Пробные и тренировочные варианты по математике профильного уровня в формате ЕГЭ 2022 из различных источников.
Тренировочные варианты ЕГЭ 2022 по математике (профиль)
egemath.ru | |
Вариант 1 | скачать |
Вариант 2 | скачать |
Вариант 3 | скачать |
Вариант 4 | скачать |
Вариант 5 | скачать |
Вариант 6 | скачать |
Вариант 7 | скачать |
variant 8 | скачать |
variant 9 | скачать |
variant 10 | скачать |
variant 11 | скачать |
variant 12 | скачать |
variant 13 | скачать |
variant 14 | скачать |
variant 15 | скачать |
variant 16 | скачать |
variant 17 | скачать |
variant 18 | скачать |
variant 19 | скачать |
variant 20 | скачать |
yagubov.ru | |
вариант 21 | ege2022-yagubov-prof-var21 |
вариант 22 | ege2022-yagubov-prof-var22 |
вариант 23 | ege2022-yagubov-prof-var23 |
вариант 24 | ege2022-yagubov-prof-var24 |
вариант 25 | ege2022-yagubov-prof-var25 |
вариант 26 | ege2022-yagubov-prof-var26 |
вариант 27 | ege2022-yagubov-prof-var27 |
вариант 28 | ege2022-yagubov-prof-var28 |
Досрочный Москва 28.03.2022 | скачать |
egemathschool.ru | |
вариант 1 | ответ |
вариант 2 | ответ |
вариант 3 | ответ |
вариант 4 | ответ |
ЕГЭ 100 баллов (с решениями) | |
Вариант 1 | скачать |
Вариант 2 | скачать |
Вариант 3 | скачать |
Вариант 4 | скачать |
Вариант 5 | скачать |
Вариант 6 | скачать |
Вариант 7 | скачать |
Вариант 8 | скачать |
Вариант 9 | скачать |
Вариант 10 | скачать |
variant 11 | скачать |
variant 12 | скачать |
variant 13 | скачать |
variant 14 | скачать |
variant 15 | скачать |
variant 16 | скачать |
variant 17 | скачать |
variant 18 | скачать |
variant 20 | скачать |
variant 21 | скачать |
variant 23 | скачать |
variant 24 | скачать |
variant 25 | скачать |
variant 26 | скачать |
variant 29 | скачать |
variant 30 | скачать |
math100.ru (с ответами) | |
Вариант 140 | скачать |
Вариант 141 | скачать |
Вариант 142 | скачать |
Вариант 143 | math100-ege22-v143 |
Вариант 144 | math100-ege22-v144 |
Вариант 145 | math100-ege22-v145 |
Вариант 146 | math100-ege22-v146 |
variant 147 | math100-ege22-v147 |
variant 148 | math100-ege22-v148 |
variant 149 | math100-ege22-v149 |
variant 150 | math100-ege22-v150 |
variant 151 | math100-ege22-v151 |
variant 152 | math100-ege22-v152 |
variant 153 | math100-ege22-v153 |
variant 154 | math100-ege22-v154 |
variant 155 | math100-ege22-v155 |
variant 156 | math100-ege22-v156 |
variant 157 | math100-ege22-v157 |
variant 158 | math100-ege22-v158 |
variant 159 | math100-ege22-v159 |
variant 160 | math100-ege22-v160 |
variant 161 | math100-ege22-v161 |
variant 162 | math100-ege22-v162 |
variant 163 | math100-ege22-v163 |
variant 164 | math100-ege22-v164 |
variant 165 | math100-ege22-v165 |
variant 166 | math100-ege22-v166 |
variant 167 | math100-ege22-v167 |
variant 168 | math100-ege22-v168 |
variant 169 | math100-ege22-v169 |
variant 170 | math100-ege22-v170 |
variant 171 | math100-ege22-v171 |
variant 172 | math100-ege22-v172 |
variant 173 | math100-ege22-v173 |
variant 174 | math100-ege22-v174 |
alexlarin.net | |
Вариант 358 |
скачать |
Вариант 359 | скачать |
Вариант 360 | скачать |
Вариант 361 | скачать |
Вариант 362 | проверить ответы |
Вариант 363 | проверить ответы |
Вариант 364 | проверить ответы |
Вариант 365 | проверить ответы |
Вариант 366 | проверить ответы |
Вариант 367 | проверить ответы |
Вариант 368 | проверить ответы |
Вариант 369 | проверить ответы |
Вариант 370 | проверить ответы |
Вариант 371 | проверить ответы |
Вариант 372 | проверить ответы |
Вариант 373 | проверить ответы |
Вариант 374 | проверить ответы |
Вариант 375 | проверить ответы |
Вариант 376 | проверить ответы |
Вариант 377 | проверить ответы |
Вариант 378 | проверить ответы |
Вариант 379 | проверить ответы |
Вариант 380 | проверить ответы |
Вариант 381 | проверить ответы |
Вариант 382 | проверить ответы |
Вариант 383 | проверить ответы |
Вариант 384 | проверить ответы |
Вариант 385 | проверить ответы |
Вариант 386 | проверить ответы |
Вариант 387 | проверить ответы |
Вариант 388 | проверить ответы |
vk.com/ekaterina_chekmareva (задания 1-12) | |
Вариант 1 | ответы |
Вариант 2 | |
Вариант 3 | |
Вариант 4 | |
Вариант 5 | |
Вариант 6 | |
Вариант 7 | ответы |
Вариант 8 | |
Вариант 9 | |
Вариант 10 | |
vk.com/matematicalate | |
Вариант 1 | matematikaLite-prof-ege22-var1 |
Вариант 2 | matematikaLite-prof-ege22-var2 |
Вариант 3 | matematikaLite-prof-ege22-var3 |
Вариант 4 | matematikaLite-prof-ege22-var4 |
Вариант 5 | matematikaLite-prof-ege22-var5 |
Вариант 6 | matematikaLite-prof-ege22-var6 |
Вариант 7 | matematikaLite-prof-ege22-var7 |
Вариант 8 | matematikaLite-prof-ege22-var8 |
vk.com/pro_matem | |
variant 1 | pro_matem-prof-ege22-var1 |
variant 2 | pro_matem-prof-ege22-var2 |
variant 3 | pro_matem-prof-ege22-var3 |
variant 4 | разбор |
variant 5 | разбор |
vk.com/murmurmash | |
variant 1 | otvet |
variant 2 | otvet |
→ Купить сборники тренировочных вариантов ЕГЭ 2022 по математике |
Структура варианта КИМ ЕГЭ
Экзаменационная работа состоит из двух частей, которые различаются по содержанию, сложности и количеству заданий:
– часть 1 содержит 11 заданий (задания 1–11) с кратким ответом в виде целого числа или конечной десятичной дроби;
– часть 2 содержит 7 заданий (задания 12–18) с развёрнутым ответом (полная запись решения с обоснованием выполненных действий).
Задания части 1 направлены на проверку освоения базовых умений и практических навыков применения математических знаний в повседневных ситуациях.
Посредством заданий части 2 осуществляется проверка освоения математики на профильном уровне, необходимом для применения математики в профессиональной деятельности и на творческом уровне.
Связанные страницы:
Средний балл ЕГЭ 2021 по математике
Решение задач с параметром при подготовке к ЕГЭ
Изменения в КИМ ЕГЭ 2022 года по математике
Купить сборники типовых вариантов ЕГЭ по математике
Как решать экономические задачи ЕГЭ по математике профильного уровня?
Тренировочные варианты профильного ЕГЭ 2023 по математике с ответами.
Варианты, ответы и решения пробного ЕГЭ 2022 по математике базовый и профильный уровень для 11 класса, официальная дата проведения пробного ЕГЭ 2022 19 марта.
Пробный ЕГЭ по математике 2022 базовый уровень:
- 1 вариант
- 2 вариант
- 3 вариант
- Ответы
Пробный ЕГЭ по профильной математике 2022:
- 1 вариант
- 2 вариант
- 3 вариант
- Ответы и решения
Решать варианты ЕГЭ 2022 профильного уровня:
Решать варианты ЕГЭ 2022 базового уровня:
Задания с ответами:
1)На рок-фестивале выступают группы — по одной от каждой из заявленных стран. Порядок выступления определяется жребием. Какова вероятность того, что группа из Дании будет выступать после группы из Швеции и после группы из Норвегии? Результат округлите до сотых.
Правильный ответ: 0,33
2)Сторона AB треугольника ABC равна 1. Противолежащий ей угол C равен 150°. Найдите радиус окружности, описанной около этого треугольника.
Правильный ответ: 1
3)В правильной треугольной пирамиде SABC медианы основания ABC пересекаются в точке O. Площадь треугольника ABC равна 4; объем пирамиды равен 6. Найдите длину отрезка OS.
Правильный ответ: 4,5
4)Один мастер может выполнить заказ за 12 часов, а другой — за 6 часов. За сколько часов выполнят заказ оба мастера, работая вместе?
Правильный ответ: 4
5)Игральную кость бросали до тех пор, пока сумма всех выпавших очков не превысила число 3. Какова вероятность того, что для этого потребовалось два броска? Ответ округлите до сотых.
Правильный ответ: 0,42
6)За прохождение каждого уровня платной сетевой игры можно получить от одной до трех звезд. При этом со счета участника игры списывается 75 рублей при получении одной звезды, 60 рублей — при получении двух звезд и 45 рублей при получении трех звезд. Миша прошел несколько уровней игры подряд. а) Могла ли сумма на его счете уменьшиться при этом на 330 рублей? б) Сколько уровней игры прошел Миша, если сумма на его счете уменьшилась на 435 рублей, а число полученных им звезд равно 13? в) За пройденный уровень начисляется 5000 очков при получении трех звезд, 3000 — при получении двух звезд и 2000 — при получении одной звезды. Какую наименьшую сумму (в рублях) мог потратить на игру Миша, если он набрал 50 000 очков, получив при этом 32 звезды?
Правильный ответ: а-да, б-7, в-780 рублей
2)В случайном эксперименте бросают две игральные кости. Найдите вероятность того, что в сумме выпадет 8 очков. Результат округлите до сотых.
Правильный ответ: 0,14
5)В правильной треугольной пирамиде SABC точка M – середина ребра AB, S – вершина. Известно, что BC = 3, а площадь боковой поверхности пирамиды равна 45. Найдите длину отрезка SM.
Правильный ответ: 10
6)На рисунке изображён график функции y = f(x), определённой на интервале (−4; 4). Найдите корень уравнения f '(x) = 0.
Правильный ответ: 2
8)Имеются два сосуда. Первый содержит 30 кг, а второй – 20 кг раствора кислоты различной концентрации. Если эти растворы смешать, то получится раствор, содержащий 68% кислоты. Если же смешать равные массы этих растворов, то получится раствор, содержащий 70% кислоты. Сколько килограммов кислоты содержится в первом сосуде?
Правильный ответ: 18
10)Стрелок в тире стреляет по мишени до тех пор, пока не поразит её. Известно, что он попадает в цель с вероятностью 0,2 при каждом отдельном выстреле. Какое наименьшее количество патронов нужно дать стрелку, чтобы он поразил цель с вероятностью не менее 0,6?
Правильный ответ: 5
15)В июле планируется взять кредит в банке на сумму 5 млн рублей на некоторый срок (целое число лет). Условия его возврата таковы: — каждый январь долг возрастает на 20% по сравнению с концом предыдущего года; — с февраля по июнь каждого года необходимо выплатить часть долга; — в июле каждого года долг должен быть на одну и ту же сумму меньше долга на июль предыдущего года. На сколько лет планируется взять кредит, если известно, что общая сумма выплат после его полного погашения составит 7,5 млн рублей?
Правильный ответ: 4 года
16)В полуокружности с диаметром MN расположены две окружности с центрами O1 и O2, касающиеся друг друга, полуокружности и прямой MN (при этом точки касания c полуокружностью — это соответственно A и B). а) Докажите, что прямые O1A, O2B и MN пересекаются в одной точке. б) Радиусы окружностей равны 2 и 5. Найдите радиус полуокружности.
18)На доске написано более 27, но менее 45 целых чисел. Среднее арифметическое этих чисел равно −5, среднее арифметическое всех положительных из них равно 9, а среднее арифметическое всех отрицательных из них равно − 18. а) Сколько чисел написано на доске? б) Каких чисел написано больше: положительных или отрицательных? в) Какое наибольшее количество положительных чисел может быть среди них?
2)В случайном эксперименте симметричную монету бросают трижды. Найдите вероятность того, что орел выпадет ровно два раза.
Правильный ответ: 0,375
3)Через концы А и В дуги окружности с центром О проведены касательные АС и ВС. Угол СAB равен 32°. Найдите угол AОB. Ответ дайте в градусах.
Правильный ответ: 64
5)Объем параллелепипеда ABCDA B C D 1 1 1 1 равен 9. Найдите объем треугольной пирамиды ABCA1 .
Правильный ответ: 1,5
8)Расстояние между пристанями A и B равно 120 км. Из A в B по течению реки отправился плот, а через час вслед за ним отправилась яхта, которая, прибыв в пункт B, тотчас повернула обратно и возвратилась в A. К этому времени плот прошел 24 км. Найдите скорость яхты в неподвижной воде, если скорость течения реки равна 2 км/ч. Ответ дайте в км/ч.
Правильный ответ: 22
10)Автоматическая линия изготавливает батарейки. Вероятность того, что готовая батарейка неисправна, равна 0,02. Перед упаковкой каждая батарейка проходит систему контроля. Вероятность того, что система забракует неисправную батарейку, равна 0,99. Вероятность того, что система по ошибке забракует исправную батарейку, равна 0,01. Найдите вероятность того, что случайно выбранная изготовленная батарейка будет забракована системой контроля.
Правильный ответ: 0,0296
15)Планируется открыть вклад на 4 года, положив на счет целое число миллионов рублей. В конце каждого года сумма, лежащая на вкладе, увеличивается на 10%, а в начале третьего и четвертого года вклад пополняется на 3 миллиона рублей. Найдите наименьший первоначальный вклад, при котором начисленные проценты за весь срок будут более 5 миллионов рублей.
Правильный ответ: 9 млн. руб
16)Дан треугольник ABC со сторонами AB = 4, BC = 5 и AC = 6. а) Докажите, что прямая, проходящая через точку пересечения медиан и центр вписанной окружности, параллельна стороне BC. б) Найдите длину биссектрисы треугольника ABC, проведенной из вершины A.
Правильный ответ: 3 корень из 2
18)В каждой из девяти ячеек строки слева направо в некотором (возможно, ином) порядке расставлены по одному 9 чисел: 1, 2, 3, 4, 5, 6, 7, 8 и 9. а) Могло ли оказаться так, что среди любых четырёх подряд (идущих слева направо) из этих чисел есть ровно одно, делящееся на 3, и ровно одно, делящееся на 4? б) Могло ли оказаться так, что среди любых четырёх подряд (идущих слева направо) из этих чисел есть ровно одно, делящееся на 3, а среди любых двух подряд (идущих слева направо) из этих чисел есть ровно одно простое число? в) Какое наибольшее значение может принимать произведение суммы всех чисел, стоящих на нечётных местах, и суммы всех чисел, стоящих на чётных местах этой строки?
2)Шоколадка стоит 35 рублей. В воскресенье в супермаркете действует специальное предложение: заплатив за две шоколадки, покупатель получает три (одну в подарок). Какое наибольшее количество шоколадок можно получить, потратив не более 200 рублей в воскресенье?
Правильный ответ: 7
4)На диаграмме показана среднемесячная температура воздуха в Симферополе за каждый месяц 1988 года. По горизонтали указываются месяцы, по вертикали — температура в градусах Цельсия. Определите по диаграмме, сколько было осенью месяцев, когда среднемесячная температура превышала 12 градусов Цельсия.
Правильный ответ: 1
5)На рисунке изображён план местности (шаг сетки плана соответствует расстоянию 1 км на местности). Оцените, скольким квадратным километрам равна площадь озера Щало, изображённого на плане. Ответ округлите до целого числа.
Правильный ответ: 4
6)Магазин закупает цветочные горшки по оптовой цене 120 рублей за штуку и продает с наценкой 20%. Какое наибольшее число таких горшков можно купить в этом магазине на 1000 рублей?
Правильный ответ: 6
10)Дачный участок имеет форму квадрата, стороны которого равны 30 м. Размеры дома, расположенного на участке и имеющего форму прямоугольника, — 8 м × 5 м. Найдите площадь оставшейся части участка. Ответ дайте в квадратных метрах.
Правильный ответ: 860
11)Игральную кость с 6 гранями бросают дважды. Найдите вероятность того, что хотя бы раз выпало число, большее 3.
Правильный ответ: 0,75
12)В городском парке имеется пять аттракционов: карусель, колесо обозрения, автодром, «Ромашка» и «Весёлый тир». В кассах продаётся шесть видов билетов, каждый из которых позволяет посетить один или два аттракциона. Сведения о стоимости билетов представлены в таблице. Андрей хочет посетить все пять аттракционов, но имеет в наличии только 900 рублей. Какие виды билетов он должен купить? В ответе укажите номера (в порядке возрастания номеров), соответствующие видам билетов, без пробелов, запятых и других дополнительных символов.
Правильный ответ: 234
13)Плоскость, проходящая через точки A, B и C (см. рис.), разбивает тетраэдр на два многогранника. Сколько рёбер у получившегося многогранника с большим числом вершин?
Правильный ответ: 9
14)На рисунке изображён график функции y = f(x). Числа a, b, c, d и e задают на оси x четыре интервала. Пользуясь графиком, поставьте в соответствие каждому интервалу характеристику функции или её производной.
Правильный ответ: 2143
15)В окружности с центром O AC и BD – диаметры. Центральный угол AOD равен . Найдите вписанный угол ACB. Ответ дайте в градусах.
Правильный ответ: 35
16)Даны два конуса. Радиус основания и образующая первого конуса равны, соответственно, 2 и 4, а второго — 6 и 8. Во сколько раз площадь боковой поверхности второго конуса больше площади боковой поверхности первого?
Правильный ответ: 6
18)Пять жильцов многоквартирного дома — Андрей, Борис, Виктор, Денис и Егор — имеют различный возраст. При этом известно, что возраст Андрея больше, чем сумма возрастов Бориса и Виктора, Виктор старше Дениса, но младше Егора. Выберите утверждения, которые следуют из приведённых данных. 1) Андрей самый старший из жильцов 2) Егор старше Бориса 3) Андрей старше Дениса 4) Борис старше Егора.
Правильный ответ: 3
19)Приведите пример четырёхзначного натурального числа, кратного 4, сумма цифр которого равна их произведению. В ответе укажите ровно одно такое число.
Правильный ответ: 1124
20)На изготовление 475 деталей первый рабочий тратит на 6 часов меньше, чем второй рабочий на изготовление 550 таких же деталей. Известно, что первый рабочий за час делает на 3 детали больше, чем второй. Сколько деталей в час делает первый рабочий?
Правильный ответ: 25
21)Три луча, выходящие из одной точки, разбивают плоскость на 3 разных угла, измеряемых целым числом градусов. Наибольший угол в 2 раза больше наименьшего. Сколько значений может принимать величина среднего угла?
Правильный ответ: 17
Готовитесь к ЕГЭ 2022? Прорешайте типовые варианты статграда:
- Тренировочная работа статград №4 ЕГЭ 2022 по математике 11 класс
- Тренировочная работа статград №3 ЕГЭ 2022 по математике 11 класс
ПОДЕЛИТЬСЯ МАТЕРИАЛОМ
ФИПИ опубликовал открытые варианты контрольных измерительных материалов единого государственного экзамена 2022 года.
→ Математика профильная: matematika-prof_var_1_2022.pdf | Разбор
→ Математика базовая: matematika-baz_var_1_2022.pdf | Разбор
→ Русский язык: russkij-jazyk_var_1_2022.pdf | Разбор | Сочинение
Ответы
→ Физика: fizika_var_1_2022.pdf | Разбор
→ Обществознание: obschestvoznanie_var_1_2022.pdf | Разбор
→ Литература: literatura_var_1_2022.pdf
→ Информатика: informatika_var_1_2022.pdf | Доп. файлы: inf_1_ege2022.zip
→ География: geografija_var_1_2022.pdf
→ Биология: biologija_var_1_2022.pdf | Разбор
→ История: istorija_var_1_2022.pdf
Ответы
→ Химия: himija_var_1_2022.pdf
Ответы
→ Английский: angl_1_ege2022.zip
Письменная часть: anglijskij-jazyk-pch_var_1_2022.pdf
Устная часть: anglijskij-jazyk-uch_var_1_2022.pdf
Аудирование: anglijskij-pch-audirovanie.mp3
УЧ (задание 3): anglijskij-uch_zadanie-3.mp3
Ответы
→ Немецкий: nem_1_ege2022.zip
Письменная часть: nemeckij-jazyk-pch_var_1_2022.pdf
Устная часть: nemeckij-jazyk-uch_var_1_2022.pdf
Аудирование: nemeckij-pch-audirovanie.mp3
УЧ (задание 3): nemeckij-uch_zadanie-3.mp3
→ Французский: fran_1_ege2022.zip
Письменная часть: francuzskij-jazyk-pch_var_1_2022.pdf
Устная часть: francuzskij-jazyk-uch_var_1_2022.pdf
Аудирование: francuzskij-pch-audirovanie.mp3
УЧ (задание 3): francuzskij-uch_zadanie-3.mp3
→ Испанский: isp_1_ege2022.zip
Письменная часть: ispanskij-jazyk-pch_var_1_2022.pdf
Устная часть: ispanskij-jazyk-uch_var_1_2022.pdf
Аудирование: ispanskij-pch-audirovanie.mp3
УЧ (задание 3): ispanskij-uch_zadanie-3.mp3
→ Китайский: kit_1_ege2022.zip
Письменная часть: kitajskij-jazyk-pch_var_1_2022.pdf
Устная часть: kitajskij-jazyk-uch_var_1_2022.pdf
Аудирование: kitajskij-pch-audirovanie.mp3
- ЕГЭ по математике
Пробные варианты ЕГЭ 2022 по математике базового уровня из различных источников.
Пробные варианты ЕГЭ 2022 по математике (базовый уровень)
math100.ru (с ответами) по демоверсии 2022 года | |
Вариант 1 | скачать |
Вариант 2 | скачать |
Вариант 3 | скачать |
Вариант 4 | скачать |
Вариант 5 | скачать |
Вариант 6 | скачать |
Вариант 7 | скачать |
Вариант 8 | скачать |
Вариант 9 | скачать |
Вариант 10 | скачать |
ЕГЭ 100 баллов (с решениями) | |
variant 10 | скачать |
variant 11 | скачать |
variant 12 | скачать |
variant 13 | скачать |
variant 14 | скачать |
variant 15 | скачать |
variant 16 | скачать |
variant 17 | скачать |
variant 18 | скачать |
variant 20 | скачать |
variant 21 | скачать |
Ягубов РФ | |
Вариант 22 | скачать |
Вариант 23 | скачать |
Вариант 24 | скачать |
Вариант 25 | скачать |
Вариант 26 | скачать |
vk.com/matematicalate | |
variant 1 | скачать |
variant 2 | скачать |
variant 3 | скачать |
variant 4 | скачать |
variant 5 | скачать |
variant 6 | скачать |
Инструкция по выполнению работы
Экзаменационная работа включает в себя 21 задание.
На выполнение работы отводится 3 часа (180 минут).
Ответы к заданиям записываются по приведённым ниже образцам в виде числа или последовательности цифр. Сначала запишите ответы к заданиям в поле ответа в тексте работы, а затем перенесите их в бланк ответов № 1 справа от номера соответствующего задания.
Если ответом является последовательность цифр, как в приведённом ниже примере, то запишите эту последовательность в бланк ответов № 1 без пробелов, запятых и других дополнительных символов.
Все бланки ЕГЭ заполняются яркими чёрными чернилами. Допускается использование гелевой или капиллярной ручки.
При выполнении заданий можно пользоваться черновиком. Записи в черновике, а также в тексте контрольных измерительных материалов не учитываются при оценивании работы.
Баллы, полученные Вами за выполненные задания, суммируются. Постарайтесь выполнить как можно больше заданий и набрать наибольшее количество баллов.
После завершения работы проверьте, чтобы ответ на каждое задание в бланке ответов № 1 был записан под правильным номером
Связанные страницы:
Тренировочная работа №5 статград ЕГЭ 2022 по математике 11 класс задания и ответы для тренировочных вариантов МА2110501-МА2110512 базового и профильного уровня. Официальная дата проведения работы: 28 апреля 2022 год.
Скачать варианты базового уровня
Скачать варианты профильного уровня
Все ответы (решения) и задания (без водяного знака)
Тренировочные варианты статград математика 11 класс ЕГЭ 2022 профильный уровень МА2110509-МА2110512
Тренировочные варианты статград математика 11 класс ЕГЭ 2022 базовый уровень МА2110501-МА2110508
Задания и ответы варианта МА2110501 статграда:
2)Мотоциклист проехал 14 километров за 21 минуту. Сколько километров он проедет за 30 минут, если будет ехать с той же скоростью?
4)На рисунке показано изменение атмосферного давления в течение трёх суток. По горизонтали указаны дни недели и время, по вертикали — значения атмосферного давления в миллиметрах ртутного столба. Определите по рисунку значение атмосферного давления в среду в 6:00. Ответ дайте в миллиметрах ртутного столба.
5)План местности разбит на клетки. Каждая клетка обозначает квадрат 1 м × 1 м. Найдите площадь участка, изображённого на плане. Ответ дайте в квадратных метрах.
6)В период распродажи магазин снижал цены дважды: в первый раз на 10 %, во второй — на 25 %. Сколько рублей стал стоить чайник после второго снижения цен, если до начала распродажи он стоил 1600 рублей?
10)Перила лестницы дачного дома для надёжности укреплены посередине вертикальным столбом. Найдите высоту l этого столба, если наименьшая высота перил h1 равна 1 м, а наибольшая высота h2 равна 2 м. Ответ дайте в метрах.
11)В фирме такси в наличии 20 легковых автомобилей: 7 из них чёрного цвета с жёлтыми надписями на боках, остальные — жёлтого цвета с чёрными надписями. Найдите вероятность того, что на случайный вызов приедет машина жёлтого цвета с чёрными надписями.
13)Однородный шар диаметром 3 см весит 162 грамма. Сколько граммов весит шар диаметром 2 см, изготовленный из того же материала?
15)В треугольнике ABC проведена биссектриса AL, угол ALC равен 160° , угол ABC равен 148° . Найдите угол ACB . Ответ дайте в градусах.
18)Во дворе школы растут всего три дерева: берёза, клён и дуб. Берёза выше клёна на 1 метр, но ниже дуба на 3 метра. Выберите утверждения, которые верны при указанных условиях. 1) Среди указанных деревьев не найдётся двух одной высоты. 2) Берёза, растущая во дворе школы, выше дуба, растущего там же. 3) Любое дерево, помимо указанных, которое ниже берёзы, растущей во дворе школы, также ниже клёна, растущего там же. 4) Любое дерево, помимо указанных, которое ниже клёна, растущего во дворе школы, также ниже берёзы, растущей там же.
19)Найдите четырёхзначное число, большее 1000, но меньшее 1700, которое делится на 45 и сумма цифр которого равна 18. В ответе укажите какое-нибудь одно такое число.
20)Теплоход, скорость которого в неподвижной воде равна 24 км/ч, проходит по течению реки и после стоянки возвращается в исходный пункт. Скорость течения равна 4 км/ч, стоянка длится 3 часа, а в исходный пункт теплоход возвращается через 36 часов после отправления из него. Сколько километров проходит теплоход за весь рейс?
21)Из книги выпало несколько идущих подряд листов. Номер последней страницы перед выпавшими листами — 254, номер первой страницы после выпавших листов записывается теми же цифрами, но в другом порядке. Сколько листов выпало?
Задания и ответы варианта МА2110502 статграда:
2)За 20 минут автобус проехал 23 километра. Сколько километров он проедет за 35 минут, если будет ехать с той же скоростью?
4)На рисунке показано изменение атмосферного давления в течение трёх суток. По горизонтали указаны дни недели и время, по вертикали — значения атмосферного давления в миллиметрах ртутного столба. Определите по рисунку значение атмосферного давления в четверг в 12:00. Ответ дайте в миллиметрах ртутного столба.
5)План местности разбит на клетки. Каждая клетка обозначает квадрат 1 м × 1 м. Найдите площадь участка, изображённого на плане. Ответ дайте в квадратных метрах.
6)В период распродажи магазин снижал цены дважды: в первый раз на 15 %, во второй — на 25 %. Сколько рублей стал стоить чайник после второго снижения цен, если до начала распродажи он стоил 2000 рублей?
10)Перила лестницы дачного дома для надёжности укреплены посередине вертикальным столбом. Найдите высоту l этого столба, если наименьшая высота перил h1 равна 0,7 м, а наибольшая высота h2 равна 1,5 м. Ответ дайте в метрах.
11)В фирме такси в наличии 15 легковых автомобилей: 3 из них чёрного цвета с жёлтыми надписями на боках, остальные — жёлтого цвета с чёрными надписями. Найдите вероятность того, что на случайный вызов приедет машина жёлтого цвета с чёрными надписями.
13)Однородный шар диаметром 3 см весит 189 грамм. Сколько граммов весит шар диаметром 4 см, изготовленный из того же материала?
15)В треугольнике ABC проведена биссектриса AL, угол ALC равен 41° , угол ABC равен 26° . Найдите угол ACB . Ответ дайте в градусах.
18)Кошка Китти весит на 3 килограмма больше кошки Машки, а кошка Лада на полтора килограмма легче кошки Машки. Выберите утверждения, которые верны при указанных условиях. 1) Любая кошка, помимо указанных, которая весит меньше Лады, весит также меньше Китти. 2) Любая кошка, помимо указанных, которая весит меньше Китти, весит также меньше Лады. 3) Среди указанных кошек нет кошек тяжелее Китти. 4) Машка весит меньше Лады.
19)Найдите четырёхзначное число, большее 1500, но меньшее 2000, которое делится на 24 и сумма цифр которого равна 21. В ответе укажите какоенибудь одно такое число.
20)Теплоход, скорость которого в неподвижной воде равна 15 км/ч, проходит по течению реки и после стоянки возвращается в исходный пункт. Скорость течения равна 3 км/ч, стоянка длится 7 часов, а в исходный пункт теплоход возвращается через 37 часов после отправления из него. Сколько километров проходит теплоход за весь рейс?
21)Из книги выпало несколько идущих подряд листов. Номер последней страницы перед выпавшими листами — 496, номер первой страницы после выпавших листов записывается теми же цифрами, но в другом порядке. Сколько листов выпало?
Задания и ответы варианта МА2110505 статграда:
2)Принтер печатает одну страницу за 8 секунд. Какое наибольшее количество страниц можно напечатать на этом принтере за 14 минут?
4)На рисунке показано изменение атмосферного давления в течение трёх суток. По горизонтали указаны дни недели, по вертикали — значения атмосферного давления в миллиметрах ртутного столба. Определите по рисунку наименьшее значение атмосферного давления (в миллиметрах ртутного столба) в четверг.
6)Банк начисляет на срочный вклад 8 % годовых. Вкладчик положил на счёт 7000 рублей. Сколько рублей будет на этом счёте через год, если никаких операций, кроме начисления процентов, со счётом проводиться не будет?
10)Столб подпирает детскую горку посередине. Найдите высоту l этого столба, если высота горки h равна 3,9 м. Ответ дайте в метрах.
11)На экзамене будет 50 билетов, Серёжа не выучил 11 из них. Найдите вероятность того, что ему попадётся выученный билет.
13)Две кружки имеют форму цилиндра. Первая кружка в полтора раза ниже второй, а вторая вдвое шире первой. Во сколько раз объём первой кружки меньше объёма второй?
14)На рисунке точками показан годовой объём добычи угля в России открытым способом в период с 2001 по 2010 год. По горизонтали указывается год, по вертикали — объём добычи угля в миллионах тонн. Для наглядности точки соединены ломаной линией.
16)В основании прямой призмы лежит прямоугольный треугольник, катеты которого равны 3 и 16. Найдите объём призмы, если её высота равна 3.
18)Двадцать выпускников одного из одиннадцатых классов сдавали ЕГЭ по русскому языку. Самый низкий балл, полученный в этом классе, был равен 28, а самый высокий — 83. Выберите утверждения, которые верны при указанных условиях. 1) Среди этих выпускников есть человек, который получил 83 балла за ЕГЭ по русскому языку. 2) Среди этих выпускников есть двадцать человек с равными баллами за ЕГЭ по русскому языку. 3) Среди этих выпускников есть человек, получивший 100 баллов за ЕГЭ по русскому языку. 4) Баллы за ЕГЭ по русскому языку любого из этих двадцати человек не ниже 27.
19)Найдите четырёхзначное число, большее 2000, но меньшее 4000, которое делится на 18 и каждая следующая цифра которого больше предыдущей. В ответе укажите какое-нибудь одно такое число.
20)Дорога между пунктами А и В состоит из подъёма и спуска, а её длина равна 19 км. Путь из А в В занял у туриста 5 часов, из которых 4 часа ушло на спуск. Найдите скорость туриста на спуске, если она больше скорости на подъёме на 1 км/ч. Ответ дайте в км/ч.
21)Список заданий викторины состоял из 50 вопросов. За каждый правильный ответ ученик получал 9 очков, за неправильный ответ с него списывали 16 очков, а при отсутствии ответа давали 0 очков. Сколько верных ответов дал ученик, набравший 171 очко, если известно, что по крайней мере один раз он ошибся?
Задания и ответы варианта МА2110506 статграда:
2)Принтер печатает одну страницу за 9 секунд. Какое наибольшее количество страниц можно напечатать на этом принтере за 12 минут?
4)На рисунке показано изменение атмосферного давления в течение трёх суток. По горизонтали указаны дни недели, по вертикали — значения атмосферного давления в миллиметрах ртутного столба. Определите по рисунку наименьшее значение атмосферного давления (в миллиметрах ртутного столба) во вторник.
5)План местности разбит на клетки. Каждая клетка обозначает квадрат 1 м × 1 м. Найдите площадь участка, изображённого на плане. Ответ дайте в квадратных метрах.
6)Банк начисляет на срочный вклад 12 % годовых. Вкладчик положил на счёт 3000 рублей. Сколько рублей будет на этом счёте через год, если никаких операций, кроме начисления процентов, со счётом проводиться не будет?
10)Столб подпирает детскую горку посередине. Найдите высоту l этого столба, если высота горки h равна 3,2 м. Ответ дайте в метрах.
11)На экзамене будет 40 билетов, Яша не выучил 4 из них. Найдите вероятность того, что ему попадётся выученный билет.
13)Даны две кружки цилиндрической формы. Первая кружка в четыре с половиной раза выше второй, а вторая втрое шире первой. Во сколько раз объём первой кружки меньше объёма второй?
14)На рисунке точками показан прирост населения Китая в период с 2004 по 2013 год. По горизонтали указывается год, по вертикали — прирост населения в процентах (увеличение численности населения относительно прошлого года). Для наглядности точки соединены ломаной линией.
16)В основании прямой призмы лежит прямоугольный треугольник, катеты которого равны 13 и 4. Найдите объём призмы, если её высота равна 5.
18)В посёлке городского типа всего 17 жилых домов. Высота каждого дома меньше 25 метров, но не меньше 5 метров. Выберите утверждения, которые верны при указанных условиях. 1) В посёлке есть жилой дом высотой 25 метров. 2) Разница в высоте любых двух жилых домов посёлка больше 6 метров. 3) В посёлке нет жилого дома высотой 4 метра. 4) Высота любого жилого дома в посёлке не меньше 3 метров.
19)Найдите четырёхзначное число, большее 6000, но меньшее 7000, которое делится на 12 и каждая следующая цифра которого меньше предыдущей. В ответе укажите какое-нибудь одно такое число.2
20)Дорога между пунктами А и В состоит из подъёма и спуска, а её длина равна 14 км. Путь из А в В занял у туриста 3 часа, из которых 1 час ушёл на спуск. Найдите скорость туриста на спуске, если она больше скорости на подъёме на 2 км/ч. Ответ дайте в км/ч.
21)Список заданий викторины состоял из 25 вопросов. За каждый правильный ответ ученик получал 5 очков, за неправильный ответ с него списывали 7 очков, а при отсутствии ответа давали 0 очков. Сколько верных ответов дал ученик, набравший 60 очков, если известно, что по крайней мере один раз он ошибся?
Задания и ответы варианта МА2110509 статграда:
2)В среднем из 75 морозильников, поступивших в продажу, 6 имеют скрытый дефект. Найдите вероятность того, что один случайно выбранный для контроля морозильник не имеет дефекта.
3)В четырёхугольник ABCD , периметр которого равен 56, вписана окружность, AB =12. Найдите длину стороны CD .
5)Шар, объём которого равен 29π , вписан в куб. Найдите объём куба.
8)Из городов A и B одновременно навстречу друг другу выехали мотоциклист и велосипедист. Мотоциклист приехал в B на 4 часа раньше, чем велосипедист приехал в A, а встретились они через 1 час 30 минут после выезда. Сколько часов затратил на путь из B в A велосипедист?
10)По отзывам покупателей Пётр Петрович оценил надёжность двух интернетмагазинов. Вероятность того, что нужный товар доставят из магазина А вовремя, равна 0,84. Вероятность того, что товар доставят вовремя из магазина Б, равна 0,9. Пётр Петрович заказал товары одновременно в двух магазинах. Считая, что интернет-магазины работают независимо друг от друга, найдите вероятность того, что ни один магазин не доставит товар вовремя.
13)Радиус основания конуса равен 8, высота равна 4. Сечение конуса плоскостью α , проходящей через его вершину, отсекает от окружности основания дугу в 60° . а) Докажите, что величина угла между плоскостью α и плоскостью основания конуса равна 30° . б) Найдите расстояние от центра основания конуса до плоскости сечения.
15)15 августа планируется взять кредит в банке на 16 месяцев. Условия его возврата таковы: — 1-го числа каждого месяца долг возрастает на r % по сравнению с концом предыдущего месяца (r — целое число); — со 2-го по 14-е число каждого месяца необходимо выплатить часть долга; — 15-го числа каждого месяца долг должен быть на одну и ту же величину меньше долга на 15-е число предыдущего месяца. Известно, что общая сумма денег, которую нужно выплатить банку за весь срок кредитования, на 51 % больше, чем сумма, взятая в кредит. Найдите r.
16)Дана равнобедренная трапеция ABCD с основаниями AD и BC , причём AD BC = 2 . а) Докажите, что высота CH трапеции разбивает основание AD на отрезки, один из которых втрое больше другого. б) Пусть O — точка пересечения диагоналей трапеции. Найдите расстояние от вершины C до середины отрезка OD , если AB =13 и BC =10 .
Задания и ответы варианта МА2110510 статграда:
2)В среднем из 80 морозильников, поступивших в продажу, 4 имеют скрытый дефект. Найдите вероятность того, что один случайно выбранный для контроля морозильник не имеет дефекта.
3)В четырёхугольник ABCD , периметр которого равен 48, вписана окружность, AB =14. Найдите длину стороны CD .
5)Шар, объём которого равен 23π, вписан в куб. Найдите объём куба.
8)Из городов A и B одновременно навстречу друг другу выехали мотоциклист и велосипедист. Мотоциклист приехал в B на 2 часа раньше, чем велосипедист приехал в A, а встретились они через 1 час 20 минут после выезда. Сколько часов затратил на путь из B в A велосипедист?
10)По отзывам покупателей Пётр Петрович оценил надёжность двух интернетмагазинов. Вероятность того, что нужный товар доставят из магазина А вовремя, равна 0,85. Вероятность того, что товар доставят вовремя из магазина Б, равна 0,86. Пётр Петрович заказал товары одновременно в двух магазинах. Считая, что интернет-магазины работают независимо друг от друга, найдите вероятность того, что ни один магазин не доставит товар вовремя.
13)Радиус основания конуса равен 4, высота равна 6. Сечение конуса плоскостью α , проходящей через его вершину, отсекает от окружности основания дугу в 60° . а) Докажите, что величина угла между плоскостью α и плоскостью основания конуса равна 60° . б) Найдите расстояние от центра основания конуса до плоскости сечения.
15)15 августа планируется взять кредит в банке на 18 месяцев. Условия его возврата таковы: — 1-го числа каждого месяца долг возрастает на r % по сравнению с концом предыдущего месяца (r — целое число); — со 2-го по 14-е число каждого месяца необходимо выплатить часть долга; — 15-го числа каждого месяца долг должен быть на одну и ту же величину меньше долга на 15-е число предыдущего месяца. Известно, что общая сумма денег, которую нужно выплатить банку за весь срок кредитования, на 38 % больше, чем сумма, взятая в кредит. Найдите r.
16)Дана равнобедренная трапеция ABCD с основаниями AD и BC , причём AD BC = 2 . а) Докажите, что высота CH трапеции разбивает основание AD на отрезки, один из которых втрое больше другого. б) Пусть O — точка пересечения диагоналей трапеции. Найдите расстояние от вершины C до середины отрезка OD , если AB =17 и BC =16 .
Задания и ответы варианта МА2110511 статграда:
2)Вероятность того, что новому ноутбуку в течение года потребуется ремонт, равна 0,051. Из 1000 проданных ноутбуков в течение года ремонт потребовался 45 ноутбукам. На сколько отличается частота события «в течение года потребуется ремонт» от вероятности этого события?
3)Два угла вписанного в окружность четырёхугольника равны 101° и 99° . Найдите величину большего из оставшихся углов. Ответ дайте в градусах.
5)Один цилиндрический сосуд вчетверо выше второго, зато второй втрое шире первого. Во сколько раз объём второго сосуда больше объёма первого?
8)Имеется два сплава. Первый содержит 10 % никеля, второй — 35 % никеля. Из этих двух сплавов получили третий сплав массой 175 кг, содержащий 25 % никеля. На сколько килограммов масса первого сплава была меньше массы второго?
10)Биатлонист 5 раз стреляет по мишеням. Вероятность попадания в мишень при одном выстреле равна 0,6. Найдите вероятность того, что биатлонист первые 2 раза попал в мишени, а последние три промахнулся. Результат округлите до сотых.
15)15 августа планируется взять кредит в банке на 15 месяцев. Условия его возврата таковы: — 1-го числа каждого месяца долг возрастает на r % по сравнению с концом предыдущего месяца (r — целое число); — со 2-го по 14-е число каждого месяца необходимо выплатить часть долга; — 15-го числа каждого месяца долг должен быть на одну и ту же величину меньше долга на 15-е число предыдущего месяца. Известно, что общая сумма денег, которую нужно выплатить банку за весь срок кредитования, на 56 % больше, чем сумма, взятая в кредит. Найдите r.
16)Дана равнобедренная трапеция ABCD с основаниями AD и BC , причём AD BC = 2 . а) Докажите, что высота CH трапеции разбивает основание AD на отрезки, один из которых втрое больше другого. б) Пусть O — точка пересечения диагоналей трапеции. Найдите расстояние от вершины C до середины отрезка OD , если AB =15 и BC =18 .
Другие тренировочные варианты статград ЕГЭ по математике 11 класс:
Работы СТАТГРАД по математике задания и ответы
Варианты МА2110401-МА2110412 ЕГЭ 2022 работа статград математика 11 класс с ответами
Share the post «Варианты база и профиль ЕГЭ 2022 работа статград математика 11 класс с ответами»
- VKontakte
Метки: ЕГЭ 2022заданияматематика 11 классответыстатградтренировочная работа
Пробный ЕГЭ № 1 по математике. 11 класс
Вариант 1
Вариант 2
Вариант 3
Вариант 4
Ответы
Скачать:
Предварительный просмотр:
МБОУ «Апраксинская СОШ»
ЕГЭ по МАТЕМАТИКЕ №1
Профильный уровень. 2022г.
Вариант 1
Часть 1
1. Найдите корень уравнения .
Ответ: ___________________
2. Перед началом футбольного матча судья бросает монету, чтобы определить, какая из команд начнёт игру с мячом. Команда «Биолог» играет три матча с разными командами. Найдите вероятность того, что в этих матчах команда «Биолог» начнёт игру с мячом все три раза.
Ответ: ___________________
3. В треугольнике АВС СD – медиана, угол С равен 900, угол В равен 350. Найдите угол АСD. Ответ дайте в градусах.
Ответ: ___________________
4. Найдите значение выражения .
Ответ: ___________________
5. Через среднюю линию основания треугольной призмы проведена плоскость, параллельная боковому ребру. Площадь боковой поверхности отсечённой треугольной призмы равна 28. Найдите площадь боковой поверхности исходной призмы.
Ответ: ___________________
6. На рисунке изображён график функции . На оси абсцисс отмечены десять точек: х1, х2, х3, х4, х5, х6, х7, х8. В скольких из этих точек производная функции положительна?
Ответ: ___________________
7. Зависимость температуры (в градусах Кельвина) от времени для нагревательного элемента некоторого прибора была получена экспериментально. На исследуемом интервале температура вычисляется по формуле , где t – время в минутах, , , b = 98К/мин. Известно, что при температуре нагревателя свыше 1720К прибор может испортиться, поэтому его нужно отключить. Определите, через какое наибольшее время после начала работы нужно отключить прибор. Ответ дайте в минутах.
Ответ: ___________________
8. Имеется два сплава. Первый сплав содержит 5% никеля, второй – 20% никеля. Из этих двух сплавов получили третий сплав массой 225кг, содержащий 15% никеля. На сколько килограммов масса первого сплава меньше массы второго?
Ответ: ___________________
9. На рисунке изображён график функции . Найдите .
Ответ: ___________________
10. Две фабрики выпускают одинаковые стекла для автомобильных фар. Первая фабрика выпускает 25% этих стекол, вторая – 75%. Первая фабрика выпускает 4% бракованных стекол, а вторая – 2%. Найдите вероятность того, что случайно купленное в магазине стекло окажется бракованным.
Ответ: ___________________
11. Найдите наибольшее значение функции
на отрезке .
Ответ: ___________________
Часть 2
12. а) Решите уравнение: .
б) Найдите корни этого уравнения, принадлежащие отрезку .
13. На ребрах DD1 и ВВ1 куба АВСDА1В1С1D1 с ребром 12 отмечены точки Р и Q соответственно, причём DP= 10, а В1Q = 4. Плоскость А1РQ пересекает ребро СС1 в точке М.
а) Докажите, что точка М является серединой ребра СС1.
б) Найдите расстояние от точки С1 до плоскости А1РQ.
14. Решите неравенство .
15. 15-го января планируется взять кредит в банке на шесть месяцев в размере 1 млн. рублей. Условия его возврата таковы:
– 1-го числа каждого месяца долг увеличивается на r процентов по сравнению с концом предыдущего месяца, где r – целое число;
– со 2-го по 14-е число каждого месяца необходимо выплатить часть долга;
– 15-го числа каждого месяца долг должен составлять некоторую сумму в соответствии со следующей таблицей.
Дата |
15.01 |
15.02 |
15.03 |
15.04 |
15.05 |
15.06 |
15.07 |
Долг (в млн рублей) |
1 |
0,6 |
0,4 |
0,3 |
0,2 |
0,1 |
0 |
Найдите наибольшее значение r, при котором общая сумма выплат будет меньше 1,2 млн рублей.
16. В трапеции АВСD основание АD в два раза меньше основания ВС. Внутри трапеции взяли точку М так, что углы ВАМ и СDМ прямые.
а) Докажите, что ВМ = СМ.
б) Найдите угол АВС, если угол ВСD равен 640, а расстояние от точки М до прямой ВС равно стороне АD.
17. Найдите значения a, при каждом из которых уравнение
имеет ровно два различных корня.
18. Задумано несколько (не обязательно различных) натуральных чисел. Эти числа и их все возможные суммы (по 2, по 3 и т.д.) выписывают на доску в порядке неубывания. Если какое-то число n, выписанное на доску, повторяется несколько раз, то на доске оставляется одно такое число n, а остальные числа, равные n, стираются. Например, если задуманы числа 1, 3, 3, 4, то на доске будет записан набор 1, 3, 4, 5, 6, 7, 8, 10, 11.
а) Приведите пример задуманных чисел, для которых на доске будет записан набор 1, 2, 3, 4, 5, 6, 7.
б) Существует ли пример таких задуманных чисел, для которых на доске будет записан набор 1, 3, 4, 6, 7, 8, 10, 11, 12, 13, 15, 16, 17, 19, 20, 22?
в) Приведите все примеры задуманных чисел, для которых на доске будет записан набор 7, 9, 11, 14, 16, 18. 20, 21, 23, 25, 27, 30, 32, 34, 41.
Предварительный просмотр:
МБОУ «Апраксинская СОШ»
ЕГЭ по МАТЕМАТИКЕ №1
Профильный уровень. 2022г.
Вариант 2
Часть 1
1. Найдите корень уравнения .
Ответ: ___________________
2. Перед началом футбольного матча судья бросает монету, чтобы определить, какая из команд начнёт игру с мячом. Команда «Биолог» играет три матча с разными командами. Найдите вероятность того, что в этих матчах команда «Биолог» начнёт игру с мячом ровно один раз.
Ответ: ___________________
3. В треугольнике АВС СD – медиана, угол С равен 900, угол В равен 410. Найдите угол АСD. Ответ дайте в градусах.
Ответ: ___________________
4. Найдите значение выражения .
Ответ: ___________________
5. Через среднюю линию основания треугольной призмы проведена плоскость, параллельная боковому ребру. Площадь боковой поверхности отсечённой треугольной призмы равна 32. Найдите площадь боковой поверхности исходной призмы.
Ответ: ___________________
6. На рисунке изображён график функции . На оси абсцисс отмечены десять точек: х1, х2, х3, х4, х5, х6, х7, х8. В скольких из этих точек производная функции отрицательна?
Ответ: ___________________
7. Зависимость температуры (в градусах Кельвина) от времени для нагревательного элемента некоторого прибора была получена экспериментально. На исследуемом интервале температура вычисляется по формуле , где t – время в минутах, , , b = 69К/мин. Известно, что при температуре нагревателя свыше 1736К прибор может испортиться, поэтому его нужно отключить. Определите, через какое наибольшее время после начала работы нужно отключить прибор. Ответ дайте в минутах.
Ответ: ___________________
8. Имеется два сплава. Первый сплав содержит 10% никеля, второй – 25% никеля. Из этих двух сплавов получили третий сплав массой 270кг, содержащий 20% никеля. На сколько килограммов масса первого сплава меньше массы второго?
Ответ: ___________________
9. На рисунке изображён график функции . Найдите .
Ответ: ___________________
10. Две фабрики выпускают одинаковые стекла для автомобильных фар. Первая фабрика выпускает 35% этих стекол, вторая – 65%. Первая фабрика выпускает 4% бракованных стекол, а вторая – 2%. Найдите вероятность того, что случайно купленное в магазине стекло окажется бракованным.
Ответ: ___________________
11. Найдите наибольшее значение функции
на отрезке .
Ответ: ___________________
Часть 2
12. а) Решите уравнение: .
б) Найдите корни этого уравнения, принадлежащие отрезку .
13. На ребрах DD1 и ВВ1 куба АВСDА1В1С1D1 с ребром 12 отмечены точки Р и Q соответственно, причём DP= 10, а В1Q = 4. Плоскость А1РQ пересекает ребро СС1 в точке М.
а) Докажите, что точка М является серединой ребра СС1.
б) Найдите расстояние от точки С1 до плоскости А1РQ.
14. Решите неравенство .
15. 15-го января планируется взять кредит в банке на шесть месяцев в размере 1 млн. рублей. Условия его возврата таковы:
– 1-го числа каждого месяца долг увеличивается на r процентов по сравнению с концом предыдущего месяца, где r – целое число;
– со 2-го по 14-е число каждого месяца необходимо выплатить часть долга;
– 15-го числа каждого месяца долг должен составлять некоторую сумму в соответствии со следующей таблицей.
Дата |
15.01 |
15.02 |
15.03 |
15.04 |
15.05 |
15.06 |
15.07 |
Долг (в млн рублей) |
1 |
0,6 |
0,4 |
0,3 |
0,2 |
0,1 |
0 |
Найдите наибольшее значение r, при котором общая сумма выплат будет меньше 1,2 млн рублей.
16. В трапеции АВСD основание АD в два раза меньше основания ВС. Внутри трапеции взяли точку М так, что углы ВАМ и СDМ прямые.
а) Докажите, что ВМ = СМ.
б) Найдите угол АВС, если угол ВСD равен 640, а расстояние от точки М до прямой ВС равно стороне АD.
17. Найдите значения a, при каждом из которых уравнение
имеет ровно два различных корня.
18. Задумано несколько (не обязательно различных) натуральных чисел. Эти числа и их все возможные суммы (по 2, по 3 и т.д.) выписывают на доску в порядке неубывания. Если какое-то число n, выписанное на доску, повторяется несколько раз, то на доске оставляется одно такое число n, а остальные числа, равные n, стираются. Например, если задуманы числа 1, 3, 3, 4, то на доске будет записан набор 1, 3, 4, 5, 6, 7, 8, 10, 11.
а) Приведите пример задуманных чисел, для которых на доске будет записан набор 1, 2, 3, 4, 5, 6, 7.
б) Существует ли пример таких задуманных чисел, для которых на доске будет записан набор 1, 3, 4, 6, 7, 8, 10, 11, 12, 13, 15, 16, 17, 19, 20, 22?
в) Приведите все примеры задуманных чисел, для которых на доске будет записан набор 7, 9, 11, 14, 16, 18. 20, 21, 23, 25, 27, 30, 32, 34, 41.
Предварительный просмотр:
МБОУ «Апраксинская СОШ»
ЕГЭ по МАТЕМАТИКЕ №1
Профильный уровень. 2022г.
Вариант 3
Часть 1
1. Найдите корень уравнения .
Ответ: ___________________
2. Перед началом футбольного матча судья бросает монету, чтобы определить, какая из команд начнёт игру с мячом. Команда «Биолог» играет три матча с разными командами. Найдите вероятность того, что в этих матчах команда «Биолог» начнёт игру с мячом ровно два раза.
Ответ: ___________________
3. В треугольнике АВС СD – медиана, угол С равен 900, угол В равен 370. Найдите угол АСD. Ответ дайте в градусах.
Ответ: ___________________
4. Найдите значение выражения .
Ответ: ___________________
5. Через среднюю линию основания треугольной призмы проведена плоскость, параллельная боковому ребру. Площадь боковой поверхности отсечённой треугольной призмы равна 36. Найдите площадь боковой поверхности исходной призмы.
Ответ: ___________________
6. На рисунке изображён график функции . На оси абсцисс отмечены десять точек: х1, х2, х3, х4, х5, х6, х7, х8. В скольких из этих точек производная функции положительна?
Ответ: ___________________
7. Зависимость температуры (в градусах Кельвина) от времени для нагревательного элемента некоторого прибора была получена экспериментально. На исследуемом интервале температура вычисляется по формуле , где t – время в минутах, , , b = 96К/мин. Известно, что при температуре нагревателя свыше 1700К прибор может испортиться, поэтому его нужно отключить. Определите, через какое наибольшее время после начала работы нужно отключить прибор. Ответ дайте в минутах.
Ответ: ___________________
8. Имеется два сплава. Первый сплав содержит 5% никеля, второй – 20% никеля. Из этих двух сплавов получили третий сплав массой 240кг, содержащий 15% никеля. На сколько килограммов масса первого сплава меньше массы второго?
Ответ: ___________________
9. На рисунке изображён график функции . Найдите .
Ответ: ___________________
10. Две фабрики выпускают одинаковые стекла для автомобильных фар. Первая фабрика выпускает 40% этих стекол, вторая – 60%. Первая фабрика выпускает 5% бракованных стекол, а вторая – 3%. Найдите вероятность того, что случайно купленное в магазине стекло окажется бракованным.
Ответ: ___________________
11. Найдите наибольшее значение функции
на отрезке .
Ответ: ___________________
Часть 2
12. а) Решите уравнение: .
б) Найдите корни этого уравнения, принадлежащие отрезку .
13. На ребрах DD1 и ВВ1 куба АВСDА1В1С1D1 с ребром 12 отмечены точки Р и Q соответственно, причём DP= 10, а В1Q = 4. Плоскость А1РQ пересекает ребро СС1 в точке М.
а) Докажите, что точка М является серединой ребра СС1.
б) Найдите расстояние от точки С1 до плоскости А1РQ.
14. Решите неравенство .
15. 15-го января планируется взять кредит в банке на шесть месяцев в размере 1 млн. рублей. Условия его возврата таковы:
– 1-го числа каждого месяца долг увеличивается на r процентов по сравнению с концом предыдущего месяца, где r – целое число;
– со 2-го по 14-е число каждого месяца необходимо выплатить часть долга;
– 15-го числа каждого месяца долг должен составлять некоторую сумму в соответствии со следующей таблицей.
Дата |
15.01 |
15.02 |
15.03 |
15.04 |
15.05 |
15.06 |
15.07 |
Долг (в млн рублей) |
1 |
0,6 |
0,4 |
0,3 |
0,2 |
0,1 |
0 |
Найдите наибольшее значение r, при котором общая сумма выплат будет меньше 1,2 млн рублей.
16. В трапеции АВСD основание АD в два раза меньше основания ВС. Внутри трапеции взяли точку М так, что углы ВАМ и СDМ прямые.
а) Докажите, что ВМ = СМ.
б) Найдите угол АВС, если угол ВСD равен 640, а расстояние от точки М до прямой ВС равно стороне АD.
17. Найдите значения a, при каждом из которых уравнение
имеет ровно два различных корня.
18. Задумано несколько (не обязательно различных) натуральных чисел. Эти числа и их все возможные суммы (по 2, по 3 и т.д.) выписывают на доску в порядке неубывания. Если какое-то число n, выписанное на доску, повторяется несколько раз, то на доске оставляется одно такое число n, а остальные числа, равные n, стираются. Например, если задуманы числа 1, 3, 3, 4, то на доске будет записан набор 1, 3, 4, 5, 6, 7, 8, 10, 11.
а) Приведите пример задуманных чисел, для которых на доске будет записан набор 1, 2, 3, 4, 5, 6, 7.
б) Существует ли пример таких задуманных чисел, для которых на доске будет записан набор 1, 3, 4, 6, 7, 8, 10, 11, 12, 13, 15, 16, 17, 19, 20, 22?
в) Приведите все примеры задуманных чисел, для которых на доске будет записан набор 7, 9, 11, 14, 16, 18. 20, 21, 23, 25, 27, 30, 32, 34, 41.
Предварительный просмотр:
МБОУ «Апраксинская СОШ»
ЕГЭ по МАТЕМАТИКЕ №1
Профильный уровень. 2022г.
Вариант 4
Часть 1
1. Найдите корень уравнения .
Ответ: ___________________
2. Перед началом футбольного матча судья бросает монету, чтобы определить, какая из команд начнёт игру с мячом. Команда «Биолог» играет три матча с разными командами. Найдите вероятность того, что в этих матчах команда «Биолог» ни разу не начнёт игру с мячом.
Ответ: ___________________
3. В треугольнике АВС СD – медиана, угол С равен 900, угол В равен 390. Найдите угол АСD. Ответ дайте в градусах.
Ответ: ___________________
4. Найдите значение выражения .
Ответ: ___________________
5. Через среднюю линию основания треугольной призмы проведена плоскость, параллельная боковому ребру. Площадь боковой поверхности отсечённой треугольной призмы равна 35. Найдите площадь боковой поверхности исходной призмы.
Ответ: ___________________
6. На рисунке изображён график функции . На оси абсцисс отмечены десять точек: х1, х2, х3, х4, х5, х6, х7, х8. В скольких из этих точек производная функции отрицательна?
Ответ: ___________________
7. Зависимость температуры (в градусах Кельвина) от времени для нагревательного элемента некоторого прибора была получена экспериментально. На исследуемом интервале температура вычисляется по формуле , где t – время в минутах, , , b = 196К/мин. Известно, что при температуре нагревателя свыше 1800К прибор может испортиться, поэтому его нужно отключить. Определите, через какое наибольшее время после начала работы нужно отключить прибор. Ответ дайте в минутах.
Ответ: ___________________
8. Имеется два сплава. Первый сплав содержит 10% никеля, второй – 25% никеля. Из этих двух сплавов получили третий сплав массой 210кг, содержащий 15% никеля. На сколько килограммов масса первого сплава меньше массы второго?
Ответ: ___________________
9. На рисунке изображён график функции . Найдите .
Ответ: ___________________
10. Две фабрики выпускают одинаковые стекла для автомобильных фар. Первая фабрика выпускает 45% этих стекол, вторая – 55%. Первая фабрика выпускает 6% бракованных стекол, а вторая – 4%. Найдите вероятность того, что случайно купленное в магазине стекло окажется бракованным.
Ответ: ___________________
11. Найдите наибольшее значение функции
на отрезке .
Ответ: ___________________
Часть 2
12. а) Решите уравнение: .
б) Найдите корни этого уравнения, принадлежащие отрезку .
13. На ребрах DD1 и ВВ1 куба АВСDА1В1С1D1 с ребром 12 отмечены точки Р и Q соответственно, причём DP= 10, а В1Q = 4. Плоскость А1РQ пересекает ребро СС1 в точке М.
а) Докажите, что точка М является серединой ребра СС1.
б) Найдите расстояние от точки С1 до плоскости А1РQ.
14. Решите неравенство .
15. 15-го января планируется взять кредит в банке на шесть месяцев в размере 1 млн. рублей. Условия его возврата таковы:
– 1-го числа каждого месяца долг увеличивается на r процентов по сравнению с концом предыдущего месяца, где r – целое число;
– со 2-го по 14-е число каждого месяца необходимо выплатить часть долга;
– 15-го числа каждого месяца долг должен составлять некоторую сумму в соответствии со следующей таблицей.
Дата |
15.01 |
15.02 |
15.03 |
15.04 |
15.05 |
15.06 |
15.07 |
Долг (в млн рублей) |
1 |
0,6 |
0,4 |
0,3 |
0,2 |
0,1 |
0 |
Найдите наибольшее значение r, при котором общая сумма выплат будет меньше 1,2 млн рублей.
16. В трапеции АВСD основание АD в два раза меньше основания ВС. Внутри трапеции взяли точку М так, что углы ВАМ и СDМ прямые.
а) Докажите, что ВМ = СМ.
б) Найдите угол АВС, если угол ВСD равен 640, а расстояние от точки М до прямой ВС равно стороне АD.
17. Найдите значения a, при каждом из которых уравнение
имеет ровно два различных корня.
18. Задумано несколько (не обязательно различных) натуральных чисел. Эти числа и их все возможные суммы (по 2, по 3 и т.д.) выписывают на доску в порядке неубывания. Если какое-то число n, выписанное на доску, повторяется несколько раз, то на доске оставляется одно такое число n, а остальные числа, равные n, стираются. Например, если задуманы числа 1, 3, 3, 4, то на доске будет записан набор 1, 3, 4, 5, 6, 7, 8, 10, 11.
а) Приведите пример задуманных чисел, для которых на доске будет записан набор 1, 2, 3, 4, 5, 6, 7.
б) Существует ли пример таких задуманных чисел, для которых на доске будет записан набор 1, 3, 4, 6, 7, 8, 10, 11, 12, 13, 15, 16, 17, 19, 20, 22?
в) Приведите все примеры задуманных чисел, для которых на доске будет записан набор 7, 9, 11, 14, 16, 18. 20, 21, 23, 25, 27, 30, 32, 34, 41.
Предварительный просмотр:
МБОУ «Апраксинская СОШ»
ЕГЭ по МАТЕМАТИКЕ №1
Профильный уровень. 2022г.
Ответы
Часть 1
Вариант 1
1) 7; 2) 0,125; 3) 55; 4) – 10; 5) 56; 6) 5; 7) 6 75; 9) 34; 10) 0,025; 11) 28.
Вариант 2
1) 11; 2) 0,375; 3) 49; 4) – 6; 5) 64; 6) 3; 7) 7 90; 9) 7; 10) 0,027; 11) 23.
Вариант 3
1) 8; 2) 0,375; 3) 53; 4) – 20; 5) 72; 6) 5; 7) 5 80; 9) 23; 10) 0,038; 11) 30.
Вариант 4
1) 3; 2) 0,125; 3) 51; 4) – 16; 5) 70; 6) 3; 7) 8 70; 9) 47; 10) 0,049; 11) 11.
Часть 2
12) а) . 13) мой ответ: .
14) . 15) 7%. 16) 710. 17) мой ответ: .
18) а) 1, 2, 4 (1,1,1,1,1,1,1; 1,1,2,3); б) нет; в) 7, 7, 7, 9, 11 или 7, 9, 11, 14.
По теме: методические разработки, презентации и конспекты
- Мне нравится