Удельные теплоемкости веществ егэ

Количество теплоты

Автор статьи — профессиональный репетитор, автор учебных пособий для подготовки к ЕГЭ Игорь Вячеславович Яковлев

Темы кодификатора ЕГЭ: количество теплоты, удельная теплоёмкость вещества, уравнение теплового баланса.

Как мы знаем, одним из способов изменения внутренней энергии является теплопередача (теплообмен). Предположим, что тело участвует в теплообмене с другими телами, и при этом не совершается механическая работа — ни самим телом, ни другими телами над этим телом.

Если в процессе теплообмена внутренняя энергия тела изменилась на величину Delta U, то говорят, что тело получило соответствующее количество теплоты: Q = Delta U.

Если при этом величина Delta U отрицательна, т.е. тело отдавало энергию, то говорят также, что тело отдавало тепло. Например, вместо формально верной, но несколько нелепой фразы «тело получило —5 Дж тепла» мы скажем: «тело отдало 5 Дж тепла».

Удельная теплоёмкость вещества

Предположим, что в процессе теплообмена агрегатное состояние вещества тела не изменяется (не происходит плавление, кристаллизация, парообразование или конденсация). Начальную температуру тела обозначим t_1, конечную температуру — t_2.

Опыт показывает, что количество теплоты, полученное телом, прямо пропорционально массе тела m и разности конечной и начальной температур:

Q=cmleft ( t_2-t_1 right ).

Коэффициент пропорциональности c называется удельной теплоёмкостью вещества тела. Удельная теплоёмкость не зависит от формы и размеров тела. Удельные теплоёмкости различных веществ можно найти в таблицах.

Введя обозначение Delta t=t_2-t_1, получим также:

Q=cm Delta t.

Чтобы понять физический смысл удельной теплоёмкости, выразим её из последней формулы:

c=frac{displaystyle Q}{displaystyle mDelta t}.

Мы видим, что удельная теплоёмкость численно равна количеству теплоты, которое необходимо для нагревания 1кг данного вещества на rm 1^{circ}C (или, что то же самое, на rm 1K). Измеряется удельная теплоёмкость в Дж/(кг·phantom{1}^{circ}C) или в Дж/(кг·K).

Чем больше удельная теплоёмкость вещества, тем большее количество теплоты требуется для нагревания тела данной массы на заданное количество градусов.

В задачах часто фигурируют вода и лёд. Их удельные теплоёмкости желательно помнить.

Вода: c=4200 Дж/(кг·vphantom{1}^{circ}C).
Лёд: c=2100 Дж/(кг·vphantom{1}^{circ}C).

Произведение удельной теплоёмкости вещества на массу тела называется теплоёмкостью тела и обозначается C:

C = cm.

Соответственно, для количества теплоты имеем:

Q = C(t_2 - t_1).

Уравнение теплового баланса

Рассмотрим два тела (обозначим их 1 и 2), которые образуют замкнутую систему. Это означает, что данные тела могут обмениваться энергией только друг с другом, но не с другими телами. Считаем также, что механическая работа не совершается — внутренняя энергия тел меняется только в процессе теплообмена.

Имеется фундаментальный закон природы, подтверждаемый всевозможными экспериментами — закон сохранения энергии. Он гласит, что полная энергия замкнутой системы тел не меняется со временем.

В данном случае закон сохранения энергии утверждает, что внутренняя энергия нашей системы будет оставаться одной и той же: U_1+U_2 = const. Если изменение внутренней энергии первого тела равно Delta U_1, а изменение внутренней энергии второго тела равно Delta U_2, то суммарное изменение внутренней энергии будет равно нулю:

Delta U_1 + Delta U_2 = 0.

Но Delta U_1 = Q_1 — количество теплоты, полученное первым телом в процессе теплообмена; аналогично Delta U_2 = Q_2 — количество теплоты, полученное вторым телом в процессе теплообмена. Стало быть,

Q_1 + Q_2 = 0. (1)

Попросту говоря, сколько джоулей тепла отдало одно тело, ровно столько же джоулей получило второе тело. Так как система замкнута, ни один джоуль наружу не вышел. Соотношение (1) называется уравнением теплового баланса. В общем случае, когда n тел образуют замкнутую систему и обмениваются энергией только с помощью теплопередачи, из закона сохранения энергии с помощью тех же рассуждений получаем общее уравнение теплового баланса:

Q_1 + Q_2 + ldots + Q_n = 0. (2)

В качестве простого примера применения уравнения теплового баланса рассмотрим следующую задачу.

Смешали m_1=200г воды при температуре t_1=100^{circ}C и m_2=300г воды при температуре t_2=20^{circ}C. Найти установившуюся температуру смеси.

Обозначим искомую установившуюся температуру через Theta. Запишем уравнение теплового баланса (1):

cm_1(Theta - t_1) + cm_2(Theta - t_2) = 0,

где c — удельная теплоёмкость воды. Раскрываем скобки и находим:

Q=frac{displaystyle  m_1t_1+m_2t_2}{displaystyle  m_1+m_2}=52^{circ}C

Благодарим за то, что пользуйтесь нашими материалами.
Информация на странице «Количество теплоты» подготовлена нашими авторами специально, чтобы помочь вам в освоении предмета и подготовке к экзаменам.
Чтобы успешно сдать нужные и поступить в высшее учебное заведение или техникум нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими статьями из разделов нашего сайта.

Публикация обновлена:
09.03.2023


Пройти тестирование по этим заданиям
Вернуться к каталогу заданий

Версия для печати и копирования в MS Word

1

Зависимость температуры 0,2 кг первоначально газообразного вещества от количества выделенной им теплоты представлена на рисунке. Рассматриваемый процесс идет при постоянном давлении. Какова удельная теплота парообразования этого вещества? Ответ выразите в кДж/кг.


2

На рисунке приведен график зависимости температуры твердого тела от отданного им количества теплоты. Масса тела 4 кг. Какова удельная теплоемкость вещества этого тела? Ответ дайте в джоулях на килограмм на кельвин.


3

Температура медного образца массой 100 г повысилась с 20 °C до 60 °C. Какое количество теплоты получил образец? (Ответ дать в джоулях. Удельную теплоёмкость меди считать равной 380Дж/ левая круглая скобка кг умножить на градусов С правая круглая скобка правая круглая скобка .


4

На рисунке приведена зависимость температуры твердого тела от полученного им количества теплоты. Масса тела 2 кг. Какова удельная теплоемкость вещества этого тела? Ответ приведите в джоулях на килограмм на Кельвин.


5

На рисунке приведена зависимость температуры твердого тела от полученного им количества теплоты. Масса тела 2 кг. Какова удельная теплоемкость вещества этого тела? Ответ приведите в джоулях на килограмм на Кельвин.

Пройти тестирование по этим заданиям

«Количество теплоты. Удельная теплоёмкость»



Количество теплоты

Изменение внутренней энергии путём совершения работы характеризуется величиной работы, т.е. работа является мерой изменения внутренней энергии в данном процессе. Изменение внутренней энергии тела при теплопередаче характеризуется величиной, называемой количествоv теплоты.

Количество теплоты – это изменение внутренней энергии тела в процессе теплопередачи без совершения работы.  Количество теплоты обозначают буквой Q.

Работа, внутренняя энергия и количество теплоты измеряются в одних и тех же единицах — джоулях (Дж), как и всякий вид энергии.

Количество теплоты

В тепловых измерениях в качестве единицы количества теплоты раньше использовалась особая единица энергии — калория (кал), равная количеству теплоты, необходимому для нагревания 1 грамма воды на 1 градус Цельсия (точнее, от 19,5 до 20,5 °С). Данную единицу, в частности, используют в настоящее время при расчетах потребления тепла (тепловой энергии) в многоквартирных домах. Опытным путем установлен механический эквивалент теплоты — соотношение между калорией и джоулем: 1 кал = 4,2 Дж.

количество теплоты

При передаче телу некоторого количества теплоты без совершения работы его внутренняя энергия увеличивается, если тело отдаёт какое-то количество теплоты, то его внутренняя энергия уменьшается.

Если в два одинаковых сосуда налить в один 100 г воды, а в другой 400 г при одной и той же температуре и поставить их на одинаковые горелки, то раньше закипит вода в первом сосуде. Таким образом, чем больше масса тела, тем большее количество тепла требуется ему для нагревания. То же самое и с охлаждением.

Количество теплоты 2

Количество теплоты, необходимое для нагревания тела зависит еще и от рода вещества, из которого это тело сделано. Эта зависимость количества теплоты, необходимого для нагревания тела, от рода вещества характеризуется физической величиной, называемой удельной теплоёмкостью вещества.



Удельная теплоёмкость

Удельная теплоёмкость – это физическая величина, равная количеству теплоты, которое необходимо сообщить 1 кг вещества для нагревания его на 1 °С (или на 1 К). Такое же количество теплоты 1 кг вещества отдаёт при охлаждении на 1 °С.

Удельная теплоёмкость обозначается буквой с. Единицей удельной теплоёмкости является 1 Дж/кг °С или 1 Дж/кг °К.

Значения удельной теплоёмкости веществ определяют экспериментально. Жидкости имеют большую удельную теплоёмкость, чем металлы; самую большую удельную теплоёмкость имеет вода, очень маленькую удельную теплоёмкость имеет золото.

Поскольку кол-во теплоты равно изменению внутренней энергии тела, то можно сказать, что удельная теплоёмкость показывает, на сколько изменяется внутренняя энергия 1 кг вещества при изменении его температуры на 1 °С. В частности, внутренняя энергия 1 кг свинца при его нагревании на 1 °С увеличивается на 140 Дж, а при охлаждении уменьшается на 140 Дж.

Количество теплоты Q, необходимое для нагревания тела массой m от температуры t1°С до температуры t2°С, равно произведению удельной теплоёмкости вещества, массы тела и разности конечной и начальной температур, т.е.

Q = c ∙ m (t2 — t1

По этой же формуле вычисляется и количество теплоты, которое тело отдаёт при охлаждении. Только в этом случае от начальной температуры следует отнять конечную, т.е. от большего значения температуры отнять меньшее.

Удельная теплоёмкость


Это конспект по теме «Количество теплоты. Удельная теплоёмкость». Выберите дальнейшие действия:

  • Перейти к следующему конспекту:  «Уравнение теплового баланса»
  • Вернуться к списку конспектов по Физике
  • Посмотреть решение типовых задач на количество теплоты

Видеоурок 1: Удельная теплоемкость

Видеоурок 2: Расчет количества теплоты. Решение задач

Лекция: Количество теплоты.  Удельная теплоемкость вещества

Количество теплоты

Все мы знаем, что изменить внутреннюю энергию можно с помощью теплообмена (теплопередачи). Данный процесс происходит благодаря передачи энергии от более нагретого тела к менее нагретому без совершения работы.

В то время, когда в результате теплообмена, тело изменило свою энергию, говорят, что оно получило некоторое количество теплоты.

Если тело получает тепло, то количество теплоты и изменение внутренней энергии больше нуля. Если же данные величины отрицательные, то тело отдает тепло.

Удельная теплоемкость вещества

Рассмотрим процесс, при котором тело изменяет свою температуру, при этом изменения агрегатного состояния не происходит. В таком случае количество теплоты, переданное системе для нагревания тела на определенное количество градусов, зависит от массы данного тела. Однако, стоит отметить, что для нагревания различных веществ одинаковой массы на одинаковое количество градусов, необходима разная энергия.

С — удельная теплоемкость, которая не зависит от формы и размера тела, а зависит только от его структуры.

 Удельная теплоемкость — это то количество теплоты, которое необходимо для нагревания некоторого тела массой в 1 кг на 1 градус.

Чем больше данная величина, тем больше энергии необходимо для нагревания данного тела. Судя из таблицы, можно сделать вывод, что проще всего нагреть золото, поскольку для нагревания 1 кг золота на 1 градус следует потратить 130 Дж энергии. А тяжелее всего нагреть воду, поскольку для её нагревания необходимо 4200 Дж.

Количество теплоты. Удельная теплоёмкость

1. Изменение внутренней энергии путём совершения работы характеризуется величиной работы, т.е. работа является мерой изменения внутренней энергии в данном процессе. Изменение внутренней энергии тела при теплопередаче характеризуется величиной, называемой количеством теплоты.

Количеством теплоты называется изменение внутренней энергии тела в процессе теплопередачи без совершения работы.

Количество теплоты обозначают буквой ​( Q )​. Так как количество теплоты является мерой изменения внутренней энергии, то его единицей является джоуль (1 Дж).

При передаче телу некоторого количества теплоты без совершения работы его внутренняя энергия увеличивается, если тело отдаёт какое-то количество теплоты, то его внутренняя энергия уменьшается.

2. Если в два одинаковых сосуда налить в один 100 г воды, а в другой 400 г при одной и той же температуре и поставить их на одинаковые горелки, то раньше закипит вода в первом сосуде. Таким образом, чем больше масса тела, тем большее количество теплоты требуется ему для нагревания. То же самое и с охлаждением: тело большей массы при охлаждении отдаёт большее количество теплоты. Эти тела сделаны из одного и того же вещества и нагреваются они или охлаждаются на одно и то же число градусов.

[ Qsim m ]

​3. Если теперь нагревать 100 г воды от 30 до 60 °С, т.е. на 30 °С, а затем до 100 °С, т.е. на 70 °С, то в первом случае на нагревание уйдёт меньше времени, чем во втором, и, соответственно, на нагревание воды на 30 °С, будет затрачено меньшее количество теплоты, чем на нагревание воды на 70 °С. Таким образом, количество теплоты прямо пропорционально разности конечной ​( (t_2,^circ C) )​ и начальной ( (t_1,^circ C) ) температур: ​( Qsim(t_2-t_1) )​.

4. Если теперь в один сосуд налить 100 г воды, а в другой такой же сосуд налить немного воды и положить в неё такое металлическое тело, чтобы его масса и масса воды составляли 100 г, и нагревать сосуды на одинаковых плитках, то можно заметить, что в сосуде, в котором находится только вода, температура будет ниже, чем в том, в котором находятся вода и металлическое тело. Следовательно, чтобы температура содержимого в обоих сосудах была одинаковой нужно воде передать большее количество теплоты, чем воде и металлическому телу. Таким образом, количество теплоты, необходимое для нагревания тела зависит от рода вещества, из которого это тело сделано.

5. Зависимость количества теплоты, необходимого для нагревания тела, от рода вещества характеризуется физической величиной, называемой удельной теплоёмкостью вещества.

Физическая величина, равная количеству теплоты, которое необходимо сообщить 1 кг вещества для нагревания его на 1 °С (или на 1 К), называется удельной теплоёмкостью вещества.

Такое же количество теплоты 1 кг вещества отдаёт при охлаждении на 1 °С.

Удельная теплоёмкость обозначается буквой ​( c )​. Единицей удельной теплоёмкости является 1 Дж/кг °С или 1 Дж/кг К.

Значения удельной теплоёмкости веществ определяют экспериментально. Жидкости имеют большую удельную теплоёмкость, чем металлы; самую большую удельную теплоёмкость имеет вода, очень маленькую удельную теплоёмкость имеет золото.

Удельная теплоёмкость свинца 140 Дж/кг °С. Это значит, что для нагревания 1 кг свинца на 1 °С необходимо затратить количество теплоты 140 Дж. Такое же количество теплоты выделится при остывании 1 кг воды на 1 °С.

Поскольку количество теплоты равно изменению внутренней энергии тела, то можно сказать, что удельная теплоёмкость показывает, на сколько изменяется внутренняя энергия 1 кг вещества при изменении его температуры на 1 °С. В частности, внутренняя энергия 1 кг свинца при его нагревании на 1 °С увеличивается на 140 Дж, а при охлаждении уменьшается на 140 Дж.

Количество теплоты ​( Q )​, необходимое для нагревания тела массой ​( m )​ от температуры ( (t_1,^circ C) ) до температуры ( (t_2,^circ C) ), равно произведению удельной теплоёмкости вещества, массы тела и разности конечной и начальной температур, т.е.

[ Q=cm(t_2{}^circ-t_1{}^circ) ]

​По этой же формуле вычисляется и количество теплоты, которое тело отдаёт при охлаждении. Только в этом случае от начальной температуры следует отнять конечную, т.е. от большего значения температуры отнять меньшее.

6. Пример решения задачи. В стакан, содержащий 200 г воды при температуре 80 °С, налили 100 г воды при температуре 20 °С. После чего в сосуде установилась температура 60 °С. Какое количество теплоты получила холодная вода и отдала горячая вода?

При решении задачи необходимо выполнять следующую последовательность действий:

  1. записать кратко условие задачи;
  2. перевести значения величин в СИ;
  3. проанализировать задачу, установить, какие тела участвуют в теплообмене, какие тела отдают энергию, а какие получают;
  4. решить задачу в общем виде;
  5. выполнить вычисления;
  6. проанализировать полученный ответ.

1. Условие задачи.

Дано:
( m_1 )​ = 200 г
( m_2 )​ = 100 г
( t_1 )​ = 80 °С
( t_2 )​ = 20 °С
( t )​ = 60 °С
______________

( Q_1 )​ — ? ​( Q_2 )​ — ?
( c_1 )​ = 4200 Дж/кг · °С

2. СИ:( m_1 )​ = 0,2 кг; ​( m_2 )​ = 0,1 кг.

3. Анализ задачи. В задаче описан процесс теплообмена между горячей и холодной водой. Горячая вода отдаёт количество теплоты ​( Q_1 )​ и охлаждается от температуры ​( t_1 )​ до температуры ​( t )​. Холодная вода получает количество теплоты ​( Q_2 )​ и нагревается от температуры ​( t_2 )​ до температуры ​( t )​.

4. Решение задачи в общем виде. Количество теплоты, отданное горячей водой, вычисляется по формуле: ​( Q_1=c_1m_1(t_1-t) )​.

Количество теплоты, полученное холодной водой, вычисляется по формуле: ( Q_2=c_2m_2(t-t_2) ).

5. Вычисления.
( Q_1 )​ = 4200 Дж/кг · °С · 0,2 кг · 20 °С = 16800 Дж
( Q_2 ) = 4200 Дж/кг · °С · 0,1 кг · 40 °С = 16800 Дж

6. В ответе получено, что количество теплоты, отданное горячей водой, равно количеству теплоты, полученному холодной водой. При этом рассматривалась идеализированная ситуация и не учитывалось, что некоторое количество теплоты пошло на нагревание стакана, в котором находилась вода, и окружающего воздуха. В действительности же количество теплоты, отданное горячей водой, больше, чем количество теплоты, полученное холодной водой.

Содержание

  • ПРИМЕРЫ ЗАДАНИЙ
    • Часть 1
    • Часть 2
  • Ответы

ПРИМЕРЫ ЗАДАНИЙ

Часть 1

1. Удельная теплоёмкость серебра 250 Дж/(кг · °С). Что это означает?

1) при остывании 1 кг серебра на 250 °С выделяется количество теплоты 1 Дж
2) при остывании 250 кг серебра на 1 °С выделяется количество теплоты 1 Дж
3) при остывании 250 кг серебра на 1 °С поглощается количество теплоты 1 Дж
4) при остывании 1 кг серебра на 1 °С выделяется количество теплоты 250 Дж

2. Удельная теплоёмкость цинка 400 Дж/(кг · °С). Это означает, что

1) при нагревании 1 кг цинка на 400 °С его внутренняя энергия увеличивается на 1 Дж
2) при нагревании 400 кг цинка на 1 °С его внутренняя энергия увеличивается на 1 Дж
3) для нагревания 400 кг цинка на 1 °С его необходимо затратить 1 Дж энергии
4) при нагревании 1 кг цинка на 1 °С его внутренняя энергия увеличивается на 400 Дж

3. При передаче твёрдому телу массой ​( m )​ количества теплоты ​( Q )​ температура тела повысилась на ​( Delta t^circ )​. Какое из приведённых ниже выражений определяет удельную теплоёмкость вещества этого тела?

1) ​( frac{mDelta t^circ}{Q} )
2) ( frac{Q}{mDelta t^circ} )
3) ( frac{Q}{Delta t^circ} )
4) ( QmDelta t^circ )

4. На рисунке приведён график зависимости количества теплоты, необходимого для нагревания двух тел (1 и 2) одинаковой массы, от температуры. Сравните значения удельной теплоёмкости (​( c_1 )​ и ​( c_2 )​) веществ, из которых сделаны эти тела.

1) ​( c_1=c_2 )
2) ​( c_1>c_2 )
3) ( c_1<c_2 )
4) ответ зависит от значения массы тел

5. На диаграмме представлены значения количества теплоты, переданного двум телам равной массы при изменении их температуры на одно и то же число градусов. Какое соотношение для удельных теплоёмкостей веществ, из которых изготовлены тела, является верным?

1) ( c_1=c_2 )
2) ( c_1=3c_2 )
3) ( c_2=3c_1 )
4) ( c_2=2c_1 )

6. На рисунке представлен график зависимости температуры твёрдого тела от отданного им количества теплоты. Масса тела 4 кг. Чему равна удельная теплоёмкость вещества этого тела?

1) 500 Дж/(кг · °С)
2) 250 Дж/(кг · °С)
3) 125 Дж/(кг · °С)
4) 100 Дж/(кг · °С)

7. При нагревании кристаллического вещества массой 100 г измеряли температуру вещества и количество теплоты, сообщённое веществу. Данные измерений представили в виде таблицы. Считая, что потерями энергии можно пренебречь, определите удельную теплоёмкость вещества в твёрдом состоянии.

1) 192 Дж/(кг · °С)
2) 240 Дж/(кг · °С)
3) 576 Дж/(кг · °С)
4) 480 Дж/(кг · °С)

8. Чтобы нагреть 192 г молибдена на 1 К, нужно передать ему количество теплоты 48 Дж. Чему равна удельная теплоёмкость этого вещества?

1) 250 Дж/(кг · К)
2) 24 Дж/(кг · К)
3) 4·10-3 Дж/(кг · К)
4) 0,92 Дж/(кг · К)

9. Какое количество теплоты необходимо для нагревания 100 г свинца от 27 до 47 °С?

1) 390 Дж
2) 26 кДж
3) 260 Дж
4) 390 кДж

10. На нагревание кирпича от 20 до 85 °С затрачено такое же количество теплоты, как для нагревания воды такой же массы на 13 °С. Удельная теплоёмкость кирпича равна

1) 840 Дж/(кг · К)
2) 21000 Дж/(кг · К)
3) 2100 Дж/(кг · К)
4) 1680 Дж/(кг · К)

11. Из перечня приведённых ниже высказываний выберите два правильных и запишите их номера в таблицу.

1) Количество теплоты, которое тело получает при повышении его температуры на некоторое число градусов, равно количеству теплоты, которое это тело отдаёт при понижении его температуры на такое же число градусов.
2) При охлаждении вещества его внутренняя энергия увеличивается.
3) Количество теплоты, которое вещество получает при нагревании, идёт главным образом на увеличение кинетической энергии его молекул.
4) Количество теплоты, которое вещество получает при нагревании, идёт главным образом на увеличение потенциальной энергии взаимодействия его молекул
5) Внутреннюю энергию тела можно изменить, только сообщив ему некоторое количество теплоты

12. В таблице представлены результаты измерений массы ​( m )​, изменения температуры ​( Delta t )​ и количества теплоты ​( Q )​, выделяющегося при охлаждении цилиндров, изготовленных из меди или алюминия.

Какие утверждения соответствуют результатам проведённого эксперимента? Из предложенного перечня выберите два правильных. Укажите их номера. На основании проведенных измерений можно утверждать, что количество теплоты, выделяющееся при охлаждении,

1) зависит от вещества, из которого изготовлен цилиндр.
2) не зависит от вещества, из которого изготовлен цилиндр.
3) увеличивается при увеличении массы цилиндра.
4) увеличивается при увеличении разности температур.
5) удельная теплоёмкость алюминия в 4 раза больше, чем удельная теплоёмкость олова.

Часть 2

C1.Твёрдое тело массой 2 кг помещают в печь мощностью 2 кВт и начинают нагревать. На рисунке изображена зависимость температуры ​( t )​ этого тела от времени нагревания ​( tau )​. Чему равна удельная теплоёмкость вещества?

1) 400 Дж/(кг · °С)
2) 200 Дж/(кг · °С)
3) 40 Дж/(кг · °С)
4) 20 Дж/(кг · °С)

Ответы

Количество теплоты. Удельная теплоёмкость

3.1 (62.86%) 63 votes

Физика под удельной теплоемкостью понимает количество теплоты, которое термодинамическое вещество или система способно поглотить до повышения температуры. 

Определение из учебника говорит, что это количество тепла, необходимое для создания температуры при нагревании.

Количество теплоты

Единица измерения — джоуль. Другой распространенной формой измерения является использование калорий.

Количество теплоты

Обозначается латинской буквой Q.

Удельная теплоемкость вещества

Это физическая величина, выражающая количество тепла, необходимое веществу на единицу массы для повышения температуры на одну единицу. 

Удельная теплоемкость

Таким образом, удельная теплоёмкость является свойством вещества, поскольку его значение является репрезентативным для каждого вещества, каждое из которых, в свою очередь, имеет различные значения в зависимости от того, в каком состоянии оно находится (жидкое, твердое или газообразное).

Удельная теплоёмкость обозначается маленькой буквой c и измеряется в Дж/кг∗°С, представляет собой коэффициент повышения температуры в одной единице всей системы или всей массы вещества. 

Кроме того, удельная теплоёмкость меняется в зависимости от физического состояния вещества, особенно в случае твердых частиц и газов, поскольку его молекулярная структура влияет на теплопередачу в системе частиц. То же самое относится и к условиям атмосферного давления: чем выше давление, тем ниже удельное тепло.

Основной состав удельной теплоты вещества должен быть с = С/m, т. е. удельная теплота равна соотношению калорийности и массы. Однако когда это применяется к данному изменению температуры, говорят о средней удельной теплоемкости, которая рассчитывается на основе следующей формулы:

110

где:

Q — передача тепловой энергии между системой и средой (Дж);

m — масса системы (кг);

Δt или (t2 — t1) — повышение температуры, которой она подвергается (°C).

Формула для нахождения количества теплоты Q:

Q = c∗m(t2 — t1)

Чем выше удельная теплоёмкость вещества, тем больше тепловой энергии потребуется, чтобы его температура повысилась. Например, для нагрева воды (своды = 4200 Дж/кг∗°С) потребуется больше тепловой энергии, чем для нагрева свинца (ссвинца = 140 Дж/кг∗°С).

Уравнение теплового баланса:

Q отданное + Q полученное = 0.

Ниже представлена таблица значений удельной теплоёмкости некоторых веществ:

Таблица теплоемкости

Примеры решения задач

Следующие задачи покажут примеры расчета необходимого количества теплоты.

Задача №1

Сколько теплоты нужно, чтобы изо льда массой 2 кг, взятого при температуре -10°С, получить пар при 100°С?

109

Решение:

111

Ответ: чтобы изо льда массой 2 кг, взятого при температуре -10°С, получить пар при 100°С, нужно взять 6,162 мегаджоулей теплоты.

Задача №2

В железный котёл массой 5 кг налита вода массой 10 кг. Какое количество теплоты нужно передать котлу с водой для изменения их температуры от 10 до 100°С?

Начнем решение и отметим, что нагреваться будет и котёл, и вода. Разница температур составит 1000С — 100С = 900С. Т. е. и температура котла изменится на 90 градусов, и температура воды также изменится на 90 градусов. 

Количества теплоты, которые получили оба объекта (Q1
– для котла и Q2 — для воды), не будут одинаковыми. Мы найдем общее количество теплоты по формуле теплового баланса Q = Q1 + Q2.

111

  • Взрослым: Skillbox, Geekbrains, Хекслет, Eduson, XYZ, Яндекс.
  • 8-11 класс: Умскул, Лектариум, Годограф, Знанио.
  • До 7 класса: Алгоритмика, Кодланд, Реботика.
  • Английский: Инглекс, Puzzle, Novakid.

Удельная теплоёмкость

По результатам одного из опытов, проведенных в предыдущем разделе, выявлено, что для нагрева на одну и ту же разность температур, различным веществам требуется различное количество теплоты. Эта характеристика вещества называется удельной теплоемкостью. Она показывает, какое количество теплоты надо сообщить единичной массе (за нее принят 1 кг) вещества для нагревания его на 1 градус Цельсия.

Удельная теплоемкость измеряется в . Например, теплоемкость воды равна 4200 . Это означает, что для нагревания 1 кг воды (1 литр при нормальных условиях) на 1 градус потребуется сообщить 4200 джоулей теплоты. И наоборот, при остывании 1 литра воды на 1 градус выделится то же самое количество теплоты – 4200 джоулей.

Удельная теплоемкость различных веществ

Для удобства восприятия, сведения об удельной теплоемкости некоторых веществ в разных агрегатных состояниях помещены в таблицу.

Вещество Агрегатное состояние Удельная теплоемкость,
Вода пресная Жидкость 4200
Вода морская Жидкость 4000
Лед (при 0 градусов) Твердое вещество 2100
Водяной пар (при 100 градусах) Газ 2000
Железо Твердое вещество (металл) 439
Золото Твердое вещество (металл) 129
Медь Твердое вещество (металл) 385
Олово Твердое вещество (металл) 222
Азот Газ 1051
Водород Газ 14270
Воздух Газ 1005
Пластик Твердое вещество 1300..2300 (в зависимости от типа)
Бетон Твердое вещество 710..1130 (в зависимости от типа)
Бумага Твердое вещество 1090..1500

Удельная теплоемкость газов приведена при температуре 20°С и нормальном атмосферном давлении.

Анализ теплоемкости различных веществ

Анализируя таблицу, можно заметить интересный факт – у одного и того же вещества в разных агрегатных состояниях (жидкость, твердое вещество, газ) удельная теплоемкость может значительно отличаться (в разы). Интересно и то, что вода имеет достаточно большую теплоемкость. В совокупности с другими свойствами (жидкое состояние при нормальных условиях, относительно низкая летучесть, безвредность для живых организмов) позволяет использовать ее в качестве теплоносителя в системах отопления.

Кроме того, вода влияет на климат. В жаркое время года она поглощает излишек теплоты, в холодное – медленно отдает тепло, остывая. Поэтому в районах, расположенных рядом с большими массами воды (на берегах морей и океанов, даже крупных рек и озер) климат сглаживается. Там летом не так жарко, а зимой не так холодно.

Теплоемкость каждого вещества определяется его молекулярным строением, но в целом тенденция такова, что чем плотнее вещество, тем меньше его теплоемкость. Это можно объяснить тем, что у веществ с большим удельным весом молекулы расположены ближе друг к другу, и кинетическая энергия от одной внутренней частицы к другой передается легче. Так, у газов удельные теплоемкости на порядок, а то и на два, выше, чем удельные теплоемкости металлов.

  • Взрослым: Skillbox, Geekbrains, Хекслет, Eduson, XYZ, Яндекс.
  • 8-11 класс: Умскул, Лектариум, Годограф, Знанио.
  • До 7 класса: Алгоритмика, Кодланд, Реботика.
  • Английский: Инглекс, Puzzle, Novakid.

Понравилась статья? Поделить с друзьями:
  • Удачи при сдаче экзаменов картинка
  • Удельное сопротивление стали егэ
  • Удачи на экзаменах картинки красивые
  • Удачи нашим детям на экзамене картинки
  • Удельная теплота плавления свинца егэ