Уравнения с логарифмами часть с егэ

Skip to content

ЕГЭ Профиль №13. Логарифмические уравнения

ЕГЭ Профиль №13. Логарифмические уравненияadmin2018-08-29T21:30:04+03:00

Используйте LaTeX для набора формулы

Прежде чем решать логарифмические уравнения, повторим еще раз определение логарифма и основные формулы.

Логарифм положительного числа b по основанию a — это показатель степени, в которую надо возвести a, чтобы получить b.

log _{a}b=cLeftrightarrow a^{c}=b.

При этом b> 0,;a> 0,;aneq 1.

Обратим внимание на область допустимых значений логарифма:

b> 0,;a> 0,;aneq 1.

Основное логарифмическое тождество:

a^{log _{a}b}=b,

log _{a}a^{c}=c.

Основные формулы для логарифмов:

log _{a}left ( bc right )=log _{a}b+log _{a}c (Логарифм произведения равен сумме логарифмов)

log _{a}left ( frac{b}{c}right )=log _{a}b-log _{a}c (Логарифм частного равен разности логарифмов)
log _{a}b^{m}=mlog_{a}b (Формула для логарифма степени)

Формула перехода к новому основанию:

log _{a}b=frac{log _{c}b}{log _{c}a}

log _{a}b=frac{1}{log _{b}a} .

Мы знаем, как выглядит график логарифмической функции. Эта функция монотонна. Если основание логарифма больше единицы, логарифмическая функция монотонно возрастает. Если основание больше нуля и меньше единицы, логарифмическая функция монотонно убывает. И в любом случае каждое свое значение она принимает только один раз. Это значит, что если логарифмы двух чисел по какому-либо основанию равны, то равны и сами числа.

Все это пригодится нам в решении логарифмических уравнений.

Простейшие логарифмические уравнения

1.Решите уравнение: log _{5}left ( 15+x right )=log _{5}3

Основания логарифмов равны, сами логарифмы тоже равны – значит, равны и числа, от которых они берутся.
Обычно ученики запоминают это правило в краткой жаргонной формулировке: «Отбросим логарифмы!» Конечно, мы «отбрасываем» их не просто так, а пользуясь свойством монотонности логарифмической функции.

Получаем: 15+x=3

x=-12.

Решая логарифмические уравнения, не забываем про область допустимых значений логарифма. Помним, что выражение log _{a}b определено при b> 0,;a> 0,;aneq 1.

Очень хорошо, если вы, найдя корень уравнения, просто подставите его в уравнение. Если после такой подстановки левая или правая часть уравнения не имеют смысла – значит, найденное число не является корнем уравнения и не может быть ответом задачи. Это хороший способ проверки на ЕГЭ.

2. Решите уравнение: log _{2}left ( 4-x right )=7

В левой части уравнения – логарифм, в правой – число 7. Применив основное логарифмическое тождество, представим число 7 в виде log _{2}2^{7}. Дальше все просто.

Ответ: -124

3. Решите уравнение: log _{5}left ( 5-x right )=2cdot log _{5}3

Видите число 2 перед логарифмом в правой части уравнения? Сейчас оно мешает вам «отбросить логарифмы». Что с ним сделать, чтобы в левой и правой частях были просто логарифмы по основанию 5? Конечно же, поможет формула для логарифма степени.

log _{5}left ( 5-x right )=log _{5}left ( 3^{2} right );

log _{5}left ( 5-x right )=log _{5}9;

5-x=9;

x=-4

4. Решите уравнение: log _{5}left ( 4+x right )=2

Область допустимых значений: 4+x> 0. Значит, x> -4.

Представим 2 в правой части уравнения как log _{5}25 — чтобы слева и справа в уравнении были логарифмы по основанию 5.

log _{5}left ( 4+x right )=log _{5}25

Функция y=log _{5}x монотонно возрастает и каждое свое значение принимает ровно один раз. Логарифмы равны, их основания равны. «Отбросим» логарифмы! Конечно, при этом x> -4.

4+x=25

x=21.

Ответ: 21.

5. Решите уравнение: log _{8}left ( x^{2}+x right )=log _{8}left ( x^{2}-4 right )

Запишем решение как цепочку равносильных переходов. Записываем ОДЗ и «убираем» логарифмы:

log _{8}left ( x^{2}+x right )=log _{8}left ( x^{2}-4 right )Leftrightarrow left{begin{matrix}	x^{2}+x> 0\ 	x^{2}-4> 0\ 	x^{2}+x=x^{2}-4	end{matrix}right.Leftrightarrow 	left{begin{matrix}	x^{2}+x> 0\ 	x^{2}-4> 0\ 	x=-4	end{matrix}right.Leftrightarrow x=-4
Ответ: –4.

Заметим, что решения логарифмических уравнений лучше всего записывать в виде цепочки равносильных переходов. Это поможет нам не забыть про область допустимых значений.

6.Решите уравнение: 2^{log _{4}left ( 4x+5 right )}=9.

Перейдем от логарифма по основанию 4 (в показателе) к логарифму по основанию 2. Мы делаем это по формуле перехода к другому основанию:

log _{4}b=frac{log _{2}b}{log _{2}4}=frac{log _{2}b}{2}

Запишем решение как цепочку равносильных переходов.

2^{log _{4}left ( 4x+5 right )}=9Leftrightarrow left{begin{matrix} 	2^frac{{log _{2}left ( 4x+5 right )}}{2}=9\  	4x+5> 0 	end{matrix}right.Leftrightarrow left{begin{matrix} 	left (2^{log _{2}left ( 4x+5 right )}  right )^{frac{1}{2}}=9\  	x> -1frac{1}{4} 	end{matrix}right.Leftrightarrow left{begin{matrix} 	left ( 4x+5 right )^{frac{1}{2}}=9\  	x> -1frac{1}{4} 	end{matrix}right.Leftrightarrow  	left{begin{matrix} 	sqrt{4x+5}=9\  	x> -1frac{1}{4} 	end{matrix}right.Leftrightarrow left{begin{matrix} 	4x+5=81\  	x> -1frac{1}{4} 	end{matrix}right.Leftrightarrow left{begin{matrix} 	x=19\  	x> -1frac{1}{4} 	end{matrix}right.

Ответ: 19.

7.Решите уравнение: log _{x}x^{2}=log _{x}left ( 12-x right ).

Обратите внимание: переменная х и под логарифмом, и в основании логарифма. Мы помним, что основание логарифма должно быть положительно и не равно 1.

ОДЗ:
left{begin{matrix}	12-x> 0\ 	x> 0\ 	xneq 1	end{matrix}right.

Теперь можно «убрать» логарифмы.

x^{2}=12-x

x^{2}+x-12=0

x_{1}=3;;x_{2}=-4 — посторонний корень, поскольку должно выполняться условие x> 0.

Ответ: x=3

8. Решите уравнение 6log _{8}^{2}x-5log _{8}x+1=0.

ОДЗ уравнения: x> 0

Сделаем замену log _{8}x=t. Как и в алгебраических уравнениях, мы делаем замену переменной всегда, когда только возможно.

6t^{2}-5t+1=0Leftrightarrow left[ begin{array}{ccc}	t=frac{1}{2}\	t=frac{1}{3}	end{array}	right.

Вернемся к переменной х:

left[ begin{array}{ccc} 	log _{8}x=frac{1}{2}\ 	log _{8}x=frac{1}{3} 	end{array} 	right.Leftrightarrow  	left[ begin{array}{ccc} 	x=8^{frac{1}{2}}\ 	x=8^{frac{1}{3}} 	end{array} 	right.Leftrightarrow  left[ begin{array}{ccc} 	x=sqrt{8}\ 	x=2 	end{array} 	right.

9.Решите уравнение:
1+log _{3}left ( x^{4}+25 right )=log _{sqrt{3}}sqrt{30x^{2}+12}

Выражение под логарифмом всегда положительно – поскольку к неотрицательной величине x^{4} прибавляем 25. Выражение под корнем в правой части также положительно. Значит, х может быть любым действительным числом.

Представим сумму логарифмов в левой части как логарифм произведения. В правой части – перейдем к логарифму по основанию 3. И используем формулу логарифма степени.

log _{3}3left ( x^{4}+25 right )=frac{1}{2}cdot 2cdot log _{3}left (30x^{2}+12  right )

left (30x^{2}+12  right )

«Отбрасываем» логарифмы.

3left ( x^{4}+25 right) = 30x^{2}+12

3 x^{4} - 30x^{2}+63=0

x^{4} - 10x^{2}+21=0

Такое уравнение называется биквадратным. В него входят выражения x^{2} и x^{4}. Сделаем замену x^{2}=t,;tgeq 0

t^{2}-10t+21=0

left[	begin{array}{ccc} 	t_{1}=3\	t_{2}=7	end{array}	right.

Вернемся к переменной х. Получим:

x_{1}=sqrt{3},;x_{2}=-sqrt{3},;x_{3}=sqrt{7},;x_{4}=-sqrt{7} . Мы нашли все корни исходного уравнения.

Ответ: sqrt{3},;-sqrt{3},;sqrt{7},;-sqrt{7}.

Логарифмические уравнения могут встретиться вам и в задании №1 Профильного ЕГЭ по математике, и в задании №12. И если в задании №1 нужно решить простейшее уравнение, то в задаче 12 решение состоит из двух пунктов. Второй пункт – отбор корней на заданном отрезке или интервале.

Благодарим за то, что пользуйтесь нашими статьями.
Информация на странице «Логарифмические уравнения» подготовлена нашими редакторами специально, чтобы помочь вам в освоении предмета и подготовке к ЕГЭ и ОГЭ.
Чтобы успешно сдать нужные и поступить в высшее учебное заведение или колледж нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими материалами из разделов нашего сайта.

Публикация обновлена:
09.03.2023

Лучшие репетиторы для сдачи ЕГЭ

Задания по теме «Логарифмические уравнения»

Открытый банк заданий по теме логарифмические уравнения. Задания B5 из ЕГЭ по математике (профильный уровень)

Геометрические фигуры на плоскости: вычисление величин с использованием углов

Задание №887

Тип задания: 5
Тема:
Логарифмические уравнения

Условие

Найдите корень уравнения 5^{log_{25}(10x-8)}=8.

Показать решение

Решение

Найдем ОДЗ: 10x-8>0.

5^{log_{25}(10x-8)}=5^{log_58},

log_{25}(10x-8)=log_58,

log_{5^2}(10x-8)=log_58,

frac12log_5(10x-8)=log_58,

log_5(10x-8)=2log_58,

log_5(10x-8)=log_58^2,

10x-8=64, значит, условие 10x-8>0 выполняется.

10x=72,

x=7,2.

Ответ

7,2

Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Задание №885

Тип задания: 5
Тема:
Логарифмические уравнения

Условие

Найдите корень уравнения log_3(28+4x)=log_3(18-x).

Показать решение

Решение

28+4x=18-x,

5x=-10,

x=-2.

Сделаем проверку.

log_3(28+4cdot(-2))=log_3(18-(-2)),

log_3 20=log_3 20. Верно, значит, x=-2 — корень уравнения.

Ответ

-2

Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Задание №288

Тип задания: 5
Тема:
Логарифмические уравнения

Условие

Найдите корень уравнения log_{x-7}81=2. Если уравнение имеет более одного корня, в ответе укажите меньший из них.

Показать решение

Решение

Согласно определению логарифма x-7>0 и x-7neq1, тогда x>7 и xneq8.

Так как 2=log_{x-7}(x-7)^2 при x>7 и xneq8, то получаем уравнение log_{x-7}81=log_{x-7}(x-7)^2.

Поэтому (x-7)^2=81,

x-7=pm9,

x_1=16,

x_2=-2.

x_2=-2 решением не является, так как x>7.

Ответ

16

Источник: «Математика. Подготовка к ЕГЭ-2016. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Задание №287

Тип задания: 5
Тема:
Логарифмические уравнения

Условие

Найдите корень уравнения log_3(12-x)=4.

Показать решение

Решение

Так как 4=log_33^4=log_381, то log_3(12-x)=log_381,

12-x=81,

x=-69.

Ответ

-69

Источник: «Математика. Подготовка к ЕГЭ-2016. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Задание №286

Тип задания: 5
Тема:
Логарифмические уравнения

Условие

Найдите корень уравнения log_6(5x+27)=log_6(3+x)+1.

Показать решение

Решение

log_6(5x+27)=log_6(3+x)+log_66,

log_6(5x+27)=log_6(6cdot(3+x)),

log_6(5x+27)=log_6(18+6x),

5x+27=18+6x,

x=9.

Проверка:

log_6(5cdot9+27)=log_6(3+9)+1,

log_672=log_612+1,

log_672=log_672.

x=9 — корень уравнения.

Ответ

9

Источник: «Математика. Подготовка к ЕГЭ-2016. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Задание №284

Тип задания: 5
Тема:
Логарифмические уравнения

Условие

Найдите корень уравнения log_{14}(x-3)=log_{14}(8x-31).

Показать решение

Решение

x-3=8x-31,

7x=28,

x=4.

Проверкой убеждаемся, что x=4 действительно является корнем исходного уравнения.

Ответ

4

Источник: «Математика. Подготовка к ЕГЭ-2016. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Задание №34

Тип задания: 5
Тема:
Логарифмические уравнения

Условие

Найдите корень уравнения: log_42^{2x+5}=4.

Показать решение

Решение

Воспользуемся формулой: 

log_{a}b=x Leftrightarrow a^x=b

Значит:

log_{4}2^{2x+5}=log_{4}256

2^{2x+5}=256

2^{2x+5}=2^8

2x+5=8

2x=3

x=frac{3}{2}=1,5

Ответ

1,5

Задание №33

Тип задания: 5
Тема:
Логарифмические уравнения

Условие

Найдите корень уравнения: log_4(2-x)=log_{16}25.

Показать решение

Решение

Воспользуемся формулой: 

log_{a^k}x=frac{1}{k}log_{a}x, kneq 0

Получим:

log_{4}(2-x)=log_{4^2}25

log_{4}(2-x)=frac{1}{2}log_{4}25

2log_{4}(2-x)=log_{4}25

log_{4}(2-x)^2=log_{4}25

(2-x)^2=25

|2-x|=5

2-x=5

x=-3

Ответ

-3

Задание №26

Тип задания: 5
Тема:
Логарифмические уравнения

Условие

Найдите корень уравнения: log_7(9-x)=3log_73.

Показать решение

Решение

Выполним преобразования:

log_7(9-x)=log_73^3

Раскроем знак логарифма:

9-x=3^3

9-x=27

-x=27-9

x=-18

Ответ

-18

Задание №25

Тип задания: 5
Тема:
Логарифмические уравнения

Условие

Найдите корень уравнения: log_2(7-x)=5.

Показать решение

Решение

Раскроем знак логарифма по формуле

log_ab=c Leftrightarrow b=a^c

и выполним преобразования:

7-x=2^5

7-x=32

-x=32-7

x=-25

Ответ

-25

Лучшие репетиторы для сдачи ЕГЭ

Сложно со сдачей ЕГЭ?

Звоните, и подберем для вас репетитора: 78007750928

Задание 971

Найдите корень уравнения $$3^{log_9 (5x-5)}=5$$

Ответ: 6

Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!


Скрыть

$$3^{log_9 (5x-5)}=5Leftrightarrow 3^{frac{1}{2}log_3 (5x-5)}=5 Leftrightarrow$$ $$ 3^{log_3 sqrt{5x-5}}=5Leftrightarrow sqrt{5x-5}=5 Leftrightarrow$$ $$ 5x-5=25Leftrightarrow x=6$$

Задание 1010

Найдите корень уравнения $$log _{2} (-x) + log _{2} (2-x) = 3$$ .Если корней несколько, то в ответе укажите их сумму.

Ответ: -2

Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!


Скрыть

 $$log _{2} (-x) + log _{2} (2-x) = 3$$

$$-x > 0 ; 2 — x > 0 Leftrightarrow x<0$$

$$log _{2} ((-x) *(2-x)) = log _{2} 8$$

$$-2x+x^2=8$$

$$x^2-2x-8=0$$

$$x_1=4 — не входит в ОДЗ ; x_2 =-2$$

Задание 3653

Найдите корень уравнения $$log_{0,5}(5-3x)=-5$$

Ответ: -9

Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!


Скрыть

$$log_{0,5}(5-3x)=-5$$

ОДЗ: $$5-3x>0$$

$$x<frac{5}{3}$$

$$5-3x=(0,5)^{-5}=2^{5}=32$$

$$-3x=32-5=27$$

$$x=-9$$

Задание 6607

Решите уравнение $$7*5^{log_{5} x}=x^{2}-30$$. Если корней несколько, то в ответе укажите меньший корень

Ответ: 10

Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!


Скрыть

ОДЗ: x>0(1)

$$7*x=x^{2}-30Leftrightarrow$$$$x^{2}-7x-30=0$$

$$left{begin{matrix}x_{1}+x_{2}=7\x_{1}x_{2}=-30end{matrix}right.Leftrightarrow$$ left{begin{matrix}x_{1}=10\x_{2}=-3notin (1)end{matrix}right.$$

Задание 7051

Найдите корень уравнения $$log_{0,5} (x+5)=log_{2} (x+5)$$

Ответ: -4

Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!


Скрыть

$$log_{0,5}(x+5)=log_{2}(x+5)Leftrightarrow$$ $$log_{2^{-1}}(x+5)=log_{2}(x+5)Leftrightarrow$$ $$(-1)log_{2}(x+5)=log_{2}(x+5)Leftrightarrow$$ $$2log_{2}(x+5)=0Leftrightarrow$$ $$x+5=1Leftrightarrow$$ $$x=-4$$

Задание 7314

Найдите корень уравнения $$frac{1}{log_{4} (2x+1)}=-2$$

Ответ: -0,25

Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!


Скрыть

$$frac{1}{log_{4}(2x+1)}=-2Leftrightarrow$$ $$left{begin{matrix}log_{4}(2x+1)=-frac{1}{2}\2x+1>0\2x+1neq 1end{matrix}right.$$$$Leftrightarrow$$ $$2x+1=4-frac{1}{2}Leftrightarrow$$ $$2x+1=frac{1}{2}Leftrightarrow$$ $$2x=-frac{1}{2}Leftrightarrow$$ $$x=-0,25$$

Задание 9056

Найдите корень уравнения $$log_{2}(8-x)=2log_{2}(4+x)$$. Если уравнение имеет более одного корня, в ответе запишите наименьший из корней.

Ответ: -1

Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!


Задание 9139

Решите уравнение $$frac{log_{2}4}{x}=frac{3^{log_{3}x}}{2}$$. Если уравнение имеет несколько корней, в ответе укажите меньший из них.

Ответ: 2

Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!


Задание 9939

Решите уравнение: $$log_{frac{1}{8}}x+5log_{4}x+log_{sqrt{2}}x=16frac{2}{3}$$

Ответ: 16

Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!


Задание 10125

Решите уравнение $$log_{30-3cdot2^x}(2^x-3)^2=log_{2^x-2}(2^x-3)^2$$. Если корней несколько, в ответе укажите их сумму.

Ответ: 5

Скрыть

Задание 10159

Найдите произведение всех корней уравнения $$sqrt[3]{10+3x-x^2}cdotlg(7-x-x^2)=0$$

Ответ: 12

Скрыть

Задание 10478

Решите уравнение $$ln(frac{pi^{x}}{e^{x}}+2x-10)=x(ln pi-1)$$. Если корней больше одного, то в ответе запишите их сумму.

Ответ: 5

Задание 10488

Решите уравнение $$frac{5}{log_{2}x+3}+frac{4}{log_{2}x}=3$$. Если корней несколько, в ответе укажите их произведение.

Ответ: 1

Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!


Задание 10567

Найдите произведение всех различных корней уравнения: $${{log }_3 x }-6cdot {{log }_x 9 }=3$$

Ответ: 27

Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!


Скрыть
$${{log }_3 x }-6cdot {{log }_x 9 }=3;
Mleft(xright):left{ begin{array}{c}
x>0 \
xne 1 end{array}
right.$$
Учтем, что $${{log }_x 9 }=2cdot {{log }_x 3 }=frac{2}{{{log }_3 x }}$$; Замена: $${{log }_3 x }=y$$;

$$y-6cdot frac{2}{y}=3to frac{y^2-3cdot y-12}{y}=0to left{ begin{array}{c}
y_1+y_2=3 \
y_1cdot y_2=12 end{array}
right.$$ т.е. $${{log }_3 x_1+{{log }_3 x_2=3to {{log }_3 {(x}_1cdot x_2)=3to x_1cdot x_2=27 } } }$$

Задание 11266

Решить уравнение: $$frac{lg sqrt{x+11}-lg 2}{lg 8 -lg(x-1)}=-1$$

Ответ: 25

Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!


Как решать логарифмические уравнения

Уравнения, содержащие в том или ином виде логарифмы от некоторого выражения, зависящего от (х), называются логарифмическими.

Давайте сразу же рассмотрим пример, так будет легче всего разобраться.

Пример 1
$$ log_{2}(x)=log_{2}(5)$$

Мы видим слева и справа логарифмы с одинаковыми основаниями, равными (2). Вполне логично предположить, что логарифмы будут равны, если будут равны выражения, стоящие под логарифмом (их называют аргументами) — то есть (х=5). Мы только что решили логарифмическое уравнение!

На самом деле, абсолютно такая же логика применима при решении почти всех логарифмических уравнений — если у нас сравниваются два логарифма с одинаковыми основаниями, то мы можем избавиться от логарифмов, приравнять их аргументы и решить получившееся уравнение.

Пример 2
$$ log_{3}(2x+5)=log_{3}(11) $$

Опять имеем два логарифма с одинаковым основанием (3). Избавляемся от логарифмов, приравнивая аргументы:

$$ 2x+5=11,$$
$$ 2x=6,$$
$$ x=3.$$

Кажется, что все очень просто. Но есть несколько непростых нюансов, которые необходимо обсудить. Давайте посмотрим еще один пример:

Пример 3
$$ log_{2}(1+3x)=log_{2}(2x-3) $$

Смотрим на основания — они одинаковые, значит убираем логарифмы и решаем уравнение:

$$1+3x=2x-3,$$
$$3x-2x=-3-1,$$
$$x=-4.$$

Мы решили уравнение, но я хочу позанудствовать и проверить, действительно ли получившийся корень является корнем исходного уравнения. Для этого подставим его в логарифмическое уравнение:

$$ log_{2}(1+3*(-4))=log_{2}(2*(-4)-3),$$
$$log_{2}(-11)=log_{2}(-11).$$

Мы получили слева и справа два одинаковых логарифма, вот только эти логарифмы НЕ СУЩЕСТВУЮТ, потому что нельзя взять логарифм от отрицательного числа.

Действительно, давайте вспомним определение логарифма (log_{a}b) — это в какую степень нужно возвести (a), чтобы получить (b). При этом определение справедливо не для всех (a) и (b), а только для (a>0), (b>0), (a neq 1). Подробнее про логарифм и его свойства можно почитать здесь.

Значит, с нашим решением что-то не так — мы нашли корень, подставили его в уравнение, но получили логарифм от отрицательного числа, который не существует!

Тут самое время вспомнить про область допустимых значений (ОДЗ). В логарифмах нужно всегда внимательно следить за тем, чтобы не нарушались ограничения, которые вытекают из определения логарифма. Рассмотрим логарифм от некоторой функции:

$$log_{a}f(x)$$

Область допустимых значений (ОДЗ) для него будет задаваться системой неравенств:

$$ begin{cases}
f(x)>0, \
a>0, \
a neq 1.
end{cases}$$

И при решении любых логарифмических уравнений или неравенств всегда первым делом записываем ОДЗ для каждого логарифма в уравнении.
В нашем примере 3, ОДЗ будет выглядеть вот так:

$$ begin{cases}
1+3x>0, \
2x-3>0. \
end{cases}$$

Решаем получившуюся систему

$$ begin{cases}
x>-frac{1}{3}, \
x>frac{3}{2}. \
end{cases}$$

Находим (х), удовлетворяющие одновременно обоим неравенствам, и получаем в итоге ОДЗ:
$$x>frac{3}{2}.$$

Вспоминаем, что решая это уравнение мы получили корень (x=-4), который нашему ОДЗ не удовлетворяет. Поэтому в примере 3 корней нет.

И так, всегда пишем ОДЗ!

Следующая трудность при решении логарифмических уравнений возникает, когда у нас сравниваются логарифмы с разными основаниями:

Пример 4
$$ log_{2}(x)=log_{4}(9).$$

Запишем ОДЗ: (x>0).

У логарифма слева основание (2), а у логарифма справа основание (4). Чтобы воспользоваться способом решения, аналогичным первым трем примерам, необходимо привести логарифмы к одинаковому основанию.

$$ log_{2}(x)=log_{2}(3).$$

Ого, как я такое получил?
Просто воспользовался формулой возведения в степень основания и аргумента логарифма — если возвести в одинаковую степень, то логарифм от этого не поменяется:

$$ log_{a}(b)=log_{a^n}(b^n).$$

В нашем примере возведем основание и аргумент в степень (frac{1}{2}):

$$ log_{4}(9)=log_{4^{frac{1}{2}}}(9^{frac{1}{2}})=log_{2}(3).$$

$$ log_{2}(x)=log_{2}(3).$$

Ну теперь основании у логарифмов одинаковые и можно с чистым сердцем приравнять аргументы, как мы делали до этого.
$$x=3.$$

Кстати, решить уравнение (log_{2}(x)=log_{4}(9))
можно было и по-другому — привести к основанию (4) логарифм, стоящий слева в уравнении:

Опять воспользуемся свойством логарифма:
$$ log_{a}(b)=log_{a^n}(b^n);$$
$$log_{2}(x)=log_{2^2}(x^2)=log_{4}(x^2);$$
Подставим в исходное уравнение наши преобразования:
$$ log_{4}(x^2)=log_{4}(9);$$
Ура, у нас слева и справа логарифмы с одинаковым основанием — вычеркиваем логарифмы:
$$x^2=9;$$
Решаем аккуратно простейшее квадратное уравнение. Не забываем, что у него будет 2 корня!
$$x=pm3;$$

Опа, у нас получилось два корня. А когда мы решали первым способом был один корень! Что за дела?

Вспоминаем, что в самом начале к уравнению мы записывали ОДЗ (х>0). Тогда корень (x=-3) не удовлетворяет ОДЗ. Обратите внимание, что без учета ОДЗ в этом случае, мы бы получили неправильный ответ.

Ответ: (x=3.)

Подробнее про свойства логарифмов можно посмотреть тут. Логарифмические уравнения с разными основаниями встречаются в ЕГЭ регулярно, поэтому важно уметь применять все свойства логарифмов.

Рассмотрим еще один пример.

Пример 5
$$log_{5}(x)=2$$

Как видим, в примере есть только логарифм в левой части равенства, а справа стоит просто число 2. Давайте постараемся привести к такому же виду, как и в прошлых примерах. То есть сделаем так, чтобы справа появился логарифм с основанием 5.

Оказывается, любое число (a) можно представить в виде логарифма с нужным вам основанием (b) по формуле:
$$a=log_{b}(b^a);$$
Эту формулу можно просто запомнить. А въедливым читателям, я бы рекомендовал посидеть и подумать откуда берется данное выражение. Подсказка — оно напрямую вытекает из определения логарифма. Задайте себе вопрос — «В какую степень нужно возвести основание, чтобы получить аргумент?»

И так, воспользуемся формулой и распишем 2-ку:
$$2=log_{5}(5^2);$$
Подставим в уравнение:
$$log_{5}(x)=log_{5}(5^2);$$
Ура, у нас два логарифма с одинаковыми основаниями, теперь можно приравнять подлогарифмические выражения.
$$x=5^2;$$
$$x=25.$$

Пример 6
$$log_{3}(x+2)=0$$

Начинаем с ОДЗ:
$$x+2>0;$$
$$x>-2.$$

Приступаем к решению уравнения. Что делать в случае, когда справа стоит (0)? Ничего страшного в этом нет, действуем по прежнему плану — представим (0) в виде логарифма по нашей формуле:
$$a=log_{b}(b^a);$$
$$log_{3}(x+2)=log_{3}(3^0);$$
Вспоминаем, что любое число в нулевой степени это единица.
$$log_{3}(x+2)=log_{3}(1);$$
$$x+2=1;$$
$$x=-1.$$
Корень удовлетворяет ОДЗ — записываем ответ.
Ответ: (x=-1).

Подведем итоги. В большинстве случаев, для того, чтобы решить простейшее логарифмическое уравнение, необходимо привести логарифмы слева и справа к одинаковому основанию. Затем приравнять подлогарифмические выражения и решить получившееся уравнения. При этом ни в коем случае не забываем про ОДЗ. На ЕГЭ, если вы вдруг запишите в ответ хотя бы один корень, не удовлетворяющий ОДЗ, то вам поставят за это задание 0 баллов.

В общем виде формула для решения логарифмов выглядит так:
$$ log_{a}(f(x))=log_{a}(g(x)) qquad (*)$$
где (a>0) — основание логарифмов, а (f(x)) и (g(x)) — какие-то выражения, зависящие от (x).
$$ begin{cases}
f(x)>0, или \
g(x)>0. \
end{cases}$$
$$f(x)=g(x).$$

Обратите внимание на «или» в ОДЗ. Оказывается можно накладывать условие больше нуля только на одную функцию: либо на f(x), либо на g(x) — смотря какое неравенство вам кажется легче для решения. Дело в том, что если одна из функций будет больше нуля, то и другая автоматически тоже будет будет больше, ведь мы ищем корни, при которых (f(x)=g(x)).

Для того, чтобы закрепить материал, решим еще одно логарифмическое уравнение:

Пример 7
$$2*log_{4}(4+x)=4-log_{2}(x-2);$$

Здесь все несколько сложнее, чем в предыдущих примерах. Для того чтобы представить наше уравнение в виде (*), нужно избавиться от множителя (2) перед первым логарифмом, кроме этого, нам мешается отдельное слагаемое (4), и в придачу ко всем этим неприятностям у логарифмов разные основания!

Но перед тем как решать, запишем ОДЗ:
$$ begin{cases}
4+x>0, \
x-2>0. \
end{cases}$$

$$ begin{cases}
x>-4, \
x>2. \
end{cases}$$

Находим пересечение и в итоге ОДЗ получается:
$$ x>2.$$

Приступаем непосредственно к решению уравнения. Самое главное, нам необходимо привести все логарифмы к одинаковому основанию, и, по возможности, привести к виду (log_{a}f(x)=log_{a}g(x)).
Здесь не обойтись без свойств логарифмов.
Воспользуемся формулой вынесения степени из основания логарифма:
$$log_{a^n}(b)=frac{1}{n}*log_{a}(b)$$
$$log_{4}(4+x)=log_{2^2}(4+x)=frac{1}{2}*log_{2}(4+x)$$

Подставим в уравнение
$$2*frac{1}{2}*log_{2}(4+x)=4-log_{2}(x-2);$$
$$log_{2}(4+x)=4-log_{2}(x-2);$$
Теперь у нас хотя бы логарифмы с одинаковым основанием. Далее преобразуем левую часть уравнения, воспользовавшись формулами:
$$ a=log_{b}(b^a);$$
$$log_{a}(b)-log_{a}(c)=log_{a}(frac{b}{c})$$
$$4-log_{2}(x-2)=log_{2}(2^4)-log_{2}(2-x)=log_{2}(16)-log_{2}(2-x)=log_{2}(frac{16}{2-x});$$
Подставим получившееся выражение в уравнение:
$$log_{2}(4+x)=log_{2}(frac{16}{2-x});$$

Ура, теперь у нас слева и справа в уравнении логарифмы с одинаковым основанием (2).
Избавляемся от логарифмов и решаем:
$$4+x=frac{16}{x-2};$$
Перекинем все налево и приведем к общему знаменателю
$$4+x-frac{16}{x-2}=0;$$
$$frac{(4+x)(x-2)}{x-2}—frac{16}{x-2}=0;$$
$$frac{4x-8+x^2-2x–16}{x-2}=0;$$
$$frac{x^2+2x-24}{x-2}=0;$$
Дробь равна 0, когда числитель равен 0
$$x^2+2x-24=0;$$
$$D=(2^2-4*(-24)=4+96=100;$$
$${x}_{1,2}=frac{-2pm 10}{2};$$
$${x}_{1}=4;$$
$${x}_{2}=-6;$$
Мы получили два корня. Но не забываем про ОДЗ. Выше мы его посчитали и получилось, что (x>2). Значит второй корень не подходит.
Ответ: (x=4).

Логарифмические уравнения с переменным основанием

Рассмотри теперь уравнение, в котором есть, так называемый, логарифм с переменным основанием. То есть логарифм, у которого в основании стоит какое-то выражение, зависящее от (х).

Пример 8
$$log_{1-x}(x^2+3x+1)=1;$$

В основании логарифма стоит ((1-х)), это переменное основание, потому что я могу подставлять различные значения (х) и каждый раз основание логарифма будет разным. Ничего страшного в этом нет, начинаем решать, руководствуясь тем же принципом, что и в предыдущих примерах — стараемся привести обе части уравнения к виду двух логарифмов с одинаковым основанием. Для этого нужно представить (1) справа в виде логарифма с основанием ((1-х)).

Но первым делом выпишем ОДЗ, не забывая накладывать условия и на основание логарифма, так как оно зависит от (х):
$$ begin{cases}
x^2+3x+1>0, \
1-x>0, \
1-xneq1.\
end{cases} qquad (**)$$

Теперь приступаем к решению самого уравнения. Выпишем еще раз формулу, по которой преобразуем правую часть:

$$a=log_{b}(b^a);$$
Где (а=1), а (b=1-x):
$$1=log_{1-x}(1-x)^1=log_{1-x}(1-x);$$
Подставим в уравнение
$$log_{1-x}(x^2+3x+1)=log_{1-x}(1-x);$$

Два логарифма с одинаковым основанием — можем приравнять аргументы:
$$x^2+3x+1=1-x;$$
$$x^2+4x=0;$$
$$x(x+4)=0;$$
$$x=0;$$
$$x=-4.$$
Получили два корня, проверим удовлетворяют ли они ОДЗ, подставив их в (**). Корень (0) не удовлетворяет последнему неравенству в ОДЗ, а ((-4)) удовлетворяет всем условиям.
Ответ: x=-4.

Замена переменной в уравнениях с логарифмами

Разберем еще один частый тип логарифмических уравнений — это уравнения с заменой переменной. Общий принцип заключается в том, чтобы привести все логарифмы в уравнении к одинаковому основанию и одинаковому аргументу, а потом сделать замену.

Проще разобрать на примерах:

Пример 9

$$log^2_{2}(x)+6=5*log_{2}(x)$$

Как и любой пример на логарифмы, начинаем с ОДЗ:

$$x>0.$$

В уравнении один из логарифмов в квадрате, поэтому представить в виде равенства двух логарифмов, как мы делали в предыдущих примерах, не получится. Кроме этого, замечаем, что у нас оба логарифма абсолютно одинаковые (у них одинаковые основания, и одинаковые аргументы).

Попробуем сделать замену:
$$t=log_{2}(x)$$
Тогда наше уравнение после замены примет вид:
$$t^2-5t+6=0;$$
$$D=25-24=1;$$
$$t_{1}=frac{5+1}{2}=3;$$
$$t_{2}=frac{5-1}{2}=1;$$
И сделаем обратную замену, получив два простых логарифмических уравнения:
$$t_{1}=log_{2}(x)=3;$$
$$log_{2}(x)=log_{2}(2^3);$$
$$x=8.$$
$$t_{2}=log_{2}(x)=1;$$
$$log_{2}(x)=log_{2}(2^1);$$
$$x=2.$$
Обязательно, не забываем проверить, удовлетворяют ли корни ОДЗ ((x>0)). Оба корня подходят, записываем ответ.
Ответ: (x=8; , x=2.)

Пример 10
$$ log_{2}left(frac{8}{x}right)-frac{10}{log_{2}(16x)} = 0;$$

Как обычно, начинаем с ОДЗ:
$$ begin{cases}
frac{8}{x}>0, \
log_{2}(16x)neq0,\
16x>0.\
end{cases}$$

Решаем каждое из получившихся неравенств в системе:
$$ begin{cases}
x>0, \
xneqfrac{1}{16},\
x>0.\
end{cases}$$
В итоге ОДЗ будет: (xin(0;frac{1}{16})cup(frac{1}{16};infty)).

Посмотрим теперь на сам пример. Видим два логарифма, у них одинаковые основания, что хорошо. Но функции, стоящие под логарифмами, разные. Постараемся при помощи свойств логарифма сделать одинаковые аргументы, чтобы потом сделать замену.

Воспользуемся формулами суммы и разности логарифмов с одинаковыми основаниями:
$$log_{a}(b*c)=log_{a}(b)+log_{a}(c);$$
$$log_{a}(frac{b}{c})=log_{a}(b)-log_{a}(c);$$
$$log_{2}left(frac{8}{x}right)=log_{2}(8)-log_{2}(x)=3-log_{2}(x);$$
$$log_{2}(16x)=log_{2}(16)+log_{2}(x)=4+log_{2}(x);$$
Подставим наши преобразования в исходное уравнение
$$3-log_{2}(x)-frac{10}{4+log_{2}(x)}=0;$$
Теперь в уравнении все логарифмы одинаковые, модем сделать замену. Пусть (t=log_{2}(x)).
$$3-t-frac{10}{4+t}=0;$$
Приводим к общему знаменателю
$$frac{(3-t)(4+t)-10}{4+t}=0;$$
$$frac{-t^2-t+2}{4+t}=0;$$
Дробь равна нулю, когда числитель равен нулю:
$$-t^2-t+2=0;$$
$$t_{1}=1;$$
$$t_{2}=-2;$$
Делаем обратную замену:
$$t_{1}=log_{2}(x)=1;$$
$$log_{2}(x)=log_{2}(2^1);$$
$$x=2.$$
$$t_{2}=log_{2}(x)=-2;$$
$$log_{2}(x)=log_{2}({2}^{-2});$$
$$x=frac{1}{4}.$$
Сверяем с ОДЗ, видим, что оба корня подходят, записываем ответ.
Ответ: (x=2; , x=frac{1}{4}.)

Пример 11
$$log_{2}(x^2+4x)+log_{0,5}(frac{x}{4})+2=log_{2}(x^2+3x-4)$$

Область допустимых значений:
$$ begin{cases}
x^2+4x>0, \
x^2+3x-4>0,\
x>0.\
end{cases}$$

$$ begin{cases}
x(x+4)>0, \
x>0,\
(x-1)(x+4)>0.\
end{cases}$$

Зеденым цветом показано решение первого неравенства в системе, синим — второго и фиолетовым третьего. Область, которая находится на пересечении сразу всех трех промежутков заштрихована бордовым.

Решаем методом интервалов, и находим пересечение решений всех неравенств в системе:

В итоге получаем ОДЗ: (x>1).

Приступаем к решению самого уравнения. Первым делом приведем все логарифмы к одинаковому основанию (2). Для этого нужно преобразовать только второе слагаемое в уравнении:
$$0,5=frac{1}{2}=2^{-1};$$
$$log_{2}(x^2+4x)+log_{2^{-1}}(frac{x}{4})+2=log_{2}(x^2+3x-4);$$
Вынесем степень из основания, воспользовавшись формулой (log_{a^n}(b)=frac{1}{n}log_{a}(b)).
$$log_{2}(x^2+4x)-log_{2}(frac{x}{4})+2=log_{2}(x^2+3x-4);$$
В первом слагаемом под логарифмом вынесем общий множитель (х). А квадратный многочлен под логарифмом справа разложим на множители при помощи дискриминанта:
$$log_{2}(x(x+4))-log_{2}(frac{x}{4})+2=log_{2}((x-1)(x+4));$$
И опять воспользуемся формулами суммыразности логарифмов:

$$log_{a}(b*c)=log_{a}(b)+log_{a}(c);$$
$$log_{a}left(frac{b}{c}right)=log_{a}(b)-log_{a}(c);$$
$$log_{2}(x)+log_{2}(x+4)-log_{2}(x)+log_{2}(4)+2=log_{2}(x-1)+log_{2}(x+4);$$
Сократим подобные слагаемые и посчитаем (log_{2}(4)=2):
$$4=log_{2}(x-1);$$
$$log_{2}(x-1)=4;$$
$$log_{2}(x-1)=log_{2}(2^4);$$
$$x-1=16;$$
$$x=17.$$
Сверяем корень с ОДЗ — подходит. Записываем ответ.
Ответ: (x=17).


1. Вспоминай формулы по каждой теме


2. Решай новые задачи каждый день


3. Вдумчиво разбирай решения

Логарифмическое уравнение – уравнение, содержащее переменную (x) в основании и/или аргументе логарифма.

Стандартное логарифмическое уравнение:

[{large{log_a{f(x)}=log_a{g(x)} quad Leftrightarrow quad
begin{cases}
f(x)=g(x)\
f(x)>0 (text{или }g(x)>0)
end{cases}}}]

где (a>0, ane 1).

Некоторые важные формулы:

(0) при (a>0, ane 1, b>0) выполняется основное логарифмическое тождество [{large{a^{log_ab}=b}}]

(1) при (a>0, ane 1) [{large{log_a1=0, qquad
log_aa=1}}]

(2) при (a>0, ane 1, b>0) [{large{log_{a^n}{b^m}=frac mnlog_ab}}]

при четных (m) и (n) и (ane 0, ane 1, bne 0) [{large{log_{a^n}{b^m}=dfrac mnlog_{|a|}{|b|}}}]

(3) при (a>0, ane 1, b>0, c>0) [{large{b^{log_ac}=c^{log_ab}}}]

(4) при (a>0, ane 1, bc>0) [{large{log_a{bc}=log_a{|b|}+log_a{|c|} qquad log_a{dfrac
bc}=log_a{|b|}-log_a{|c|}}}]

(5) при (a>0, ane 1, b>0, bne 1, c>0) [{large{log_abcdot log_bc=log_ac Longleftrightarrow
log_bc=dfrac{log_ac}{log_ab}}}]


Задание
8

#415

Уровень задания: Равен ЕГЭ

Найдите корень уравнения (log_{5}(-x) = log_{5}4).

ОДЗ: (-x > 0), что равносильно (x < 0). Решим на ОДЗ:

По определению логарифма (log_{5}(-x)) – показатель степени, в которую нужно возвести 5, чтобы получить (-x), откуда заключаем: (5^{log_5(4)} = -x), что равносильно (4 = -x), что равносильно (x = -4) – подходит по ОДЗ.

Ответ: -4


Задание
9

#416

Уровень задания: Равен ЕГЭ

Найдите корень уравнения (log_{8}(9x — 18) = log_{8}36).

ОДЗ: (9x — 18 > 0), что равносильно (x > 2). Решим на ОДЗ:

По определению логарифма (log_{8}(9x — 18)) – показатель степени, в которую нужно возвести 8, чтобы получить (9x — 18), откуда заключаем: (8^{log_8(36)} = 9x — 18), что равносильно (36 = 9x — 18), что равносильно (x = 6) – подходит по ОДЗ.

Ответ: 6


Задание
10

#417

Уровень задания: Равен ЕГЭ

Найдите корень уравнения (log_{3}(2 — x) = log_{3}(2 + x)).

ОДЗ: (2 — x > 0) и (2 + x > 0), что равносильно (-2 < x < 2). Решим на ОДЗ:

Данное уравнение имеет стандартный вид, оно равносильно (2 — x = 2 + x), что равносильно (x = 0) – подходит по ОДЗ.

Ответ: 0


Задание
11

#418

Уровень задания: Равен ЕГЭ

Найдите корень уравнения (log_{2}(x + 1) = log_{2}(12 — 3x)).

ОДЗ: (x + 1 > 0) и (12 — 3x > 0), что равносильно (-1 < x < 4). Решим на ОДЗ:

Данное уравнение имеет стандартный вид, оно равносильно (x + 1 = 12 — 3x), что равносильно (x = 2,75) – подходит по ОДЗ.

Ответ: 2,75


Задание
12

#419

Уровень задания: Равен ЕГЭ

Найдите корень уравнения (log_{100}(2015x + 1) = log_{100}(2016x + 1)).

ОДЗ: (2015x + 1 > 0) и (2016x + 1 > 0), что равносильно (x > -dfrac{1}{2016}). Решим на ОДЗ:
 
Данное уравнение имеет стандартный вид, оно равносильно (2015x + 1 = 2016x + 1), что равносильно (x = 0) – подходит по ОДЗ.

Ответ: 0


Задание
13

#421

Уровень задания: Равен ЕГЭ

Найдите корень уравнения (log_{frac{1}{3}}(4x + 1) = -3).

ОДЗ: (4x + 1 > 0) , что равносильно (x > -dfrac{1}{4}). Решим на ОДЗ:

По определению логарифма (log_{frac{1}{3}}(4x + 1)) – показатель степени, в которую нужно возвести (dfrac{1}{3}), чтобы получить (4x + 1), откуда заключаем: [left(dfrac{1}{3}right)^{-3} = 4x + 1qquadLeftrightarrowqquad 3^3 = 4x + 1qquadLeftrightarrowqquad x = 6,5] – подходит по ОДЗ.

Ответ: 6,5


Задание
14

#1653

Уровень задания: Равен ЕГЭ

Найдите корень уравнения (log_{pi}(7 — 5x) = 2log_{pi}9).

ОДЗ: (7 — 5x > 0) , что равносильно (x < 1,4). Решим на ОДЗ:

По свойству логарифма исходное уравнение равносильно (log_{pi}(7 —
5x) = log_{pi}(9^2))
, что равносильно (log_{pi}(7 — 5x) =
log_{pi}81)
. Последнее уравнение имеет стандартный вид, оно равносильно (7 — 5x = 81), что равносильно (x = -14,8) – подходит по ОДЗ.

Ответ: -14,8

Курс Глицин. Любовь, друзья, спорт и подготовка к ЕГЭ

Курс Глицин. Любовь, друзья, спорт и подготовка к ЕГЭ

Логарифмом положительного числа $b$ по основанию $а$, где $a>0, a ≠ 1$, называется показатель степени, в которую надо возвести число $а$, чтобы получить $b$.

$log_{2}8 = 3$, т.к. $2^3 = 8;$

$log_3{1}/{27}=-3$, т.к $3^{-3} = {1}/{27}$.

Особенно можно выделить три формулы:

$log_{a}a=1;$

$log_{a}1=0;$

$log_{a}a^b=b.$

Основное логарифмическое тождество:

$a^{log_{a}b}=b$

Это равенство справедливо при $b> 0, a> 0, a≠ 1$

$4^{log_{4}5}=5$;

$3^{-2log_{3}5}=(3^{log_{3}5})^{-2}=5^{-2}={1}/{25}$

Некоторые свойства логарифмов

Все свойства логарифмов мы будем рассматривать для $a> 0, a≠ 1, b> 0, c> 0, m$ – любое действительное число.

1. Для любого действительного числа $m$ справедливы равенства:

$log_{а}b^m=mlog_{a}b;$

$log_{a^m}b={1}/{m}log_{a}b.$

$log_{3}3^10=10log_{3}3=10;$

$log_{5^3}7={1}/{3}log_{5}7;$

$log_{3^7}4^5={5}/{7}log_{3}4;$

2. Для решения задач иногда полезно следующее свойство: Если числа $а$ и $b$ на числовой оси расположены по одну сторону от единицы, то $log_{a}b>0$, а если по разные, то $log_{a}b<0$.

Десятичным логарифмом числа называют логарифм этого числа по основанию $10$ и пишут $lg⁡b$ вместо $log_{10}b$.

Натуральным логарифмом числа называют логарифм этого числа по основанию $е$, где $е$ – иррациональное число, приближенно равное $2,7$. При этом пишут $ln b$, вместо $log_{e}b$

Логарифмические уравнения

Логарифмическими уравнениями называют уравнения вида

$log_{a}f(x)=log_{a}g(x)$, где $а$ – положительное число, отличное от $1$, и уравнения, сводящиеся к этому виду.

После нахождения корней логарифмического уравнения необходимо проверить условие: подлогарифмическое выражение должно быть больше $0$.

Можно выделить несколько основных видов логарифмических уравнений:

1. Простейшие логарифмические уравнения: $log_{a}x=b$. Решение данного вида уравнений следует из определения логарифма, т.е. $x=a^b$ и $х > 0$

$log_{2}x=3$

Представим обе части уравнения в виде логарифма по основанию 2

$log_{2}x=log_{2}2^3$

Если логарифмы по одинаковому основанию равны, то подлогарифмические выражения тоже равны.

$x = 8$

Ответ: $х = 8$

2. Уравнения вида: $log_{a}f(x)=log_{a}g(x)$. Т.к. основания одинаковые, то приравниваем подлогарифмические выражения:

${table f(x)=g(x); f(x)>0; g(x)>0;$

$log_3(x^2-3x-5)=log_3(7-2x)$

Т.к. основания одинаковые, то приравниваем подлогарифмические выражения

$x^2-3x-5=7-2x$

Перенесем все слагаемые в левую часть уравнения и приводим подобные слагаемые

$x^2-x-12=0$

$x_1=4,x_2= -3$

Проверим найденные корни по условиям: ${table x^2-3x-5>0; 7-2x>0;$

При подстановке во второе неравенство корень $х=4$ не удовлетворяет условию, следовательно, он посторонний корень

Ответ: $х= -3$

3. Уравнения квадратного вида ${log_a^2}x+log_{a}x+c=0$. Такие уравнения решаются способом введения новой переменной и переходом к обычному квадратному уравнению.

4. Уравнения вида $a^x=b$. Решаются логарифмированием обеих частей по основанию $а$.

Решить уравнение $log_5log_2(x+1)=1$

Решение:

Сделаем в обеих частях уравнения логарифмы по основанию $5$

$log_5(log_2(x+1))=log_{5}5$

Т.к. основания одинаковые, то приравниваем подлогарифмические выражения

$log_2(x+1)=5$

Далее представим обе части уравнения в виде логарифма по основанию $2$

$log_2(x+1)=log_{2}2^5$

$x+1=32$

$x=31$

ОДЗ данного уравнения $x+1>0$

Подставим вместо х в неравенство $31$ и проверим, получиться ли верное условие $32>0$, следовательно, $31$ корень уравнения.

Ответ: $31$

Like this post? Please share to your friends:
  • Уравнения с логарифмами примеры егэ
  • Уравнения с логарифмами егэ профиль решение
  • Уравнения с кубическим корнем егэ
  • Уравнения с корнем как решать егэ
  • Уравнения для подготовки к егэ по математике