. 01. Простейшие уравнения
  4. Теория: 07. Элементарные логарифмические уравнения

Найдите корень уравнения:

Решим уравнение (displaystyle log_7(13-3x)=2<small .>)

Если (displaystyle a>0,, b>0 ) и (displaystyle acancel<=>1), то по определению логарифма

(displaystyle log_a b=c) равносильно (displaystyle b=a^c <small .>)

(displaystyle log_7(13-3x)=2) равносильно (displaystyle 13-3x=7^2 <small .>)

Решим линейное уравнение (displaystyle 13-3x=7^2 <small :>)

Так как (displaystyle 13-3x=7^2 <small ,>) то ограничение (displaystyle 13-3x>0 ) будет верным для решения линейного уравнения.

источники:

http://ege-study.ru/logarifmicheskie-uravneniya/

http://m.01math.com/maths/theory?subcategory_id=1457

Определение и свойства логарифмов ЕГЭ по математике

08.11.2013

Материал для подготовки к ЕГЭ по математике на тему: «Определение и свойства логарифмов».

Содержание темы:

12. ОПРЕДЕЛЕНИЕ И СВОЙСТВА ЛОГАРИФМОВ
12.1.  Свойства логарифмов
Тест для проверки теоретических знаний
Примеры
Задачи для самостоятельного решения
Контрольный тест 

Рекомендуем использовать этот материал при тщательной подготовке к сдаче ЕГЭ на высокий балл.

В теме содержатся теория и практические задания различного уровня сложности.

Смотреть в PDF:

Или прямо сейчас: Скачайте в pdf файле.

Логарифм и его свойства

Логарифм — это показатель степени, в которую надо возвести основание степени, чтобы получилось некоторое число.

Ничего не понятно! Будем разбираться на простых примерах.

Пусть дано уравнение: 2х = 4 (2основание степени, х — неизвестный показатель степени, 4 некоторое число).

Это показательное уравнение. Интуитивно понятно, что неизвестная переменная х равна 2, т.к. 22 = 4.

Модернизируем уравнение: 2х = 5.

Хм… И как?

х = 2 — мало, а х = 3 много, т.е. х — это какое-то дробное число, скорее всего, даже иррациональное. В любом случае, точно подобрать не получится, разве что на калькуляторе и с округлением.

И поэтому для таких вот случаев ленивые математики придумали определение логарифма. В общем, корнем этого уравнения будет являться х = log25 (читается: логарифм числа 5 по основанию 2).

Естественно, что у логарифма есть ограничения, числа a и b должны быть положительными и а не должно быть равно 1 (Если пораскинуть мозгами, станет понятно почему).

Пришло время красиво записать полное определение логарифма на математическом языке, с помощью которого ты сможешь решать простейшие показательные уравнения (наподобие тех, что были выше).

Мы рассмотрели самый приятный вид логарифма. Есть еще два вида, десятичный и натуральный.

В десятичном логарифме основание равно 10, а в натуральном — е (е ≈ 2,718…).

Такие логарифмы пишутся немного по-другому:

log10b = lgb;

logeb = lnb.

Основные свойства логарифмов.

Свойства работают в обе стороны, при этом a, b, c — положительные и основания логарифмов не равны 1.

Прототипы заданий из ЕГЭ по математике (ФИПИ). Базовый и профильный уровни.

Задание 1.

Найдите корень уравнения 

___________

Для решения этого уравнения используем определение логарифма. Продублирую его еще раз:

Наша задача основание логарифма 3 возвести в третью степень и приравнять выражению в скобках. Уравнение примет вид:

2х — 7 = 33.

При этом важно не забыть, что (2х — 7) должно быть больше нуля. Это важно.

Решаем обычное линейное уравнение:

2х — 7 = 27;

2х = 34;

х = 17.

Надо убедится, что корень подходит области определения логарифма: 2 · 17 — 7 > 0. Неравенство верно.

Ответ: 17.

Задание 2.

Найдите корень уравнения

___________

Основания у логарифмов одинаковые, значит можно приравнять (5х — 23) и 17.

Снова получаем обычное линейное уравнение:

5х — 23 = 17;

5х = 40;

х = 8.

Удовлетворяет ли корень области определения логарифма? Да (5 · 8 — 23 > 0).

Ответ: 8.

Задание 3.

Найдите значение выражения

___________

Воспользуемся 8-м свойством: изменим основание первого логарифма на удобное нам. А еще представим 4 как 2 в квадрате.

Теперь преобразуем второй логарифм, используя свойство 4.

Одинаковые логарифмы сокращаются…

Ответ: 2.

Задание 4.

Найдите значение выражения

___________

Представим основание нижнего логарифма как 82 и по свойству 5 вынесем показатель степени вперед.

Логарифмы сокращаются, остается разделить 1 на ½.

Ответ: 2.

Задание 5.

Найдите значение выражения

___________

У логарифмов одинаковые основания, значит сработает свойство 2.

В какую степени надо возвести число 7, чтобы получилось 49? Правильно, 2.

Ответ: 2.

Задание 6.

Найдите значение выражения

___________

Для дроби используем свойство 7, только наоборот, а затем — свойство 2.

Ответ: 1.

Задание 7.

Найдите значение выражения

___________

Представим десятичные дроби в виде обыкновенных и сократим их.

Поменяем основание у первого логарифма, используя свойство 8.

Представим дробь 5/4 как 4/5 в минус первой степени.

По свойству 4 выносим -1 вперед.

Логарифмы равны и сокращаются.

Ответ: -4.

Факт 1.
(bullet) Логарифм по основанию (a) от (b) – это число (t), которое показывает, в какую степень нужно возвести (a), чтобы получить (b).
Ограничения: числа (a) и (b) такие, что (a>0, ane 1, b>0).
[Large{{color{blue}{log_a{b}=tquadLeftrightarrowquad
a^t=b }}}]

Т.к. мы имеем право возводить в любую степень, то (tin
mathbb{R})
.
Таким образом, верно основное логарифмическое тождество [{Large{a^{log_ab}=b}}]
(bullet) Справедливы следующие формулы: [{large{begin{array}{|ll|l|}
hline qquad qquad qquad qquad {small{text{Формулы}}}
&& qquad qquad{small{text{Ограничения}}}\
&&\
hline textbf{(1)} log_a1=0&&a>0, ane 1\
&&\
textbf{(2)} log_aa=1 &&a>0, ane 1\
&&\
textbf{(3)} log_{a}{b^m}=mlog_a|b|&(m —
{small{text{четн.}}})&a>0, ane 1, bne 0\
&&\
textbf{(4)}log_{a}{b^m}=mlog_ab& (m —
{small{text{нечетн.}}})&a>0, ane 1, b>0\
&&\
textbf{(5)} log_{a^n}{b}=frac 1nlog_{|a|}b&(n —
{small{text{четн.}}})&ane 0, ane 1, b>0\
&&\
textbf{(6)}log_{a^n}b=frac1nlog_ab&(n —
{small{text{нечетн.}}})&a>0, ane 1, b>0\
&&\
textbf{(7)} log_a{bc}=log_a|b|+log_a|c|&&a>0, ane 1, bcne 0\
&&\
textbf{(8)}
log_a{dfrac bc}=log_a|b|-log_a|c|&&a>0, ane 1,bcne 0 \
&&\
textbf{(9)}
a^{log_ab}=b &&a>0, ane 1, b>0\
&&\
textbf{(10)}c^{log_ab}=b^{log_ac}&&a>0, ane 1, b>0, c>0\
&&\
textbf{(11)} log_abcdot log_bc=log_ac && a>0, ane 1,b>0, bne 1, c>0\
&&\
textbf{(11′}) log_bc=dfrac{log_ac}{log_ab}&&a>0, ane 1,b>0, bne 1, c>0\
&&\
&&\
{small{text{ЧАСТНЫЕ СЛУЧАИ:}}}&& \
textbf{(12)} log_abcdot log_ba=1 && a>0, ane 1, b>0, bne 1\
&&\
textbf{(12′}) log_ab=dfrac1{log_ba}&&a>0, ane 1, b>0, bne 1\
&&\ hline
end{array}}}]

Заметим, что при выполнении ограничений данные формулы верны в обе стороны!

Понравилась статья? Поделить с друзьями:
  • Термины на экзамене по вождению
  • Теория правописание приставок 10 класс с ответами подготовка к егэ по русскому
  • Термины на огэ по русскому языку по сочинению
  • Теория политики вопросы к экзамену
  • Термины математика егэ