Тест тригонометрические уравнения егэ



СДАМ ГИА:

РЕШУ ЕГЭ

Образовательный портал для подготовки к экзаменам

Математика профильного уровня

Математика профильного уровня

≡ Математика

Базовый уровень

Профильный уровень

Информатика

Русский язык

Английский язык

Немецкий язык

Французский язык

Испанский язык

Физика

Химия

Биология

География

Обществознание

Литература

История

Сайты, меню, вход, новости

СДАМ ГИАРЕШУ ЕГЭРЕШУ ОГЭРЕШУ ВПРРЕШУ ЦТ

Об экзамене

Каталог заданий

Варианты

Ученику

Учителю

Школа

Эксперту

Справочник

Карточки

Теория

Сказать спасибо

Вопрос — ответ

Чужой компьютер

Зарегистрироваться

Восстановить пароль

Войти через ВКонтакте

Играть в ЕГЭ-игрушку

Новости

10 марта

Как подготовиться к ЕГЭ и ОГЭ за 45 дней

6 марта

Изменения ВПР 2023

3 марта

Разместили утвержденное расписание ЕГЭ

27 января

Вариант экзамена блокадного Ленинграда

23 января

ДДОС-атака на Решу ЕГЭ. Шантаж.

6 января

Открываем новый сервис: «папки в избранном»

22 декабря

От­кры­ли но­вый пор­тал Ре­шу Олимп. Для под­го­тов­ки к пе­реч­не­вым олим­пи­а­дам!

4 ноября

Материалы для подготовки к итоговому сочинению 2022–2023

31 октября

Сертификаты для учителей о работе на Решу ЕГЭ, ОГЭ, ВПР

21 марта

Новый сервис: рисование

31 января

Внедрили тёмную тему!

НАШИ БОТЫ

Все новости

ЧУЖОЕ НЕ БРАТЬ!

Экзамер из Таганрога

10 апреля

Предприниматель Щеголихин скопировал сайт Решу ЕГЭ

Наша группа

Каталог заданий.
Тригонометрические уравнения


Пройти тестирование по этим заданиям
Вернуться к каталогу заданий

Версия для печати и копирования в MS Word

1

Тип 12 № 507595

а)  Решите уравнение  косинус 2x= синус левая круглая скобка x плюс дробь: числитель: знаменатель: p конец дроби i2 правая круглая скобка .

б)  Найдите корни этого уравнения, принадлежащие промежутку  левая квадратная скобка минус 2 Пи ; минус Пи правая квадратная скобка .

Аналоги к заданию № 507595: 500917 501709 Все

Классификатор алгебры: Тригонометрические уравнения, Тригонометрические уравнения, сводимые к целым на синус или косинус

Методы алгебры: Формулы двойного угла, Формулы приведения

Кодификатор ФИПИ/Решу ЕГЭ: 2.1.4 Тригонометрические уравнения

Решение

·

·

Курс Д. Д. Гущина

·

Сообщить об ошибке · Помощь


2

Тип 12 № 510018

а)  Решите уравнение  косинус 2x= 1 минус косинус левая круглая скобка дробь: числитель: Пи , знаменатель: 2 конец дроби минус x правая круглая скобка .

б)  Укажите корни этого уравнения, принадлежащие промежутку  левая квадратная скобка минус дробь: числитель: 5 Пи , знаменатель: 2 конец дроби ; минус Пи правая круглая скобка .

Источник: Демонстрационная версия ЕГЭ—2016 по математике. Профильный уровень.

Классификатор алгебры: Тригонометрические уравнения

Методы алгебры: Формулы двойного угла, Формулы приведения

Кодификатор ФИПИ/Решу ЕГЭ: 2.1.4 Тригонометрические уравнения

Решение

·

·

Курс Д. Д. Гущина

·

1 комментарий · Сообщить об ошибке · Помощь


3

Тип 12 № 504543

а)  Решите уравнение 4 косинус в степени 4 x минус 4 косинус в квадрате x плюс 1=0.

б)  Найдите все корни этого уравнения, принадлежащие отрезку  левая квадратная скобка минус 2 Пи ; минус Пи правая квадратная скобка .

Аналоги к заданию № 504543: 504564 507292 510671 Все

Классификатор алгебры: Тригонометрические уравнения, Тригонометрические уравнения, решаемые разложением на множители

Методы алгебры: Группировка

Кодификатор ФИПИ/Решу ЕГЭ: 2.1.4 Тригонометрические уравнения

Решение

·

·

Курс Д. Д. Гущина

·

2 комментария · Сообщить об ошибке · Помощь


4

Тип 12 № 500366

а)  Решите уравнение  косинус 2x плюс синус в квадрате x=0,5.

б)  Найдите все корни этого уравнения, принадлежащие отрезку  левая квадратная скобка минус дробь: числитель: 7 Пи , знаменатель: 2 конец дроби ; минус 2 Пи правая квадратная скобка .

Аналоги к заданию № 500366: 500587 501482 514505 Все

Классификатор алгебры: Тригонометрические уравнения

Методы алгебры: Формулы двойного угла

Кодификатор ФИПИ/Решу ЕГЭ: 2.1.4 Тригонометрические уравнения

Решение

·

·

Курс Д. Д. Гущина

·

4 комментария · Сообщить об ошибке · Помощь


5

Тип 12 № 509579

а)  Решите уравнение  косинус 2x минус 3 косинус x плюс 2 = 0.

б)  Найдите все корни уравнения, принадлежащие отрезку  левая квадратная скобка минус 4 Пи ; минус дробь: числитель: 5 Пи , знаменатель: 2 конец дроби правая квадратная скобка .

Аналоги к заданию № 509579: 509926 509947 509968 515762 519665 Все

Классификатор алгебры: Тригонометрические уравнения, Тригонометрические уравнения, сводимые к целым на синус или косинус

Методы алгебры: Формулы двойного угла

Кодификатор ФИПИ/Решу ЕГЭ: 2.1.4 Тригонометрические уравнения

Решение

·

·

Курс Д. Д. Гущина

·

Сообщить об ошибке · Помощь

Пройти тестирование по этим заданиям

О проекте · Редакция · Правовая информация · О рекламе

© Гущин Д. Д., 2011—2023

  • Тест состоит из 15 заданий.
    Данный тест применяется для комплексной проверки знаний обучающихся и  подготовке к написанию экзамена.
    В тесте применяется следующий тип задания:
    1. Задания с выбором одного  правильного  ответа . Каждое задание имеет четыре-пять вариантов ответов, из которых только один правильный. Задание считается выполненным, если обучающийся выбрал и обозначил правильный ответ.
    2. Задания с выбором нескольких  правильных  ответов . Каждое задание имеет четыре-пять вариантов ответов, из которых два правильных. Задание считается выполненным, если обучающийся выбрал и обозначил все правильные ответ.

  • Данный тест проверяет умение решать простейшие тригонометрические уравнения.

  • Тест по теме «Простейшие тригонометрические уравнения» 10 класс. Тема «Тригонометрия»

  • Текушая проверка знаний свойств cos(x). Косинус (cos α) – это тригонометрическая функция от угла α между гипотенузой и катетом прямоугольного треугольника, равная отношению длины прилежащего катета |AC| к длине гипотенузы |AB|

  • Перед Вами тренировочный тест, проверяющий усвоение небольшой, логически завершенной части темы «Простейшее тригонометрическое уравнение cos t= a». Содержание и уровень сложности включенных в него заданий, в основном, отвечают обязательным требованиям к математической подготовке студентов, обучающихся по специальностям технического профиля. Планируется, что на выполнение этого теста Вы потратите не более 10-15 минут.

  • Тест предназначен для проверки знания формул корней тригонометрических уравнений и умения решать простейшие тригонометрические уравнения.

  • Тест состоит из 4 вопросов базового уровня  по теме: «Уравнения», учебник алгебра 10-11

  • Перед Вами тренировочный тест, проверяющий усвоение небольшой, логически завершенной части темы «Тригонометрические уравнения». Содержание и уровень сложности включенных в него заданий, в основном, отвечают обязательным требованиям к математической подготовке студентов, обучающихся по специальностям технического профиля. Планируется, что на выполнение этого теста Вы потратите не более 10-15 минут.

  • Перед Вами тренировочный тест, проверяющий усвоение небольшой, логически завершенной части темы «Уравнения и неравенства». Содержание и уровень сложности включенных в него заданий, в основном, отвечают обязательным требованиям к математической подготовке студентов, обучающихся по специальностям технического профиля.

  • Тест предназначен для учащихся, которые изучили тему «Тригонометрические уравнения»

  • Тренировочный тест по теме «Решение простых тригонометрических уравнений». Предназначен учащимся 10-11 классов. 

  • Тест предназначен для проверки знания основных методов решения уравнений, умения применять эти методы при решении уравнений.

  • Текушая проверка знаний свойств cos(x). Косинус (cos α) – это тригонометрическая функция от угла α между гипотенузой и катетом прямоугольного треугольника, равная отношению длины прилежащего катета |AC| к длине гипотенузы |AB|

  • Данный тест позволяет проверить степень усвоения темы » Решение простейших тригонометрических уравнений»

17
Июн 2020

Категория: Тесты по темам

Елена Репина
2020-06-17
2021-06-18

Разбор заданий, аналогичных заданиям теста, смотрите здесь

Автор: egeMax |

Нет комментариев

Чтобы не потерять страничку, вы можете сохранить ее у себя:

Печать страницы

Похожие статьи на сайте…

  • Тест по задачам №9 «Вычисление основных значений тригонометрических функций»
  • Тест. Преобразование тригонометрических выражений
  • Тест по задачам №6 «Равнобедренный треугольник. Вычисление углов и длин»
  • Тест по задачам №6 «Окружность и многоугольник»
  • Тест по задачам №8. Конус. Цилиндр
  • Тест по задачам №8. Куб. Параллелепипед

Добавить комментарий

  • Материалы для подготовки к ЕГЭ
  •    

  • Рубрики
    • 01 Геометрия (13)
    • 02 Стереометрия (9)
    • 03 Теория вероятностей ч.1 (1)
    • 04 Теория вероятностей ч.2 (1)
    • 05 Простейшие уравнения (5)
    • 06 Вычисления (5)
    • 07 Производная, ПО (4)
    • 08 «Прикладные» задачи (5)
    • 09 Текстовые задачи (7)
    • 10 Графики функций (7)
    • 11 Исследование функции (2)
    • 12 (С1) Уравнения (78)
    • 13 (С2) Стереометр. задачи (94)
    • 14 (С3) Неравенства (89)
    • 15 (С4) Практич. задачи (71)
    • 16 (С5) Планиметр. задачи (86)
    • 17 (С6) Параметры* (79)
    • 18 (С7) Числа, их свойства (38)
    • A1 Простейшие текст/задачи (нет в ЕГЭ-22) (3)
    • A2 Читаем графики (нет в ЕГЭ-22) (1)
    • Видеоуроки (44)
    • ГИА (11)
      • II часть (11)
    • ЕГЭ (диагностич. работы) (70)
    • Иррациональные выражения, уравнения и неравенства (15)
    • Логарифмы (39)
    • МГУ (12)
    • Метод интервалов (4)
    • Метод рационализации (18)
    • Модуль (9)
    • Параметр (40)
    • Переменка (5)
    • Планиметрия (60)
    • Показательные выражения, уравнения и неравенства (8)
    • Разложение на множители (1)
    • Рациональные выражения, уравнения и неравенства (10)
    • Справочные материалы (92)
    • Стереометрия (52)
    • Т/P A. Ларина (443)
    • Текстовые задачи (12)
    • Теория чисел (2)
    • Тесты по темам (80)
    • Тригонометрические выражения, уравнения и неравенства (43)
    • Функции и графики (10)
  • Дружественные сайты

    Сайт А. Ларина
    ЕгэТренер – О. Себедаш
    Математика?Легко!
    Егэ? Ок! – И. Фельдман

  • Свежие записи
    • Тест «Гиперболы»
    • Тест. Графики функций. Комбинированные задачи
    • 10. Графики функций. Комбинированные задачи
    • Тест. Тригонометрические функции
    • 10. Тригонометрическая функция
    • Тест. Кусочно-линейная функция
    • 10. Кусочно-линейная функция
  • Архивы Архивы

Тригонометрические уравнения

Avatar

14.06.2017.
Тест. Математика, 11 класс

Внимание! Все тесты в этом разделе разработаны пользователями сайта для собственного
использования.
Администрация сайта не
проверяет возможные ошибки,
которые могут встретиться в тестах.

Тест предназначен для закрепления темы «Тригонометрические уравнения» в процессе изучения курса алгебры 10-11 классов, а также для подготовки к ЕГЭ по математике

Список вопросов теста

Вопрос 1

Решите уравнение: 

Вопрос 2

Решите уравнение: 

Вопрос 3

Решите уравнение: 

Вопрос 4

Решите уравнение: 

Вопрос 5

Решите уравнение: 

Вопрос 6

Решите уравнение: 

Вопрос 7

Решите уравнение: 

Вопрос 8

Решите уравнение: 

Вопрос 9

Укажите наименьший положительный корень уравнения: 

Вопрос 10

Укажите наибольший отрицательный корень уравнения: 

Вопрос 11

Укажите те корни уравнения , для которых 

Вопрос 12

Укажите те корни уравнения , для которых 

Вопрос 13

Укажите те корни уравнения , которые лежат в промежутке 

Вопрос 14

Укажите те корни уравнения , которые лежат в промежутке 

Вопрос 15

Укажите число корней уравнения  на промежутке 

Вопрос 16

Укажите число корней уравнения  на промежутке ​​​​​​

Вопрос 17

Укажите число корней уравнения  на промежутке 

Вопрос 18

Укажите ближайший к  корень уравнения 

Вопрос 19

Найдите сумму корней уравнения , принадлежащих промежутку 

Вопрос 20

Укажите наименьший положительный корень уравнения 

Вопрос 21

Решите уравнение: 

Вопрос 22

Решение уравнение: 

Вопрос 23

Решите уравнение: 

Вопрос 24

Решите уравнение: 

Вопрос 25

Решите уравнение: 

Вопрос 26

Решите уравнение: 

Вопрос 27

Сколько корней имеет уравнение  на промежутке 

Вопрос 28

Сколько корней имеет уравнение  на промежутке 

Вопрос 29

Укажите наименьший положительный корень уравнения 

Вопрос 30

Укажите корень уравнения , принадлежащий промежутку 

Вопрос 31

Укажите корень уравнения , принадлежащий промежутку . Ответ запишите в градусах.

Вопрос 32

Найдите наибольший отрицательный корень уравнения . Ответ запишите в градусах.

Вопрос 33

Найдите наименьший положительный корень уравнения . Ответ запишите в градусах.

Вопрос 34

Найдите наибольший отрицательный корень уравнения . Ответ запишите в градусах.

Вопрос 35

Найдите сумму корней уравнения , принадлежащих промежутку . Ответ запишите в градусах.

Вопрос 36

Укажите число корней уравнения , принадлежащих промежутку 

Вопрос 37

Укажите наименьший положительный корень уравнения . Ответ запишите в градусах.

Вопрос 38

Укажите число корней уравнения 

Вопрос 39

Укажите число корней уравнения 

Вопрос 40

Укажите число корней уравнения , принадлежащих промежутку 

Вопрос 41

Укажите число корней уравнения , принадлежащих промежутку 

Вопрос 42

Укажите число корней уравнения  из промежутка 

Вопрос 43

Решите уравнение: 

Вопрос 44

Решите уравнение: 

Вопрос 45

Найти наибольший отрицательный корень уравнения . Ответ запишите в градусах.

Вопрос 46

Найти сумму различных корней уравнения , принадлежащих промежутку . Ответ запишите в градусах

Вопрос 50

Укажите наименьшее целое значение , при котором уравнение  имеет хотя бы одно решение.

Вопрос 51

Укажите наименьшее натуральное значение , при котором уравнение  не имеет решений.

Лучшие репетиторы для сдачи ЕГЭ

Задания по теме «Тригонометрические уравнения»

Открытый банк заданий по теме тригонометрические уравнения. Задания C1 из ЕГЭ по математике (профильный уровень)

Стереометрия. Расстояния и углы в пространстве

Задание №1179

Условие

а) Решите уравнение 2(sin x-cos x)=tgx-1.

б) Укажите корни этого уравнения, принадлежащие промежутку left[ frac{3pi }2;,3pi right].

Показать решение

Решение

а) Раскрыв скобки и перенеся все слагаемые в левую часть, получим уравнение 1+2 sin x-2 cos x-tg x=0. Учитывая, что cos x neq 0, слагаемое 2 sin x можно заменить на 2 tg x cos x, получим уравнение 1+2 tg x cos x-2 cos x-tg x=0, которое способом группировки можно привести к виду (1-tg x)(1-2 cos x)=0.

1) 1-tg x=0,  tg x=1, x=fracpi 4+pi n, n in mathbb Z;

2) 1-2 cos x=0,  cos x=frac12, x=pm fracpi 3+2pi n, n in mathbb Z.

б) С помощью числовой окружности отберём корни, принадлежащие промежутку left[ frac{3pi }2;, 3pi right].

Отбор корней принадлежащих промежутку с помощью числовой окружности

x_1=fracpi 4+2pi =frac{9pi }4,

x_2=fracpi 3+2pi =frac{7pi }3,

x_3=-fracpi 3+2pi =frac{5pi }3.

Ответ

а) fracpi 4+pi n, pmfracpi 3+2pi n, n in mathbb Z;

б) frac{5pi }3,  frac{7pi }3,  frac{9pi }4.

Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Задание №1178

Условие

а) Решите уравнение (2sin ^24x-3cos 4x)cdot sqrt {tgx}=0.

б) Укажите корни этого уравнения, принадлежащие промежутку left( 0;,frac{3pi }2right] ;

Показать решение

Решение

а) ОДЗ: begin{cases} tgxgeqslant 0\xneq fracpi 2+pi k,k in mathbb Z. end{cases}

Исходное уравнение на ОДЗ равносильно совокупности уравнений

left[!!begin{array}{l} 2 sin ^2 4x-3 cos 4x=0,\tg x=0. end{array}right.

Решим первое уравнение. Для этого сделаем замену cos 4x=t,  t in [-1; 1]. Тогда sin^24x=1-t^2. Получим:

2(1-t^2)-3t=0,

2t^2+3t-2=0,

t_1=frac12, t_2=-2, t_2notin [-1; 1].

cos 4x=frac12,

4x=pm fracpi 3+2pi n,

x=pm fracpi {12}+frac{pi n}2, n in mathbb Z.

Решим второе уравнение.

tg x=0,, x=pi k, k in mathbb Z.

При помощи единичной окружности найдём решения, которые удовлетворяют ОДЗ.

Нахождение решений с помощью единичной окружности

Знаком «+» отмечены 1-я и 3-я четверти, в которых tg x>0.

Получим: x=pi k, k in mathbb Z; x=fracpi {12}+pi n, n in mathbb Z; x=frac{5pi }{12}+pi m, m in mathbb Z.

б) Найдём корни, принадлежащие промежутку left( 0;,frac{3pi }2right].

Корни, принадлежащие промежутку на числовой окружности

x=fracpi {12}, x=frac{5pi }{12}; x=pi ; x=frac{13pi }{12}; x=frac{17pi }{12}.

Ответ

а) pi k, k in mathbb Z; fracpi {12}+pi n, n in mathbb Z; frac{5pi }{12}+pi m, m in mathbb Z.

б) pi; fracpi {12}; frac{5pi }{12}; frac{13pi }{12}; frac{17pi }{12}.

Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Задание №1177

Условие

а) Решите уравнение: cos ^2x+cos ^2fracpi 6=cos ^22x+sin ^2fracpi 3;

б) Укажите все корни, принадлежащие промежутку left( frac{7pi }2;,frac{9pi }2right].

Показать решение

Решение

а) Так как sin fracpi 3=cos fracpi 6, то sin ^2fracpi 3=cos ^2fracpi 6, значит, заданное уравнение равносильно уравнению cos^2x=cos ^22x, которое, в свою очередь, равносильно уравнению cos^2x-cos ^2 2x=0.

Но cos ^2x-cos ^22x= (cos x-cos 2x)cdot (cos x+cos 2x) и

cos 2x=2 cos ^2 x-1, поэтому уравнение примет вид

(cos x-(2 cos ^2 x-1)),cdot (cos x+(2 cos ^2 x-1))=0,

(2 cos ^2 x-cos x-1),cdot (2 cos ^2 x+cos x-1)=0.

Тогда либо 2 cos ^2 x-cos x-1=0, либо 2 cos ^2 x+cos x-1=0.

Решая первое уравнение как квадратное уравнение относительно cos x, получаем:

(cos x)_{1,2}=frac{1pmsqrt 9}4=frac{1pm3}4. Поэтому либо cos x=1, либо cos x=-frac12. Если cos x=1, то x=2kpi , k in mathbb Z. Если cos x=-frac12, то x=pm frac{2pi }3+2spi , s in mathbb Z.

Аналогично, решая второе уравнение, получаем либо cos x=-1, либо cos x=frac12.Если cos x=-1, то корни x=pi +2mpi , m in mathbb Z. Если cos x=frac12, то x=pm fracpi 3+2npi , n in mathbb Z.

Объединим полученные решения:

x=mpi , m in mathbb Z; x=pm fracpi 3 +spi , s in mathbb Z.

б) Выберем корни, которые попали в заданный промежуток, с помощью числовой окружности.

Отбор корней заданного промежутка на числовой окружности

Получим: x_1 =frac{11pi }3,  x_2=4pi ,  x_3 =frac{13pi }3.

Ответ

а) mpi, m in mathbb Z; pm fracpi 3 +spi , s in mathbb Z;

б) frac{11pi }3,  4pi ,  frac{13pi }3.

Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Задание №1176

Условие

а) Решите уравнение 10cos ^2frac x2=frac{11+5ctgleft( dfrac{3pi }2-xright) }{1+tgx}.

б) Укажите корни этого уравнения, принадлежащие интервалу left( -2pi ; -frac{3pi }2right).

Показать решение

Решение

а) 1. Согласно формуле приведения, ctgleft( frac{3pi }2-xright) =tgx. Областью определения уравнения будут такие значения x, что cos x neq 0 и tg x neq -1. Преобразуем уравнение, пользуясь формулой косинуса двойного угла 2 cos ^2 frac x2=1+cos x. Получим уравнение: 5(1+cos x) =frac{11+5tgx}{1+tgx}.

Заметим, что frac{11+5tgx}{1+tgx}= frac{5(1+tgx)+6}{1+tgx}= 5+frac{6}{1+tgx}, поэтому уравнение принимает вид: 5+5 cos x=5 +frac{6}{1+tgx}. Отсюда cos x =frac{dfrac65}{1+tgx}, cos x+sin x =frac65.

2. Преобразуем sin x+cos x по формуле приведения и формуле суммы косинусов: sin x=cos left(fracpi 2-xright), cos x+sin x= cos x+cos left(fracpi 2-xright)= 2cos fracpi 4cos left(x-fracpi 4right)= sqrt 2cos left( x-fracpi 4right) = frac65.

Отсюда cos left(x-fracpi 4right) =frac{3sqrt 2}5. Значит, x-fracpi 4= arccos frac{3sqrt 2}5+2pi k, k in mathbb Z,

или x-fracpi 4= -arccos frac{3sqrt 2}5+2pi t, t in mathbb Z.

Поэтому x=fracpi 4+arccos frac{3sqrt 2}5+2pi k,k in mathbb Z,

или x =fracpi 4-arccos frac{3sqrt 2}5+2pi t,t in mathbb Z.

Найденные значения x принадлежат области определения.

б) Выясним сначала куда попадают корни уравнения при k=0 и t=0. Это будут соответственно числа a=fracpi 4+arccos frac{3sqrt 2}5 и b=fracpi 4-arccos frac{3sqrt 2}5.

1. Докажем вспомогательное неравенство:

frac{sqrt 2}{2}<frac{3sqrt 2}2<1.

Действительно, frac{sqrt 2}{2}=frac{5sqrt 2}{10}<frac{6sqrt2}{10}=frac{3sqrt2}{5}.

Заметим также, что left( frac{3sqrt 2}5right) ^2=frac{18}{25}<1^2=1, значит frac{3sqrt 2}5<1.

2. Из неравенств (1) по свойству арккосинуса получаем:

arccos 1<arccos frac{3sqrt 2}5<arccos frac{sqrt 2}2,

0<arccosfrac{3sqrt2}{5}<frac{pi}{4}.

Отсюда fracpi 4+0<fracpi 4+arccos frac{3sqrt 2}5<fracpi 4+fracpi 4,

0<fracpi 4+arccos frac{3sqrt 2}5<fracpi 2,

0<a<fracpi 2.

Аналогично, -fracpi 4<arccosfrac{3sqrt2}{5}<0,

0=fracpi 4-fracpi 4<fracpi 4-arccos frac{3sqrt 2}5< fracpi 4<fracpi 2,

0<b<fracpi 2.

При k=-1 и t=-1 получаем корни уравнения a-2pi и b-2pi.

Bigg( a-2pi =-frac74pi +arccos frac{3sqrt 2}5,, b-2pi =-frac74pi -arccos frac{3sqrt 2}5Bigg). При этом -2pi <a-2pi <-frac{3pi }2,

-2pi <b-2pi <-frac{3pi }2. Значит, эти корни принадлежат заданному промежутку left( -2pi , -frac{3pi }2right).

При остальных значениях k и t корни уравнения не принадлежат заданному промежутку.

Действительно, если kgeqslant 1 и tgeqslant 1, то корни больше 2pi. Если kleqslant -2 и tleqslant -2, то корни меньше -frac{7pi }2.

Ответ

а) fracpi4pm arccosfrac{3sqrt2}5+2pi k, kinmathbb Z;

б) -frac{7pi}4pm arccosfrac{3sqrt2}5.

Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Задание №1175

Условие

а) Решите уравнение sin left( fracpi 2+xright) =sin (-2x).

б) Найдите все корни этого уравнения, принадлежащие промежутку [0; pi ];

Показать решение

Решение

а) Преобразуем уравнение:

cos x =-sin 2x,

cos x+2 sin x cos x=0,

cos x(1+2 sin x)=0,

cos x=0,

x =fracpi 2+pi n, n in mathbb Z;

1+2 sin x=0,

sin x=-frac12,

x=(-1)^{k+1}cdot fracpi 6+pi k, k in mathbb Z.

б) Корни, принадлежащие отрезку [0; pi ], найдём с помощью единичной окружности.

Нахождение корней отрезка на единичной окружности

Указанному промежутку принадлежит единственное число fracpi 2.

Ответ

а) fracpi 2+pi n, n in mathbb Z; (-1)^{k+1}cdot fracpi 6+pi k, k in mathbb Z;

б) fracpi 2.

Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Задание №1174

Условие

а) Решите уравнение frac{sin x-1}{1+cos 2x}=frac{sin x-1}{1+cos (pi +x)}.

б) Найдите все корни этого уравнения, принадлежащие отрезку left[ -frac{3pi }{2}; -frac{pi }2 right].

Показать решение

Решение

а) Найдём ОДЗ уравнения: cos 2x neq -1, cos (pi +x) neq -1; Отсюда ОДЗ: x neq frac pi 2+pi k,

k in mathbb Z, x neq 2pi n, n in mathbb Z. Заметим, что при sin x=1, x=frac pi 2+2pi k, k in mathbb Z.

Полученное множество значений x не входит в ОДЗ.

Значит, sin x neq 1.

Разделим обе части уравнения на множитель (sin x-1), отличный от нуля. Получим уравнение frac 1{1+cos 2x}=frac 1{1+cos (pi +x)}, или уравнение 1+cos 2x=1+cos (pi +x). Применяя в левой части формулу понижения степени, а в правой — формулу приведения, получим уравнение 2 cos ^2 x=1-cos x. Это уравнение с помощью замены cos x=t, где -1 leqslant t leqslant 1 сводим к квадратному: 2t^2+t-1=0, корни которого t_1=-1 и t_2=frac12. Возвращаясь к переменной x, получим cos x = frac12 или cos x=-1, откуда x=frac pi 3+2pi m, m in mathbb Z, x=-frac pi 3+2pi n, n in mathbb Z, x=pi +2pi k, k in mathbb Z.

б) Решим неравенства

1) -frac{3pi }2 leqslant frac{pi }3+2pi m leqslant -frac pi 2 ,

2) -frac{3pi }2 leqslant -frac pi 3+2pi n leqslant -frac pi {2,}

3) -frac{3pi }2 leqslant pi+2pi k leqslant -frac pi 2 , m, n, k in mathbb Z. 

Решение:

1) -frac{3pi }2 leqslant frac{pi }3+2pi m leqslant -frac pi 2 , -frac32 leqslant  frac13+2m leqslant  -frac12 -frac{11}6 leqslant  2m leqslant  -frac56 , -frac{11}{12} leqslant m leqslant -frac5{12}.

Нет целых чисел, принадлежащих промежутку left [-frac{11}{12};-frac5{12}right].

2) -frac {3pi} 2 leqslant -frac{pi }3+2pi n leqslant -frac{pi }{2}, -frac32 leqslant -frac13 +2n leqslant -frac12 , -frac76 leqslant 2n leqslant -frac1{6}, -frac7{12} leqslant n leqslant -frac1{12}.

Нет целых чисел, принадлежащих промежутку left[ -frac7{12} ; -frac1{12} right].

3) -frac{3pi }2 leqslant pi +2pi kleqslant -frac{pi }2, -frac32 leqslant 1+2kleqslant -frac12, -frac52 leqslant 2k leqslant -frac32, -frac54 leqslant k leqslant -frac34.

Этому неравенству удовлетворяет k=-1, тогда x=-pi.

Ответ

а) frac pi 3+2pi m; -frac pi 3+2pi n; pi +2pi k, m, n, k in mathbb Z;

б) -pi .

Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Задание №1173

Условие

а) Решите уравнение: sin ^2x+sin ^2fracpi 6=cos ^22x+cos ^2fracpi 3.

б) Укажите все корни, принадлежащие промежутку left[ frac{7pi }2;,frac{9pi }2right).

Показать решение

Решение

а) Так как sin fracpi 6=cos fracpi 3, то sin ^2fracpi 6=cos ^2fracpi 3, значит, заданное уравнение равносильно уравнению sin ^2 x=cos ^2 2x, которое, в свою очередь, равносильно уравнению sin ^2- cos ^2 2x=0.

Но sin ^ 2x-cos ^2 2x= (sin x-cos 2x)cdot (sin x+cos 2x) и

cos 2x=1-2 sin ^2 x, поэтому уравнение примет вид

(sin x-(1-2 sin ^2 x)),cdot (sin x+(1-2 sin ^2 x))=0,

(2 sin ^2 x+sin x-1),cdot (2 sin ^2 x-sin x-1)=0.

Тогда либо 2 sin ^2 x+sin x-1=0, либо 2 sin ^2 x-sin x-1=0.

Решим первое уравнение как квадратное относительно sin x,

(sin x)_{1,2}=frac{-1 pm sqrt 9}4=frac{-1 pm 3}4. Поэтому либо sin x=-1, либо sin x=frac12. Если sin x=-1, то x=frac{3pi }2+ 2kpi , k in mathbb Z. Если sin x=frac12, то либо x=fracpi 6 +2spi , s in mathbb Z, либо x=frac{5pi }6+2tpi , t in mathbb Z.

Аналогично, решая второе уравнение, получаем либо sin x=1, либо sin x=-frac12. Тогда x =fracpi 2+2mpi , m in mathbb Z, либо x=frac{-pi }6 +2npi , n in mathbb Z, либо x=frac{-5pi }6+2ppi , p in mathbb Z.

Объединим полученные решения:

x=fracpi 2+mpi,minmathbb Z; x=pmfracpi 6+spi,s in mathbb Z.

б) Выберем корни, которые попали в заданный промежуток с помощью числовой окружности.

Корни, которые попали в заданный промежуток на числовой окружности

Получим: x_1 =frac{7pi }2, x_2 =frac{23pi }6, x_3 =frac{25pi }6.

Ответ

а) fracpi 2+ mpi , m in mathbb Z; pm fracpi 6 +spi , s in mathbb Z;

б) frac{7pi }2;,,frac{23pi }6;,,frac{25pi }6.

Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Задание №1172

Условие

а) Решите уравнение log_2^2(2sin x+1)-17log_2(2sin x+1) +16=0.

б) Укажите корни этого уравнения, принадлежащие отрезку left[ fracpi 4;,2pi right].

Показать решение

Решение

а) После замены t=log_2(2 sin x+1) исходное уравнение примет вид t^2 -17t+16=0. Корни этого уравнения t=1, t=16. Возвращаясь к переменной x, получим:

left[!!begin{array}{l} log_2(2 sin x+1)=1,\ log_2(2 sin x+1)=16; end{array}right. left[!!begin{array}{l} 2sin x+1=2,\ 2sin x+1=2^{16}. end{array}right.

Второе уравнение совокупности не имеет корней. Решая первое уравнение, получим:

sin x =frac12, x=(-1)^nfracpi 6+pi n,n in mathbb Z.

б) Запишем решение уравнения в виде x=fracpi 6 +2pi n,n in mathbb Z или x=frac{5pi }6+2pi k,kin mathbb Z и выясним, для каких целых значений n и k справедливы неравенства fracpi 4leqslant fracpi 6+2pi nleqslant 2pi и fracpi 4leqslant frac{5pi }6+2pi kleqslant 2pi.

Получим: frac1{24}leqslant nleqslant frac{11}{12} и -frac7{24}leqslant kleqslant frac7{12}, откуда следует, что нет целых значений n, удовлетворяющих неравенству frac1{24}leqslant nleqslant frac{11}{12};,,, k=0 — единственное целое k, удовлетворяющее неравенству -frac7{24}leqslant kleqslant frac7{12}.

При k=0, x=frac{5pi }6+2picdot 0=frac{5pi }6. Итак, frac{5pi }6 — корень уравнения, принадлежащий отрезку left[ fracpi 4;,2pi right].

Ответ

а) (-1)^nfracpi 6+pi n,n in mathbb Z.

б) frac{5pi }6.

Задание №1171

Условие

а) Решите уравнение 125^x-3cdot 25^x-5^{x+2}+75=0.

б) Укажите все корни этого уравнения, принадлежащие отрезку [log_54; log_511).

Показать решение

Решение

а) Преобразуем исходное уравнение и разложим на множители его левую часть.

5^{3x}-3cdot 5^{2x}-25cdot 5^x+25cdot 3=0,

5^{2x}(5^x-3)-25(5^x-3)=0,

(5^x-3)(5^{2x}-25)=0.

Получаем: 5^x-3=0 или 5^{2x}-25=0.

5^x-3=0, x=log_53 или 5^{2x}=25, x=1.

б) Нам нужно выбрать те корни уравнения, которые принадлежат отрезку [log_5 4; log_5 11]. Заметим, что log_5 3<log_5 4<1<log_5 11, значит, указанному отрезку принадлежит корень x=1.

Ответ

Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Задание №1170

Условие

а) Решите уравнение 2cos xleft( cos x+cos frac{5pi }4right) + cos x+cos frac{3pi }4=0.

б) Найдите все корни этого уравнения, принадлежащие промежутку left[ pi ;,frac{5pi }2right).

Показать решение

Решение

а) Так как cos frac{5pi }4= cos left( pi +fracpi 4right) = -cos fracpi 4= -frac{sqrt 2}2 и cos frac{3pi }4= cos left( pi -fracpi 4right) = -cos fracpi 4= -frac{sqrt 2}2, то уравнение примет вид: 2cos xleft( cos x-frac{sqrt 2}2right) +cos x-frac{sqrt 2}2=0.Отсюда (2cos x+1)left( cos x-frac{sqrt 2}2right) =0.

Тогда cos x=-frac12; x=pmfrac{2pi }3+2pi n или cos x=frac{sqrt 2}2;, x=pmfracpi 4+2pi n, где n in mathbb Z.

б) Корни, принадлежащие промежутку left[ pi ;,frac{5pi }2right), найдём с помощью числовой окружности: frac{4pi }3;,, frac{7pi }4;,, frac{9pi }4.

Корни, принадлежащие промежутку на числовой окружности

Ответ

а) pmfrac{2pi }3+2pi n;,, pmfracpi 4=2pi n, n in mathbb Z.

б) frac{4pi }3;, frac{7pi }4;, frac{9pi }4.

Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Лучшие репетиторы для сдачи ЕГЭ

Сложно со сдачей ЕГЭ?

Звоните, и подберем для вас репетитора: 78007750928

Skip to content

Результат поиска:

ЕГЭ Профиль №1. Тригонометрические уравнения

ЕГЭ Профиль №1. Тригонометрические уравненияadmin2022-07-27T10:20:15+03:00

Скачать файл в формате pdf.

ЕГЭ Профиль №1. Тригонометрические уравнения

Задача 1. Решите уравнение  (cosfrac{pi left( {x — 7} right)}{3} = frac{1}{2}.)  В ответе запишите наибольший отрицательный корень.

Ответ

ОТВЕТ: — 4.

Задача 2. Решите уравнение   ({text{tg}}frac{pileft( {x + 2} right)}{3} =  — sqrt 3 .)  В ответе напишите наибольший отрицательный корень.

Ответ

ОТВЕТ: — 3.

Задача 3. Решите уравнение (sin frac{pi left( {2x — 3} right)}{6} =  — 0,5.)    В ответе напишите наибольший отрицательный корень.

Ответ

ОТВЕТ: — 1.

Задача 4. Решите уравнение  (cosfrac{pi left( {8x + 1} right)}{6} = frac{{sqrt 3 }}{2}.)   В ответе запишите наименьший положительный корень.

Ответ

ОТВЕТ: 1,25.

Задача 5. Решите уравнение ({text{tg}}frac{pi left( {x — 5} right)}{3} =  — sqrt 3 .)    В ответе напишите наименьший положительный корень.

Ответ

ОТВЕТ: 1.

Задача 6. Решите уравнение  (sin frac{pi x}{3} = 0,5.)    В ответе напишите наименьший положительный корень.

Ответ

ОТВЕТ: 0,5.

Комментарии для сайта Cackle

Вставить формулу как
Блок
Строка

Дополнительные настройки
Цвет формулы
Цвет текста
#333333

ID формулы

Классы формулы

Используйте LaTeX для набора формулы
Предпросмотр
({})
Формула не набрана

Вставить

Понравилась статья? Поделить с друзьями:
  • Тест стебель биология егэ
  • Тест смутное время 10 класс с ответами в формате егэ
  • Тест по теме рыночные отношения в экономике 11 класс в формате егэ
  • Тест по теме растения в формате егэ
  • Тест по истории россии егэ онлайн