Тренировочные варианты егэ профильный уровень тренировочный вариант 1

Новый тренировочный вариант №1 ЕГЭ 2022 по математике профильный уровень 11 класс с ответами и решением по новой демоверсии от ФИПИ 2022 года.

Ссылка для скачивания варианта: скачать

Тренировочный вариант 1 ЕГЭ 2022 по математике профильный уровень

Задания и ответы варианта

1)Решите уравнение √21 − 4𝑥 = −𝑥 Если уравнение имеет более одного корня, в ответе запишите больший из них.

Ответ: -7

2)При производстве в среднем на каждые 2982 исправных насоса приходится 18 неисправных. Найдите вероятность того, что случайно выбранный насос окажется неисправным.

Ответ: 0,006

3)Прямая, проведенная параллельно боковой стороне трапеции через конец меньшего основания, равного 6, отсекает треугольник, периметр которого равен 18. Найдите периметр трапеции.

Ответ: 30

4)Найдите значение выражения log√5 2 25

Ответ: 16

5)Сосуд, имеющий форму правильной треугольной призмы, налили 2024 см3 воды и погрузили в воду деталь. При этом уровень воды поднялся с отметки 22 см до отметки 25 см. Найдите объем детали. Ответ выразите в см3 .

Ответ: 276

6)На рисунке изображён график y=f '(x) — производной функции f(x), определённой на интервале (− 13; 8). Найдите количество точек максимума функции f(x), принадлежащих отрезку [− 11; 4].

Ответ: 2

7)Для получения на экране увеличенного изображения лампочки в лаборатории используется собирающая линза c главным фокусным расстоянием f=30 см. Расстояние 𝑑1 от линзы до лампочки может изменяться в пределах от 30 до 50 см, а расстояние 𝑑2 от линзы до экрана — в пределах от 180 до 210 см. Изображение на экране будет четким, если выполнено соотношение 1 𝑑1 + 1 𝑑2 = 1 𝑓 . Укажите, на каком наименьшем расстоянии от линзы можно поместить лампочку, чтобы её изображение на экране было чётким. Ответ выразите в сантиметрах.

Ответ: 35

8)Имеется два сплава. Первый сплав содержит 5% никеля, второй — 20% никеля. Из этих двух сплавов получили третий сплав массой 225 кг, содержащий 15% никеля. На сколько килограммов масса первого сплава меньше массы второго?

Ответ: 75

9)На рисунке изображен график функции 𝑓(𝑥) = 𝑎 cos 𝑥 + 𝑏. Найдите 𝑎.

Ответ: -1,5

10)При подозрении на наличие некоторого заболевания пациента отправляют на ПЦР-тест. Если заболевание действительно есть, то тест подтверждает его в 99% случаев. Если заболевания нет, то тест выявляет отсутствие заболевания в среднем в 91% случаев. Известно, что в среднем тест оказывается положительным у 11% пациентов, направленных на тестирование. При обследовании некоторого пациента врач направил его на ПЦР-тест, который оказался положительным. Какова вероятность того, что пациент действительно имеет это заболевание?

Ответ: 0,2

13)В одном основании прямого кругового цилиндра с высотой 3 и радиусом основания 8 проведена хорда AB, равная радиусу основания, а в другом его основании проведён диаметр CD, перпендикулярный AB. Построено сечение ABNM, проходящее через прямую AB перпендикулярно прямой CD так, что точка C и центр основания цилиндра, в котором проведён диаметр CD, лежат с одной стороны от сечения. а) Докажите, что диагонали этого сечения равны между собой. б) Найдите объём пирамиды CABNM.

15)15-го января планируется взять кредит в банке на 19 месяцев. Условия его возврата таковы: — 1-го числа каждого месяца долг возрастает на r% по сравнению с концом предыдущего месяца; — со 2-го по 14-е число каждого месяца необходимо выплатить часть долга; — 15-го числа каждого месяца долг должен быть на одну и ту же сумму меньше долга на 15-е число предыдущего месяца. Известно, что общая сумма выплат после полного погашения кредита на 30% больше суммы, взятой в кредит. Найдите r.

Ответ: 3%

16)В трапеции ABCD основание AD в два раза больше основания BC. Внутри трапеции взяли точку M так, что углы ABM и DCM прямые. а) Докажите, что AM=DM. б) Найдите угол BAD, если угол ADC равен 70°, а расстояние от точки M до прямой AD равно стороне BC.

18)Склад имеет форму прямоугольного параллелепипеда, длина ребер которого выражается целыми числами. Этот склад заполняется прямоугольными контейнерами с размерами 1×1×3 м. Контейнеры на складе можно класть как угодно, но параллельно границам склада. а) Может ли оказаться, что полностью заполнить склад размером 120 кубометров нельзя? б) Может ли оказаться, что на склад объемом 100 кубометров не удастся поместить 33 контейнера? в) Пусть объем склада равен 800 кубометров. Какой процент объема такого склада удастся гарантировано заполнить контейнерами при любой конфигурации склада?

Ответ: а) нет; б) да; в) 99%

Другие тренировочные варианты ЕГЭ 2022 по математике:

Тренировочный вариант №210920 ЕГЭ 2022 по математике профиль 11 класс 100 баллов с ответами

Тренировочный вариант №142 ЕГЭ 2022 по математике 11 класс с ответами

ПОДЕЛИТЬСЯ МАТЕРИАЛОМ

11.09.2021

Первый тренировочный вариант ЕГЭ 2022 по математике профильного уровня на основе демоверсии ЕГЭ 2022

В 2022 году произошло МНОГО разнообразных и значимых изменений в ЕГЭ, поэтому обязательно ознакомьтесь со списком изменений, если еще не смотрели.

  • Посмотреть демоверсию 2022 по математике + изменения (профиль)

Вариант создан по кодификатору ФИПИ ЕГЭ 2022 и в полном соответствии со всеми изменениями демоверсии ЕГЭ 2022 по профилю.

Автор-составитель: Проект ЕГЭ 100 БАЛЛОВ https://vk.com/ege100ballov

  • Другие тренировочные варианты ЕГЭ по математике профильного уровня

Есть вопросы? Пишите в комментариях ниже!

Подробный видеоразбор всего варианта №1 по профилю

Некоторые задания из тренировочной работы №1

Задание 2

В случайном эксперименте бросают две игральные кости. Найдите вероятность того, что сумма выпавших очков равна 7. Результат округлите до тысячных.

Задание 7

Два тела, массой 𝑚=2 кг каждое, движутся с одинаковой скоростью 𝑣=8 м/с под углом 2𝛼 друг к другу. Энергия (в Дж), выделяющаяся при их абсолютно неупругом соударении, вычисляется по формуле 𝑄=𝑚𝑣2sin2𝛼, где 𝑚− масса (в кг), 𝑣− скорость (в м/с). Найдите, под каким углом 2𝛼 должны двигаться тела, чтобы в результате соударения выделилась энергия, равная 32 Дж. Ответ дайте в градусах.

Задание 10

Симметричную игральную кость бросили 3 раза. Известно, что в сумме выпало 6 очков. Какова вероятность события «хотя бы раз выпало 3 очка»?

Задание 16

В треугольнике 𝐴𝐵𝐶 проведены биссектрисы 𝐴𝐴1 и 𝐶𝐶1, точки 𝐾 и 𝑀− основания перпендикуляров, опущенных из точки 𝐵 на прямые 𝐴𝐴1 и 𝐶𝐶1.

Докажите, что 𝑀𝐾∥𝐴𝐶.

Найдите площадь треугольника 𝐾𝐵𝑀, если 𝐴𝐶=10, 𝐵𝐶=6, 𝐴𝐵=8.

Смотреть в PDF:

Или прямо сейчас: cкачать в pdf файле.


Критерии

Оценивание

№ задания 1-11 12, 14, 15 13, 16 17, 18 Всего
Баллы 1 2 3 4 31

Экзаменационная работа состоит из двух частей, включающих в себя 18 заданий. Часть 1 содержит 11 заданий базового уровня сложности с кратким ответом. Часть 2 содержит 7 заданий с развёрнутым ответом повышенного и высокого уровней сложности.

На выполнение экзаменационной работы по математике отводится 3 часа 55 минут (235 минут).

Ответы к заданиям 1–11 записываются в виде целого числа или конечной десятичной дроби. Числа запишите в поля ответов в тексте работы, а затем перенесите в бланк ответов № 1, выданный на экзамене!

При выполнении работы Вы можете воспользоваться справочными материалами, выдаваемыми вместе с работой.
Разрешается использовать только линейку, но можно сделать циркуль своими руками. Запрещается использовать инструменты с нанесёнными на них справочными материалами. Калькуляторы на экзамене не используются.

На экзамене при себе надо иметь документ удостоверяющий личность (паспорт), пропуск и капиллярную или гелевую ручку с черными чернилами! Разрешают брать с собой воду (в прозрачной бутылке) и еду (фрукты, шоколадку, булочки, бутерброды), но могут попросить оставить в коридоре.

№ задания 1-11 12, 14, 15 13, 16 17, 18 Всего
Баллы 1 2 3 4 31

Экзаменационная работа состоит из двух частей, включающих в себя 18 заданий. Часть 1 содержит 11 заданий базового уровня сложности с кратким ответом. Часть 2 содержит 7 заданий с развёрнутым ответом повышенного и высокого уровней сложности.

На выполнение экзаменационной работы по математике отводится 3 часа 55 минут (235 минут).

Ответы к заданиям 1–11 записываются в виде целого числа или конечной десятичной дроби. Числа запишите в поля ответов в тексте работы, а затем перенесите в бланк ответов № 1, выданный на экзамене!

При выполнении работы Вы можете воспользоваться справочными материалами, выдаваемыми вместе с работой.
Разрешается использовать только линейку, но можно сделать циркуль своими руками. Запрещается использовать инструменты с нанесёнными на них справочными материалами. Калькуляторы на экзамене не используются.

На экзамене при себе надо иметь документ удостоверяющий личность (паспорт), пропуск и капиллярную или гелевую ручку с черными чернилами! Разрешают брать с собой воду (в прозрачной бутылке) и еду (фрукты, шоколадку, булочки, бутерброды), но могут попросить оставить в коридоре.

Шкалирование

Первичный Тестовый Оценка
5-6 27-34 3
7-8 40-46 4
9-10 52-58
11-12-13 64-66-68 5
14-15-16 70-72-74
17-18-19 76-78-80
20-21-22 82-84-86
23-24-25 88-90-92
26-27-28 94-96-98
29-30-31 100
Первичный балл
/
Тестовый балл
5/27 6/34 7/40 8/46 9/52 10/58 11/64 12/66 13/68 14/70
15/72 16/74 17/76 18/78 19/80 20/82 X / 2X+42 29+ / 100
Skip to content

Тренировочные варианты профильного ЕГЭ 2023 по математике с ответами.

Тренировочные варианты профильного ЕГЭ 2023 по математике с ответами.admin2023-03-12T20:46:05+03:00

Используйте LaTeX для набора формулы

Пробники ЕГЭ

Математика,
Физика,
Информатика,
Химия,
Русский,
Обществознание,
Литература,
История,
Иностранные языки,
География,
Биология

1 ноября 2022

В закладки

Обсудить

Жалоба

Пять пробных вариантов ЕГЭ по профильной математике + видеоразбор + конспект.

Разбор пробного варианта ЕГЭ по профильной математике №1

Файл с вариантом: probnyi-variant-1.pdf

Разбор пробного варианта ЕГЭ по профильной математике №2

Файл с вариантом: probnik-2.pdf
Конспект с разбором: konspekt-variant-2.pdf

Разбор пробного варианта ЕГЭ по профильной математике №3

Файл с вариантом: probnik-3.pdf
Конспект с разбором: konspekt-variant-3.pdf

Разбор пробного варианта ЕГЭ по профильной математике №4

Файл с вариантом: probnik-4.pdf
Конспект с разбором: konspekt-razbora-4.pdf

Разбор пробного варианта ЕГЭ по профильной математике №5

Файл с вариантом: probnik_5.pdf
Конспект с разбором: 5_konspekt-s-razborom.pdf

Автор: Марсель Нуртдинов.

Источник: vk.com/marsel_tutor

подготовка к егэ и оге

Пробный вариант № 1 ЕГЭ по математике профильного уровня на 2020 год составлен в соответствии с кодификатором ФИПИ и официальными демоверсиями.

Файл в формате pdf содержит задания, решения и ответы.

Скачать вариант в формате pdf — СКАЧАТЬ.

Вариант составлен авторами: Школа Пифагора и ЕГЭ на 100 БАЛЛОВ.

Смотрите также:

  • ЕГЭ по математике
  • Расписание ЕГЭ
  • Шкала перевода баллов ЕГЭ

Одноклассники

Вконтакте

Мой мир

Алякина Елена Ивановна

Пробный ЕГЭ № 1 по математике. 11 класс

Вариант 1
Вариант 2
Вариант 3
Вариант 4
Ответы

Скачать:

Предварительный просмотр:

МБОУ «Апраксинская СОШ»

ЕГЭ по МАТЕМАТИКЕ   №1

Профильный уровень.        2022г.

Вариант 1

C:UsersUserDesktopРисунок1.jpg

C:UsersUserDesktopРисунок2.jpg

Часть 1

1.         Найдите корень уравнения        .

        Ответ: ___________________

2.        Перед началом футбольного матча судья бросает монету, чтобы определить, какая из команд начнёт игру с мячом. Команда «Биолог» играет три матча с разными командами. Найдите вероятность того, что в этих матчах команда «Биолог» начнёт игру с мячом все три раза.

        Ответ: ___________________

3.        В треугольнике АВС  СD – медиана, угол С равен 900, угол В равен 350. Найдите угол АСD.  Ответ дайте в градусах.

        Ответ: ___________________

4.        Найдите значение выражения                .

        Ответ: ___________________

5.        Через среднюю линию основания треугольной призмы проведена плоскость, параллельная боковому ребру. Площадь боковой поверхности отсечённой треугольной призмы равна 28. Найдите площадь боковой поверхности исходной призмы.

        Ответ: ___________________

6.        На рисунке изображён график функции . На оси абсцисс отмечены десять точек: х1, х2, х3, х4, х5, х6, х7, х8. В скольких из этих точек производная функции  положительна?

C:UsersUserDesktopант.jpg

        Ответ: ___________________

7.         Зависимость температуры (в градусах Кельвина) от времени для нагревательного элемента некоторого прибора была получена экспериментально. На исследуемом интервале температура вычисляется по формуле        , где t – время в минутах, ,  ,  b = 98К/мин.  Известно, что при температуре нагревателя свыше 1720К прибор может испортиться, поэтому его нужно отключить. Определите, через какое наибольшее время после начала работы нужно отключить прибор. Ответ дайте в минутах.

        Ответ: ___________________

8.        Имеется два сплава. Первый сплав содержит 5% никеля, второй – 20% никеля. Из этих двух сплавов получили третий сплав массой 225кг, содержащий 15% никеля. На сколько килограммов масса первого сплава меньше массы второго?

        Ответ: ___________________

9.        На рисунке изображён график функции        . Найдите .

C:UsersUserDesktopигно.jpg

        Ответ: ___________________

10.        Две фабрики выпускают одинаковые стекла для автомобильных фар. Первая фабрика выпускает 25% этих стекол, вторая – 75%. Первая фабрика выпускает 4% бракованных стекол, а вторая – 2%. Найдите вероятность того, что случайно купленное в магазине стекло окажется бракованным.

        Ответ: ___________________

11.        Найдите наибольшее значение функции

          на отрезке        .

        Ответ: ___________________

C:UsersUserDesktopне заб.jpg

Часть 2

12.        а) Решите уравнение:        .

        б) Найдите корни этого уравнения, принадлежащие отрезку .

13.        На ребрах DD1 и ВВ1 куба АВСDА1В1С1D1 с ребром 12 отмечены точки Р и Q соответственно, причём DP= 10, а В1Q = 4. Плоскость А1РQ пересекает ребро СС1 в точке М.

        а) Докажите, что точка М является серединой ребра СС1.

        б) Найдите расстояние от точки С1 до плоскости А1РQ.

14.        Решите неравенство        .

15.        15-го января планируется взять кредит в банке на шесть месяцев в размере 1 млн. рублей. Условия его возврата таковы:

        – 1-го числа каждого месяца долг увеличивается на r процентов по сравнению с концом предыдущего месяца, где r – целое число;

        – со 2-го по 14-е число каждого месяца необходимо выплатить часть долга;

        – 15-го числа каждого месяца долг должен составлять некоторую сумму в соответствии со следующей таблицей.

Дата

15.01

15.02

15.03

15.04

15.05

15.06

15.07

Долг (в млн рублей)

1

0,6

0,4

0,3

0,2

0,1

0

Найдите наибольшее значение r, при котором общая сумма выплат будет меньше 1,2 млн рублей.

16.        В трапеции АВСD основание АD в два раза меньше основания ВС. Внутри трапеции взяли точку М так, что углы ВАМ и СDМ прямые.

        а) Докажите, что ВМ = СМ.

        б) Найдите угол АВС, если угол ВСD равен 640, а расстояние от точки М до прямой ВС равно стороне АD.

17.        Найдите значения a, при каждом из которых уравнение

 

        имеет ровно два различных корня.

18.        Задумано несколько (не обязательно различных) натуральных чисел. Эти числа и их все возможные суммы (по 2, по 3 и т.д.) выписывают на доску в порядке неубывания. Если какое-то число n, выписанное на доску, повторяется несколько раз, то на доске оставляется одно такое число n, а остальные числа, равные n, стираются. Например, если задуманы числа 1, 3, 3, 4, то на доске будет записан набор 1, 3, 4, 5, 6, 7, 8, 10, 11.

а) Приведите пример задуманных чисел, для которых на доске будет записан набор 1, 2, 3, 4, 5, 6, 7.

б) Существует ли пример таких задуманных чисел, для которых на доске будет записан набор 1, 3, 4, 6, 7, 8, 10, 11, 12, 13, 15, 16, 17, 19, 20, 22?

в) Приведите все примеры задуманных чисел, для которых на доске будет записан набор 7, 9, 11, 14, 16, 18. 20, 21, 23, 25, 27, 30, 32, 34, 41.

Предварительный просмотр:

МБОУ «Апраксинская СОШ»

ЕГЭ по МАТЕМАТИКЕ   №1

Профильный уровень.        2022г.

Вариант 2

C:UsersUserDesktopРисунок1.jpg

C:UsersUserDesktopРисунок2.jpg

Часть 1

1.         Найдите корень уравнения        .

        Ответ: ___________________

2.        Перед началом футбольного матча судья бросает монету, чтобы определить, какая из команд начнёт игру с мячом. Команда «Биолог» играет три матча с разными командами. Найдите вероятность того, что в этих матчах команда «Биолог» начнёт игру с мячом ровно один раз.

        Ответ: ___________________

3.        В треугольнике АВС  СD – медиана, угол С равен 900, угол В равен 410. Найдите угол АСD.  Ответ дайте в градусах.

        Ответ: ___________________

4.        Найдите значение выражения                .

        Ответ: ___________________

5.        Через среднюю линию основания треугольной призмы проведена плоскость, параллельная боковому ребру. Площадь боковой поверхности отсечённой треугольной призмы равна 32. Найдите площадь боковой поверхности исходной призмы.

        Ответ: ___________________

6.        На рисунке изображён график функции . На оси абсцисс отмечены десять точек: х1, х2, х3, х4, х5, х6, х7, х8. В скольких из этих точек производная функции  отрицательна?

C:UsersUserDesktopант.jpg

        Ответ: ___________________

7.         Зависимость температуры (в градусах Кельвина) от времени для нагревательного элемента некоторого прибора была получена экспериментально. На исследуемом интервале температура вычисляется по формуле        , где t – время в минутах, ,  ,  b = 69К/мин.  Известно, что при температуре нагревателя свыше 1736К прибор может испортиться, поэтому его нужно отключить. Определите, через какое наибольшее время после начала работы нужно отключить прибор. Ответ дайте в минутах.

        Ответ: ___________________

8.        Имеется два сплава. Первый сплав содержит 10% никеля, второй – 25% никеля. Из этих двух сплавов получили третий сплав массой 270кг, содержащий 20% никеля. На сколько килограммов масса первого сплава меньше массы второго?

        Ответ: ___________________

9.        На рисунке изображён график функции        . Найдите .

C:UsersUserDesktopигно.jpg

        Ответ: ___________________

10.        Две фабрики выпускают одинаковые стекла для автомобильных фар. Первая фабрика выпускает 35% этих стекол, вторая – 65%. Первая фабрика выпускает 4% бракованных стекол, а вторая – 2%. Найдите вероятность того, что случайно купленное в магазине стекло окажется бракованным.

        Ответ: ___________________

11.        Найдите наибольшее значение функции

          на отрезке        .

        Ответ: ___________________

C:UsersUserDesktopне заб.jpg

Часть 2

12.        а) Решите уравнение:        .

        б) Найдите корни этого уравнения, принадлежащие отрезку .

13.        На ребрах DD1 и ВВ1 куба АВСDА1В1С1D1 с ребром 12 отмечены точки Р и Q соответственно, причём DP= 10, а В1Q = 4. Плоскость А1РQ пересекает ребро СС1 в точке М.

        а) Докажите, что точка М является серединой ребра СС1.

        б) Найдите расстояние от точки С1 до плоскости А1РQ.

14.        Решите неравенство        .

15.        15-го января планируется взять кредит в банке на шесть месяцев в размере 1 млн. рублей. Условия его возврата таковы:

        – 1-го числа каждого месяца долг увеличивается на r процентов по сравнению с концом предыдущего месяца, где r – целое число;

        – со 2-го по 14-е число каждого месяца необходимо выплатить часть долга;

        – 15-го числа каждого месяца долг должен составлять некоторую сумму в соответствии со следующей таблицей.

Дата

15.01

15.02

15.03

15.04

15.05

15.06

15.07

Долг (в млн рублей)

1

0,6

0,4

0,3

0,2

0,1

0

Найдите наибольшее значение r, при котором общая сумма выплат будет меньше 1,2 млн рублей.

16.        В трапеции АВСD основание АD в два раза меньше основания ВС. Внутри трапеции взяли точку М так, что углы ВАМ и СDМ прямые.

        а) Докажите, что ВМ = СМ.

        б) Найдите угол АВС, если угол ВСD равен 640, а расстояние от точки М до прямой ВС равно стороне АD.

17.        Найдите значения a, при каждом из которых уравнение

 

        имеет ровно два различных корня.

18.        Задумано несколько (не обязательно различных) натуральных чисел. Эти числа и их все возможные суммы (по 2, по 3 и т.д.) выписывают на доску в порядке неубывания. Если какое-то число n, выписанное на доску, повторяется несколько раз, то на доске оставляется одно такое число n, а остальные числа, равные n, стираются. Например, если задуманы числа 1, 3, 3, 4, то на доске будет записан набор 1, 3, 4, 5, 6, 7, 8, 10, 11.

а) Приведите пример задуманных чисел, для которых на доске будет записан набор 1, 2, 3, 4, 5, 6, 7.

б) Существует ли пример таких задуманных чисел, для которых на доске будет записан набор 1, 3, 4, 6, 7, 8, 10, 11, 12, 13, 15, 16, 17, 19, 20, 22?

в) Приведите все примеры задуманных чисел, для которых на доске будет записан набор 7, 9, 11, 14, 16, 18. 20, 21, 23, 25, 27, 30, 32, 34, 41.

Предварительный просмотр:

МБОУ «Апраксинская СОШ»

ЕГЭ по МАТЕМАТИКЕ   №1

Профильный уровень.        2022г.

Вариант 3

C:UsersUserDesktopРисунок1.jpg

C:UsersUserDesktopРисунок2.jpg

Часть 1

1.        Найдите корень уравнения        .

        Ответ: ___________________

2.        Перед началом футбольного матча судья бросает монету, чтобы определить, какая из команд начнёт игру с мячом. Команда «Биолог» играет три матча с разными командами. Найдите вероятность того, что в этих матчах команда «Биолог» начнёт игру с мячом ровно два раза.

        Ответ: ___________________

3.        В треугольнике АВС  СD – медиана, угол С равен 900, угол В равен 370. Найдите угол АСD.  Ответ дайте в градусах.

        Ответ: ___________________

4.        Найдите значение выражения                .

        Ответ: ___________________

5.        Через среднюю линию основания треугольной призмы проведена плоскость, параллельная боковому ребру. Площадь боковой поверхности отсечённой треугольной призмы равна 36. Найдите площадь боковой поверхности исходной призмы.

        Ответ: ___________________

6.        На рисунке изображён график функции . На оси абсцисс отмечены десять точек: х1, х2, х3, х4, х5, х6, х7, х8. В скольких из этих точек производная функции  положительна?

C:UsersUserDesktopант.jpg

        Ответ: ___________________

7.         Зависимость температуры (в градусах Кельвина) от времени для нагревательного элемента некоторого прибора была получена экспериментально. На исследуемом интервале температура вычисляется по формуле        , где t – время в минутах, ,  ,  b = 96К/мин.  Известно, что при температуре нагревателя свыше 1700К прибор может испортиться, поэтому его нужно отключить. Определите, через какое наибольшее время после начала работы нужно отключить прибор. Ответ дайте в минутах.

        Ответ: ___________________

8.        Имеется два сплава. Первый сплав содержит 5% никеля, второй – 20% никеля. Из этих двух сплавов получили третий сплав массой 240кг, содержащий 15% никеля. На сколько килограммов масса первого сплава меньше массы второго?

        Ответ: ___________________

9.        На рисунке изображён график функции        . Найдите .

C:UsersUserDesktopигно.jpg

        Ответ: ___________________

10.        Две фабрики выпускают одинаковые стекла для автомобильных фар. Первая фабрика выпускает 40% этих стекол, вторая – 60%. Первая фабрика выпускает 5% бракованных стекол, а вторая – 3%. Найдите вероятность того, что случайно купленное в магазине стекло окажется бракованным.

        Ответ: ___________________

11.        Найдите наибольшее значение функции

          на отрезке        .

        Ответ: ___________________

C:UsersUserDesktopне заб.jpg

Часть 2

12.        а) Решите уравнение:        .

        б) Найдите корни этого уравнения, принадлежащие отрезку .

13.        На ребрах DD1 и ВВ1 куба АВСDА1В1С1D1 с ребром 12 отмечены точки Р и Q соответственно, причём DP= 10, а В1Q = 4. Плоскость А1РQ пересекает ребро СС1 в точке М.

        а) Докажите, что точка М является серединой ребра СС1.

        б) Найдите расстояние от точки С1 до плоскости А1РQ.

14.        Решите неравенство        .

15.        15-го января планируется взять кредит в банке на шесть месяцев в размере 1 млн. рублей. Условия его возврата таковы:

        – 1-го числа каждого месяца долг увеличивается на r процентов по сравнению с концом предыдущего месяца, где r – целое число;

        – со 2-го по 14-е число каждого месяца необходимо выплатить часть долга;

        – 15-го числа каждого месяца долг должен составлять некоторую сумму в соответствии со следующей таблицей.

Дата

15.01

15.02

15.03

15.04

15.05

15.06

15.07

Долг (в млн рублей)

1

0,6

0,4

0,3

0,2

0,1

0

Найдите наибольшее значение r, при котором общая сумма выплат будет меньше 1,2 млн рублей.

16.        В трапеции АВСD основание АD в два раза меньше основания ВС. Внутри трапеции взяли точку М так, что углы ВАМ и СDМ прямые.

        а) Докажите, что ВМ = СМ.

        б) Найдите угол АВС, если угол ВСD равен 640, а расстояние от точки М до прямой ВС равно стороне АD.

17.        Найдите значения a, при каждом из которых уравнение

 

        имеет ровно два различных корня.

18.        Задумано несколько (не обязательно различных) натуральных чисел. Эти числа и их все возможные суммы (по 2, по 3 и т.д.) выписывают на доску в порядке неубывания. Если какое-то число n, выписанное на доску, повторяется несколько раз, то на доске оставляется одно такое число n, а остальные числа, равные n, стираются. Например, если задуманы числа 1, 3, 3, 4, то на доске будет записан набор 1, 3, 4, 5, 6, 7, 8, 10, 11.

а) Приведите пример задуманных чисел, для которых на доске будет записан набор 1, 2, 3, 4, 5, 6, 7.

б) Существует ли пример таких задуманных чисел, для которых на доске будет записан набор 1, 3, 4, 6, 7, 8, 10, 11, 12, 13, 15, 16, 17, 19, 20, 22?

в) Приведите все примеры задуманных чисел, для которых на доске будет записан набор 7, 9, 11, 14, 16, 18. 20, 21, 23, 25, 27, 30, 32, 34, 41.

Предварительный просмотр:

МБОУ «Апраксинская СОШ»

ЕГЭ по МАТЕМАТИКЕ   №1

Профильный уровень.        2022г.

Вариант 4

C:UsersUserDesktopРисунок1.jpg

C:UsersUserDesktopРисунок2.jpg

Часть 1

1.         Найдите корень уравнения        .

        Ответ: ___________________

2.        Перед началом футбольного матча судья бросает монету, чтобы определить, какая из команд начнёт игру с мячом. Команда «Биолог» играет три матча с разными командами. Найдите вероятность того, что в этих матчах команда «Биолог» ни разу не начнёт игру с мячом.

        Ответ: ___________________

3.        В треугольнике АВС  СD – медиана, угол С равен 900, угол В равен 390. Найдите угол АСD.  Ответ дайте в градусах.

        Ответ: ___________________

4.        Найдите значение выражения                .

        Ответ: ___________________

5.        Через среднюю линию основания треугольной призмы проведена плоскость, параллельная боковому ребру. Площадь боковой поверхности отсечённой треугольной призмы равна 35. Найдите площадь боковой поверхности исходной призмы.

        Ответ: ___________________

6.        На рисунке изображён график функции . На оси абсцисс отмечены десять точек: х1, х2, х3, х4, х5, х6, х7, х8. В скольких из этих точек производная функции  отрицательна?

C:UsersUserDesktopант.jpg

        Ответ: ___________________

7.         Зависимость температуры (в градусах Кельвина) от времени для нагревательного элемента некоторого прибора была получена экспериментально. На исследуемом интервале температура вычисляется по формуле        , где t – время в минутах, ,  ,  b = 196К/мин.  Известно, что при температуре нагревателя свыше 1800К прибор может испортиться, поэтому его нужно отключить. Определите, через какое наибольшее время после начала работы нужно отключить прибор. Ответ дайте в минутах.

        Ответ: ___________________

8.        Имеется два сплава. Первый сплав содержит 10% никеля, второй – 25% никеля. Из этих двух сплавов получили третий сплав массой 210кг, содержащий 15% никеля. На сколько килограммов масса первого сплава меньше массы второго?

        Ответ: ___________________

9.        На рисунке изображён график функции        . Найдите .

C:UsersUserDesktopигно.jpg

        Ответ: ___________________

10.        Две фабрики выпускают одинаковые стекла для автомобильных фар. Первая фабрика выпускает 45% этих стекол, вторая – 55%. Первая фабрика выпускает 6% бракованных стекол, а вторая – 4%. Найдите вероятность того, что случайно купленное в магазине стекло окажется бракованным.

        Ответ: ___________________

11.        Найдите наибольшее значение функции

          на отрезке        .

        Ответ: ___________________

C:UsersUserDesktopне заб.jpg

Часть 2

12.        а) Решите уравнение:        .

        б) Найдите корни этого уравнения, принадлежащие отрезку .

13.        На ребрах DD1 и ВВ1 куба АВСDА1В1С1D1 с ребром 12 отмечены точки Р и Q соответственно, причём DP= 10, а В1Q = 4. Плоскость А1РQ пересекает ребро СС1 в точке М.

        а) Докажите, что точка М является серединой ребра СС1.

        б) Найдите расстояние от точки С1 до плоскости А1РQ.

14.        Решите неравенство        .

15.        15-го января планируется взять кредит в банке на шесть месяцев в размере 1 млн. рублей. Условия его возврата таковы:

        – 1-го числа каждого месяца долг увеличивается на r процентов по сравнению с концом предыдущего месяца, где r – целое число;

        – со 2-го по 14-е число каждого месяца необходимо выплатить часть долга;

        – 15-го числа каждого месяца долг должен составлять некоторую сумму в соответствии со следующей таблицей.

Дата

15.01

15.02

15.03

15.04

15.05

15.06

15.07

Долг (в млн рублей)

1

0,6

0,4

0,3

0,2

0,1

0

Найдите наибольшее значение r, при котором общая сумма выплат будет меньше 1,2 млн рублей.

16.        В трапеции АВСD основание АD в два раза меньше основания ВС. Внутри трапеции взяли точку М так, что углы ВАМ и СDМ прямые.

        а) Докажите, что ВМ = СМ.

        б) Найдите угол АВС, если угол ВСD равен 640, а расстояние от точки М до прямой ВС равно стороне АD.

17.        Найдите значения a, при каждом из которых уравнение

 

        имеет ровно два различных корня.

18.        Задумано несколько (не обязательно различных) натуральных чисел. Эти числа и их все возможные суммы (по 2, по 3 и т.д.) выписывают на доску в порядке неубывания. Если какое-то число n, выписанное на доску, повторяется несколько раз, то на доске оставляется одно такое число n, а остальные числа, равные n, стираются. Например, если задуманы числа 1, 3, 3, 4, то на доске будет записан набор 1, 3, 4, 5, 6, 7, 8, 10, 11.

а) Приведите пример задуманных чисел, для которых на доске будет записан набор 1, 2, 3, 4, 5, 6, 7.

б) Существует ли пример таких задуманных чисел, для которых на доске будет записан набор 1, 3, 4, 6, 7, 8, 10, 11, 12, 13, 15, 16, 17, 19, 20, 22?

в) Приведите все примеры задуманных чисел, для которых на доске будет записан набор 7, 9, 11, 14, 16, 18. 20, 21, 23, 25, 27, 30, 32, 34, 41.

Предварительный просмотр:

МБОУ «Апраксинская СОШ»

ЕГЭ по МАТЕМАТИКЕ   №1

Профильный уровень.        2022г.

Ответы

Часть 1

Вариант 1

1) 7;   2) 0,125;   3) 55;   4) – 10;   5) 56;   6) 5;   7) 6   8) 75;   9) 34;   10) 0,025;   11) 28.

Вариант 2

1) 11;   2) 0,375;   3) 49;   4) – 6;   5) 64;   6) 3;   7) 7   8) 90;   9) 7;   10) 0,027;   11) 23.

Вариант 3

1) 8;   2) 0,375;   3) 53;   4) – 20;   5) 72;   6) 5;   7) 5   8) 80;   9) 23;   10) 0,038;   11) 30.

Вариант 4

1) 3;   2) 0,125;   3) 51;   4) – 16;   5) 70;   6) 3;   7) 8   8) 70;   9) 47;   10) 0,049;   11) 11.

Часть 2

12) а) .         13)       мой ответ: .

14) .            15) 7%.               16) 710.            17)      мой ответ: .

18) а) 1, 2, 4 (1,1,1,1,1,1,1;    1,1,2,3);   б) нет;   в) 7, 7, 7, 9, 11  или  7, 9, 11, 14.

По теме: методические разработки, презентации и конспекты

  • Мне нравится 

 

Понравилась статья? Поделить с друзьями:
  • Тренировочные варианты егэ проф математика 2023
  • Тренировочные варианты егэ по химии 2023 скачать бесплатно
  • Тренировочные варианты егэ по химии 2023 добротин
  • Тренировочные варианты егэ по химии 2023 дацюк скачать
  • Тренировочные варианты егэ по химии 2023 года широкопояс