Удельная теплоемкость железа егэ

Десятичные приставки

Наименование Обозначение Множитель
гига Г 109
мега М 106
кило к 103
деци д 10–1
санти с 10–2
милли м 10–3
микро мк 10–6
нано н 10–9
пико п 10–12

Физические постоянные (константы)

число π π = 3,14
ускорение свободного падения g = 10 м/с2
гравитационная постоянная G = 6,7·10–11 Н·м2/кг2
газовая постоянная R = 8,31 Дж/(моль·К)
постоянная Больцмана k = 1,38·10–23 Дж/К
постоянная Авогадро NA = 6,02·1023 1/моль
скорость света в вакууме с = 3·108 м/с
коэффициент пропорциональности в законе Кулона k = 1/(4πε0) = 9·109 Н·м2/Кл2
модуль заряд электрона e = 1,6·10-19 Кл
масса электрона me = 9,1·10–31 кг
масса протона mp = 1,67·10–27 кг
постоянная Планка h = 6,62·10-34 Дж·с
радиус Солнца 6,96·108 м
температура поверхности Солнца T = 6000 K
радиус Земли 6370 км

Соотношение между различными единицами измерения

температура 0 К = –273 0С
атомная единица массы 1 а.е.м. = 1,66·10–27 кг
1 атомная единица массы эквивалентна 931,5 МэВ
1 электронвольт 1 эВ = 1,6·10-19 Дж
1 астрономическая единица 1 а.е. ≈ 150 000 000 км
1 световой год 1 св. год ≈ 9,46·1015 м
1 парсек 1 пк ≈ 3,26 св. года

Масса частиц

электрона 9,1·10–31кг ≈ 5,5·10–4 а.е.м.
протона 1,673·10–27 кг ≈ 1,007 а.е.м.
нейтрона 1,675·10–27 кг ≈ 1,008 а.е.м.

Плотность

воды 1000 кг/м3
древесины (сосна) 400 кг/м3
керосина 800 кг/м3
подсолнечного масла 900 кг/м3
алюминия 2700 кг/м3
железа 7800 кг/м3
ртути 13 600 кг/м3

Удельная теплоёмкость

воды 4,2·10 3 Дж/(кг·К)
льда 2,1·10 3 Дж/(кг·К)
железа 460 Дж/(кг·К)
свинца 130 Дж/(кг·К)
алюминия 900 Дж/(кг·К)
меди 380 Дж/(кг·К)
чугуна 500 Дж/(кг·К)

Удельная теплота

парообразования воды 2,3·10 6 Дж/кг
плавления свинца 2,5·10 4 Дж/кг
плавления льда 3,3·10 5 Дж/кг

Нормальные условия:

давление 105 Па
температура 00 C

Молярная маcса молекул

азота 28·10–3 кг/моль
аргона 40·10–3 кг/моль
водорода 2·10–3 кг/моль
воздуха 29·10–3 кг/моль
воды 18·10–3 кг/моль
гелия 4·10–3 кг/моль
кислорода 32·10–3 кг/моль
лития 6·10–3 кг/моль
неона 20·10–3 кг/моль
углекислого газа 44·10–3 кг/моль

Справочные данные из демоверсии, которые могут понадобиться вам при выполнении работы.

Десятичные приставки
Константы
Соотношения между различными единицами
Масса частиц
Астрономические величины
Плотность
Удельная теплоёмкость
Удельная теплота
Нормальные условия
Молярная маcса

→ sp-fizika.pdf
→ Другой справочник с формулами.
→ Основные формулы по физике.
→ 180 формул по физике на одном листе.

Свойства железа: плотность, теплоемкость, теплопроводность и другиеВ таблице приведена плотность железа d, а также значения его удельной теплоемкости Cp, температуропроводности a, коэффициента теплопроводности λ, удельного электрического сопротивления ρ, функции Лоренца L/L0 при различных температурах — в диапазоне от 100 до 2000 К.

Свойства железа существенно зависят от температуры: при нагревании этого металла его плотность, теплопроводность и температуропроводность уменьшаются, а значение удельной теплоемкости железа растет.

Плотность железа равна 7870 кг/м3 при комнатной температуре. При нагревании железа его плотность снижается. Поскольку железо является основным элементом в составе стали, то плотность железа определяет и значение плотности стали. Зависимость плотности железа от температуры слабая — при его нагревании плотность металла снижается и принимает минимальное значение 7040 кг/м3 при температуре плавления, равной 1810 К или 1537°С.

Удельная теплоемкость железа, по данным таблицы, имеет значение 450 Дж/(кг·град) при температуре 27°С. В зависимости от структуры удельная теплоемкость твердого железа при увеличении температуры изменяется по-разному. По значениям в таблице видны характерный максимум теплоемкости железа вблизи Tc и скачки при структурных переходах и при плавлении.

В расплавленном состоянии свойства железа претерпевают изменения. Так, плотность жидкого железа уменьшается и становиться равной 7040 кг/м3. Удельная теплоемкость железа в расплавленном состоянии имеет величину 835 Дж/(кг·град), а теплопроводность железа снижается до значения 39 Вт/(м·град). При этом удельное электрическое сопротивление этого металла увеличивается и при 2000 К принимает значение 138·10-8 Ом·м.

Плотность железа, его удельная теплоемкость и теплопроводность - таблица

Теплопроводность железа при комнатной температуре равна 80 Вт/(м·град). С ростом температуры теплопроводность железа снижается — она имеет отрицательный температурный коэффициент в области температуры 100-1042 К, а затем начинает слабо расти. Минимальное значение теплопроводности железа составляет 25,4 Вт/(м·град) вблизи точки Кюри. При β-γ переходе наблюдается слабое изменение теплопроводности, которое также имеет место и при γ-δ переходе.

Теплопроводность железа резко падает по мере увеличения количества примесей, особенно кремния и серы. Наивысшей теплопроводностью обладает очень чистое электролитическое железо — его теплопроводность при 27°С равна 95 Вт/(м·град).

Зависимость коэффициента теплопроводности железа от температуры также определяется степенью чистоты этого металла. Чем железо чище, тем выше его теплопроводность и тем больше по абсолютной величине она снижается с повышением температуры.

Источники:

  1. В.Е. Зиновьев. Теплофизические свойства металлов при высоких температурах.
  2. Чиркин В. С. Теплофизические свойства материалов ядерной техники. М.: Атомиздат, 1967.

Количество теплоты

Автор статьи — профессиональный репетитор, автор учебных пособий для подготовки к ЕГЭ Игорь Вячеславович Яковлев

Темы кодификатора ЕГЭ: количество теплоты, удельная теплоёмкость вещества, уравнение теплового баланса.

Как мы знаем, одним из способов изменения внутренней энергии является теплопередача (теплообмен). Предположим, что тело участвует в теплообмене с другими телами, и при этом не совершается механическая работа — ни самим телом, ни другими телами над этим телом.

Если в процессе теплообмена внутренняя энергия тела изменилась на величину Delta U, то говорят, что тело получило соответствующее количество теплоты: Q = Delta U.

Если при этом величина Delta U отрицательна, т.е. тело отдавало энергию, то говорят также, что тело отдавало тепло. Например, вместо формально верной, но несколько нелепой фразы «тело получило —5 Дж тепла» мы скажем: «тело отдало 5 Дж тепла».

Удельная теплоёмкость вещества

Предположим, что в процессе теплообмена агрегатное состояние вещества тела не изменяется (не происходит плавление, кристаллизация, парообразование или конденсация). Начальную температуру тела обозначим t_1, конечную температуру — t_2.

Опыт показывает, что количество теплоты, полученное телом, прямо пропорционально массе тела m и разности конечной и начальной температур:

Q=cmleft ( t_2-t_1 right ).

Коэффициент пропорциональности c называется удельной теплоёмкостью вещества тела. Удельная теплоёмкость не зависит от формы и размеров тела. Удельные теплоёмкости различных веществ можно найти в таблицах.

Введя обозначение Delta t=t_2-t_1, получим также:

Q=cm Delta t.

Чтобы понять физический смысл удельной теплоёмкости, выразим её из последней формулы:

c=frac{displaystyle Q}{displaystyle mDelta t}.

Мы видим, что удельная теплоёмкость численно равна количеству теплоты, которое необходимо для нагревания 1кг данного вещества на rm 1^{circ}C (или, что то же самое, на rm 1K). Измеряется удельная теплоёмкость в Дж/(кг·phantom{1}^{circ}C) или в Дж/(кг·K).

Чем больше удельная теплоёмкость вещества, тем большее количество теплоты требуется для нагревания тела данной массы на заданное количество градусов.

В задачах часто фигурируют вода и лёд. Их удельные теплоёмкости желательно помнить.

Вода: c=4200 Дж/(кг·vphantom{1}^{circ}C).
Лёд: c=2100 Дж/(кг·vphantom{1}^{circ}C).

Произведение удельной теплоёмкости вещества на массу тела называется теплоёмкостью тела и обозначается C:

C = cm.

Соответственно, для количества теплоты имеем:

Q = C(t_2 - t_1).

Уравнение теплового баланса

Рассмотрим два тела (обозначим их 1 и 2), которые образуют замкнутую систему. Это означает, что данные тела могут обмениваться энергией только друг с другом, но не с другими телами. Считаем также, что механическая работа не совершается — внутренняя энергия тел меняется только в процессе теплообмена.

Имеется фундаментальный закон природы, подтверждаемый всевозможными экспериментами — закон сохранения энергии. Он гласит, что полная энергия замкнутой системы тел не меняется со временем.

В данном случае закон сохранения энергии утверждает, что внутренняя энергия нашей системы будет оставаться одной и той же: U_1+U_2 = const. Если изменение внутренней энергии первого тела равно Delta U_1, а изменение внутренней энергии второго тела равно Delta U_2, то суммарное изменение внутренней энергии будет равно нулю:

Delta U_1 + Delta U_2 = 0.

Но Delta U_1 = Q_1 — количество теплоты, полученное первым телом в процессе теплообмена; аналогично Delta U_2 = Q_2 — количество теплоты, полученное вторым телом в процессе теплообмена. Стало быть,

Q_1 + Q_2 = 0. (1)

Попросту говоря, сколько джоулей тепла отдало одно тело, ровно столько же джоулей получило второе тело. Так как система замкнута, ни один джоуль наружу не вышел. Соотношение (1) называется уравнением теплового баланса. В общем случае, когда n тел образуют замкнутую систему и обмениваются энергией только с помощью теплопередачи, из закона сохранения энергии с помощью тех же рассуждений получаем общее уравнение теплового баланса:

Q_1 + Q_2 + ldots + Q_n = 0. (2)

В качестве простого примера применения уравнения теплового баланса рассмотрим следующую задачу.

Смешали m_1=200г воды при температуре t_1=100^{circ}C и m_2=300г воды при температуре t_2=20^{circ}C. Найти установившуюся температуру смеси.

Обозначим искомую установившуюся температуру через Theta. Запишем уравнение теплового баланса (1):

cm_1(Theta - t_1) + cm_2(Theta - t_2) = 0,

где c — удельная теплоёмкость воды. Раскрываем скобки и находим:

Q=frac{displaystyle  m_1t_1+m_2t_2}{displaystyle  m_1+m_2}=52^{circ}C

Благодарим за то, что пользуйтесь нашими материалами.
Информация на странице «Количество теплоты» подготовлена нашими авторами специально, чтобы помочь вам в освоении предмета и подготовке к экзаменам.
Чтобы успешно сдать нужные и поступить в высшее учебное заведение или техникум нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими статьями из разделов нашего сайта.

Публикация обновлена:
09.03.2023

«Количество теплоты. Удельная теплоёмкость»



Количество теплоты

Изменение внутренней энергии путём совершения работы характеризуется величиной работы, т.е. работа является мерой изменения внутренней энергии в данном процессе. Изменение внутренней энергии тела при теплопередаче характеризуется величиной, называемой количествоv теплоты.

Количество теплоты – это изменение внутренней энергии тела в процессе теплопередачи без совершения работы.  Количество теплоты обозначают буквой Q.

Работа, внутренняя энергия и количество теплоты измеряются в одних и тех же единицах — джоулях (Дж), как и всякий вид энергии.

Количество теплоты

В тепловых измерениях в качестве единицы количества теплоты раньше использовалась особая единица энергии — калория (кал), равная количеству теплоты, необходимому для нагревания 1 грамма воды на 1 градус Цельсия (точнее, от 19,5 до 20,5 °С). Данную единицу, в частности, используют в настоящее время при расчетах потребления тепла (тепловой энергии) в многоквартирных домах. Опытным путем установлен механический эквивалент теплоты — соотношение между калорией и джоулем: 1 кал = 4,2 Дж.

количество теплоты

При передаче телу некоторого количества теплоты без совершения работы его внутренняя энергия увеличивается, если тело отдаёт какое-то количество теплоты, то его внутренняя энергия уменьшается.

Если в два одинаковых сосуда налить в один 100 г воды, а в другой 400 г при одной и той же температуре и поставить их на одинаковые горелки, то раньше закипит вода в первом сосуде. Таким образом, чем больше масса тела, тем большее количество тепла требуется ему для нагревания. То же самое и с охлаждением.

Количество теплоты 2

Количество теплоты, необходимое для нагревания тела зависит еще и от рода вещества, из которого это тело сделано. Эта зависимость количества теплоты, необходимого для нагревания тела, от рода вещества характеризуется физической величиной, называемой удельной теплоёмкостью вещества.



Удельная теплоёмкость

Удельная теплоёмкость – это физическая величина, равная количеству теплоты, которое необходимо сообщить 1 кг вещества для нагревания его на 1 °С (или на 1 К). Такое же количество теплоты 1 кг вещества отдаёт при охлаждении на 1 °С.

Удельная теплоёмкость обозначается буквой с. Единицей удельной теплоёмкости является 1 Дж/кг °С или 1 Дж/кг °К.

Значения удельной теплоёмкости веществ определяют экспериментально. Жидкости имеют большую удельную теплоёмкость, чем металлы; самую большую удельную теплоёмкость имеет вода, очень маленькую удельную теплоёмкость имеет золото.

Поскольку кол-во теплоты равно изменению внутренней энергии тела, то можно сказать, что удельная теплоёмкость показывает, на сколько изменяется внутренняя энергия 1 кг вещества при изменении его температуры на 1 °С. В частности, внутренняя энергия 1 кг свинца при его нагревании на 1 °С увеличивается на 140 Дж, а при охлаждении уменьшается на 140 Дж.

Количество теплоты Q, необходимое для нагревания тела массой m от температуры t1°С до температуры t2°С, равно произведению удельной теплоёмкости вещества, массы тела и разности конечной и начальной температур, т.е.

Q = c ∙ m (t2 — t1

По этой же формуле вычисляется и количество теплоты, которое тело отдаёт при охлаждении. Только в этом случае от начальной температуры следует отнять конечную, т.е. от большего значения температуры отнять меньшее.

Удельная теплоёмкость


Это конспект по теме «Количество теплоты. Удельная теплоёмкость». Выберите дальнейшие действия:

  • Перейти к следующему конспекту:  «Уравнение теплового баланса»
  • Вернуться к списку конспектов по Физике
  • Посмотреть решение типовых задач на количество теплоты
  • Взрослым: Skillbox, Geekbrains, Хекслет, Eduson, XYZ, Яндекс.
  • 8-11 класс: Умскул, Лектариум, Годограф, Знанио.
  • До 7 класса: Алгоритмика, Кодланд, Реботика.
  • Английский: Инглекс, Puzzle, Novakid.

Удельная теплоёмкость

По результатам одного из опытов, проведенных в предыдущем разделе, выявлено, что для нагрева на одну и ту же разность температур, различным веществам требуется различное количество теплоты. Эта характеристика вещества называется удельной теплоемкостью. Она показывает, какое количество теплоты надо сообщить единичной массе (за нее принят 1 кг) вещества для нагревания его на 1 градус Цельсия.

Удельная теплоемкость измеряется в . Например, теплоемкость воды равна 4200 . Это означает, что для нагревания 1 кг воды (1 литр при нормальных условиях) на 1 градус потребуется сообщить 4200 джоулей теплоты. И наоборот, при остывании 1 литра воды на 1 градус выделится то же самое количество теплоты – 4200 джоулей.

Удельная теплоемкость различных веществ

Для удобства восприятия, сведения об удельной теплоемкости некоторых веществ в разных агрегатных состояниях помещены в таблицу.

Вещество Агрегатное состояние Удельная теплоемкость,
Вода пресная Жидкость 4200
Вода морская Жидкость 4000
Лед (при 0 градусов) Твердое вещество 2100
Водяной пар (при 100 градусах) Газ 2000
Железо Твердое вещество (металл) 439
Золото Твердое вещество (металл) 129
Медь Твердое вещество (металл) 385
Олово Твердое вещество (металл) 222
Азот Газ 1051
Водород Газ 14270
Воздух Газ 1005
Пластик Твердое вещество 1300..2300 (в зависимости от типа)
Бетон Твердое вещество 710..1130 (в зависимости от типа)
Бумага Твердое вещество 1090..1500

Удельная теплоемкость газов приведена при температуре 20°С и нормальном атмосферном давлении.

Анализ теплоемкости различных веществ

Анализируя таблицу, можно заметить интересный факт – у одного и того же вещества в разных агрегатных состояниях (жидкость, твердое вещество, газ) удельная теплоемкость может значительно отличаться (в разы). Интересно и то, что вода имеет достаточно большую теплоемкость. В совокупности с другими свойствами (жидкое состояние при нормальных условиях, относительно низкая летучесть, безвредность для живых организмов) позволяет использовать ее в качестве теплоносителя в системах отопления.

Кроме того, вода влияет на климат. В жаркое время года она поглощает излишек теплоты, в холодное – медленно отдает тепло, остывая. Поэтому в районах, расположенных рядом с большими массами воды (на берегах морей и океанов, даже крупных рек и озер) климат сглаживается. Там летом не так жарко, а зимой не так холодно.

Теплоемкость каждого вещества определяется его молекулярным строением, но в целом тенденция такова, что чем плотнее вещество, тем меньше его теплоемкость. Это можно объяснить тем, что у веществ с большим удельным весом молекулы расположены ближе друг к другу, и кинетическая энергия от одной внутренней частицы к другой передается легче. Так, у газов удельные теплоемкости на порядок, а то и на два, выше, чем удельные теплоемкости металлов.

  • Взрослым: Skillbox, Geekbrains, Хекслет, Eduson, XYZ, Яндекс.
  • 8-11 класс: Умскул, Лектариум, Годограф, Знанио.
  • До 7 класса: Алгоритмика, Кодланд, Реботика.
  • Английский: Инглекс, Puzzle, Novakid.

Видеоурок 1: Удельная теплоемкость

Видеоурок 2: Расчет количества теплоты. Решение задач

Лекция: Количество теплоты.  Удельная теплоемкость вещества

Количество теплоты

Все мы знаем, что изменить внутреннюю энергию можно с помощью теплообмена (теплопередачи). Данный процесс происходит благодаря передачи энергии от более нагретого тела к менее нагретому без совершения работы.

В то время, когда в результате теплообмена, тело изменило свою энергию, говорят, что оно получило некоторое количество теплоты.

Если тело получает тепло, то количество теплоты и изменение внутренней энергии больше нуля. Если же данные величины отрицательные, то тело отдает тепло.

Удельная теплоемкость вещества

Рассмотрим процесс, при котором тело изменяет свою температуру, при этом изменения агрегатного состояния не происходит. В таком случае количество теплоты, переданное системе для нагревания тела на определенное количество градусов, зависит от массы данного тела. Однако, стоит отметить, что для нагревания различных веществ одинаковой массы на одинаковое количество градусов, необходима разная энергия.

С — удельная теплоемкость, которая не зависит от формы и размера тела, а зависит только от его структуры.

 Удельная теплоемкость — это то количество теплоты, которое необходимо для нагревания некоторого тела массой в 1 кг на 1 градус.

Чем больше данная величина, тем больше энергии необходимо для нагревания данного тела. Судя из таблицы, можно сделать вывод, что проще всего нагреть золото, поскольку для нагревания 1 кг золота на 1 градус следует потратить 130 Дж энергии. А тяжелее всего нагреть воду, поскольку для её нагревания необходимо 4200 Дж.

Понравилась статья? Поделить с друзьями:
  • Удельная теплоемкость аргона егэ
  • Удачи завтра на экзамене картинки
  • Удачи на экзамене по информатике
  • Удельная теплоемкость алюминия егэ физика
  • Удачи детям на экзаменах