Уравнения тригонометрия егэ профиль



СДАМ ГИА:

РЕШУ ЕГЭ

Образовательный портал для подготовки к экзаменам

Математика профильного уровня

Математика профильного уровня

≡ Математика

Базовый уровень

Профильный уровень

Информатика

Русский язык

Английский язык

Немецкий язык

Французский язык

Испанский язык

Физика

Химия

Биология

География

Обществознание

Литература

История

Сайты, меню, вход, новости

СДАМ ГИАРЕШУ ЕГЭРЕШУ ОГЭРЕШУ ВПРРЕШУ ЦТ

Об экзамене

Каталог заданий

Варианты

Ученику

Учителю

Школа

Эксперту

Справочник

Карточки

Теория

Сказать спасибо

Вопрос — ответ

Чужой компьютер

Зарегистрироваться

Восстановить пароль

Войти через ВКонтакте

Играть в ЕГЭ-игрушку

Новости

10 марта

Как подготовиться к ЕГЭ и ОГЭ за 45 дней

6 марта

Изменения ВПР 2023

3 марта

Разместили утвержденное расписание ЕГЭ

27 января

Вариант экзамена блокадного Ленинграда

23 января

ДДОС-атака на Решу ЕГЭ. Шантаж.

6 января

Открываем новый сервис: «папки в избранном»

22 декабря

От­кры­ли но­вый пор­тал Ре­шу Олимп. Для под­го­тов­ки к пе­реч­не­вым олим­пи­а­дам!

4 ноября

Материалы для подготовки к итоговому сочинению 2022–2023

31 октября

Сертификаты для учителей о работе на Решу ЕГЭ, ОГЭ, ВПР

21 марта

Новый сервис: рисование

31 января

Внедрили тёмную тему!

НАШИ БОТЫ

Все новости

ЧУЖОЕ НЕ БРАТЬ!

Экзамер из Таганрога

10 апреля

Предприниматель Щеголихин скопировал сайт Решу ЕГЭ

Наша группа

Каталог заданий
Задания 12. Уравнения. Тригонометрические уравнения


Пройти тестирование по 10 заданиям
Пройти тестирование по всем заданиям
Вернуться к каталогу заданий

Версия для печати и копирования в MS Word

1

Тип 12 № 507595

а)  Решите уравнение  косинус 2x= синус левая круглая скобка x плюс дробь: числитель: знаменатель: p конец дроби i2 правая круглая скобка .

б)  Найдите корни этого уравнения, принадлежащие промежутку  левая квадратная скобка минус 2 Пи ; минус Пи правая квадратная скобка .

Аналоги к заданию № 507595: 500917 501709 Все

Классификатор алгебры: Тригонометрические уравнения, Тригонометрические уравнения, сводимые к целым на синус или косинус

Методы алгебры: Формулы двойного угла, Формулы приведения

Кодификатор ФИПИ/Решу ЕГЭ: 2.1.4 Тригонометрические уравнения

Решение

·

·

Курс Д. Д. Гущина

·

Сообщить об ошибке · Помощь


2

Тип 12 № 510018

а)  Решите уравнение  косинус 2x= 1 минус косинус левая круглая скобка дробь: числитель: Пи , знаменатель: 2 конец дроби минус x правая круглая скобка .

б)  Укажите корни этого уравнения, принадлежащие промежутку  левая квадратная скобка минус дробь: числитель: 5 Пи , знаменатель: 2 конец дроби ; минус Пи правая круглая скобка .

Источник: Демонстрационная версия ЕГЭ—2016 по математике. Профильный уровень.

Классификатор алгебры: Тригонометрические уравнения

Методы алгебры: Формулы двойного угла, Формулы приведения

Кодификатор ФИПИ/Решу ЕГЭ: 2.1.4 Тригонометрические уравнения

Решение

·

·

Курс Д. Д. Гущина

·

1 комментарий · Сообщить об ошибке · Помощь


3

Тип 12 № 504543

а)  Решите уравнение 4 косинус в степени 4 x минус 4 косинус в квадрате x плюс 1=0.

б)  Найдите все корни этого уравнения, принадлежащие отрезку  левая квадратная скобка минус 2 Пи ; минус Пи правая квадратная скобка .

Аналоги к заданию № 504543: 504564 507292 510671 Все

Классификатор алгебры: Тригонометрические уравнения, Тригонометрические уравнения, решаемые разложением на множители

Методы алгебры: Группировка

Кодификатор ФИПИ/Решу ЕГЭ: 2.1.4 Тригонометрические уравнения

Решение

·

·

Курс Д. Д. Гущина

·

2 комментария · Сообщить об ошибке · Помощь


4

Тип 12 № 500366

а)  Решите уравнение  косинус 2x плюс синус в квадрате x=0,5.

б)  Найдите все корни этого уравнения, принадлежащие отрезку  левая квадратная скобка минус дробь: числитель: 7 Пи , знаменатель: 2 конец дроби ; минус 2 Пи правая квадратная скобка .

Аналоги к заданию № 500366: 500587 501482 514505 Все

Классификатор алгебры: Тригонометрические уравнения

Методы алгебры: Формулы двойного угла

Кодификатор ФИПИ/Решу ЕГЭ: 2.1.4 Тригонометрические уравнения

Решение

·

·

Курс Д. Д. Гущина

·

4 комментария · Сообщить об ошибке · Помощь


5

Тип 12 № 509579

а)  Решите уравнение  косинус 2x минус 3 косинус x плюс 2 = 0.

б)  Найдите все корни уравнения, принадлежащие отрезку  левая квадратная скобка минус 4 Пи ; минус дробь: числитель: 5 Пи , знаменатель: 2 конец дроби правая квадратная скобка .

Аналоги к заданию № 509579: 509926 509947 509968 515762 519665 Все

Классификатор алгебры: Тригонометрические уравнения, Тригонометрические уравнения, сводимые к целым на синус или косинус

Методы алгебры: Формулы двойного угла

Кодификатор ФИПИ/Решу ЕГЭ: 2.1.4 Тригонометрические уравнения

Решение

·

·

Курс Д. Д. Гущина

·

Сообщить об ошибке · Помощь

Пройти тестирование по этим заданиям

О проекте · Редакция · Правовая информация · О рекламе

© Гущин Д. Д., 2011—2023

Skip to content

Результат поиска:

ЕГЭ Профиль №13. Тригонометрические уравнения

ЕГЭ Профиль №13. Тригонометрические уравненияadmin2018-09-28T21:10:10+03:00

Скачать ЕГЭ Профиль №13. Тригонометрические уравнения в формате pdf.

Нашли ошибку в заданиях? Оставьте, пожалуйста, отзыв.

13 задания профильного ЕГЭ по математике представляет собой уравнение с отбором корней принадлежащих заданному промежутку. Одним из видов уравнений которое может оказаться в 13 задание является тригонометрическое уравнение. Как правило, это достаточно простое тригонометрическое уравнение для решения которого потребуется знания основных тригонометрических формул, и умение решать простейшие тригонометрические уравнения. Отбор корней тригонометрического уравнения принадлежащих заданному промежутку можно производить одним из четырех способов: методом перебора, с помощью тригонометрической окружности, с помощью двойного неравенства и графическим способом. В данном разделе представлены тригонометрические уравнения (всего 226) разбитые на три уровня сложности. Уровень А — это простейшие тригонометрические уравнения, которые являются подготовительными для решения реальных тригонометрических уравнений предлагаемых на экзамене. Уровень В — состоит из уравнений, которые предлагали на реальных ЕГЭ и диагностических работах прошлых лет. Уровень С — задачи повышенной сложности.

Вставить формулу как
Блок
Строка

Дополнительные настройки
Цвет формулы
Цвет текста
#333333

ID формулы

Классы формулы

Используйте LaTeX для набора формулы
Предпросмотр
({})
Формула не набрана

Вставить

Тригонометрические уравнения

  • Замена переменной и сведение к квадратному уравнению

  • Разложение на множители

  • Однородные уравнения

  • Введение дополнительного угла

  • Универсальная подстановка

  • Учет ОДЗ уравнения

  • Метод оценки

  • Тригонометрические уравнения повышенной сложности.
    Приемы решения

В данной статье мы расскажем об основных типах тригонометрических уравнений и методах их решения. Тригонометрические уравнения чаще всего встречаются в задаче 12 ЕГЭ.

В вариантах ЕГЭ задача, где нужно решить уравнение, состоит из двух пунктов. Первый пункт – решение самого уравнения. Второй – нахождение его корней на некотором отрезке.

Некоторые из методов (например, замена переменной или разложение на множители) являются универсальными, то есть применяются и в других разделах математики. Другие являются специфическими именно для тригонометрии.

Необходимых формул по тригонометрии не так уж и много. Учите наизусть!
Тригонометрические формулы.

Любой метод решения тригонометрических уравнений состоит в том, чтобы привести их к простейшим, то есть к уравнениям вида sin x = a, cos x = a, tg x = a, ctg x = a.

Если вы не помните, как решать простейшие тригонометрические уравнения, — читайте материал на нашем сайте: Простейшие тригонометрические уравнения, часть 1.

О том, что такое арксинус, арккосинус, арктангенс и арккотангенс, — еще одна статья на нашем сайте: Простейшие тригонометрические уравнения,часть 2.

Теперь — сами методы. Теория и примеры решения задач.

к оглавлению ▴

Замена переменной и сведение к квадратному уравнению

Это универсальный способ. Применяется в любых уравнениях — степенных, показательных, тригонометрических,  логарифмических, каких угодно. Замена не всегда видна сразу, и уравнение нужно сначала преобразовать.

1. а) Решите уравнение: 2cos^{2}x+5sinx=5.
б) Найдите корни уравнения, принадлежащие отрезку displaystyle left [ -frac{pi }{2}; 2pi right ].

Решение:

а) Рассмотрим уравнение 2cos^{2}x+5sinx=5.

Преобразуем его, применив основное тригонометрическое тождество:

2left ( 1-sin^{2} xright )+5sinx=5;

2sin^{2}x-5sinx+3=0.

Заменяя sin x на t, приходим к квадратному уравнению:

2t^{2}-5t+3=0.

Решая его, получим:

displaystyle t_{1}=frac{3}{2}, t_{2}=1.

Теперь вспоминаем, что мы обозначили за t. Первый корень приводит нас к уравнению displaystyle sinx=frac{3}{2}.
Оно не имеет решений, поскольку -1leq sinxleq 1.

Второй корень даёт простейшее уравнение sinx=1.

Решаем его: displaystyle x=frac{pi }{2}+2pi n, nin Z.

б) Найдем корни уравнения на отрезке displaystyle left [ -frac{pi }{2}; 2pi right ] с помощью двойного неравенства.

displaystyle -frac{pi }{2}leq frac{pi }{2}+2pi nleq 2pi .

Разделим обе части неравенства на pi :

displaystyle -frac{1}{2}leq frac{1}{2}+2nleq 2.

Вычтем displaystyle frac{1}{2} из обеих частей неравенства:

-1leq 2nleq 1,5.

Разделим на 2 обе части неравенства:

-0,5leq nleq 0,75.

Единственное целое решение – это n=0. Тогда displaystyle x=frac{pi }{2} — это единственный корень, который принадлежит отрезку displaystyle left [ -frac{pi }{2}; 2pi right ].

Ответ: displaystyle frac{pi }{2}.

2. а) Решите уравнение: cos2x-5sqrt{2}cosx-5=0.
б) Укажите корни этого уравнения, принадлежащие отрезку displaystyle left [ -3pi ; -frac{3pi }{2} right ].

Решение:

а) cos2x-5sqrt{2}cosx-5=0.

Выразим косинус двойного угла по формуле cos2x=2cos^{2}x-1.

Получим:

2cos^{2}x-1-5sqrt{2}cosx-5=0;

2cos^{2}x-5sqrt{2}cosx-6 =0.

Заменяя cos⁡x на t, приходим к квадратному уравнению:

2t^{2}-5sqrt{2}t-6=0;

D=50+48=98.

displaystyle t_{1}=-frac{sqrt{2}}{2}; t_{2}=3sqrt{2}.

1) displaystyle cosx=-frac{sqrt{2}}{2}; x=pm frac{3pi }{4}+2pi n, nin Z;

2) cosx=3sqrt{2}; нет решений, т. к. 3sqrt{2}textgreater 1.

Получим: displaystyle x=pm frac{3pi }{4}+2pi n, nin Z.

б) Отметим отрезок displaystyle left [ -3pi ; -frac{3pi }{2} right ] и найденные серии решений на единичной окружности.

Видим, что данному отрезку принадлежит только точка displaystyle x=-2pi -frac{3pi }{4}=-frac{11pi }{4}.

Ответ: а) displaystyle x=pm frac{3pi }{4}+2pi n, nin Z.
б) displaystyle -frac{11pi }{4}.

3. а) Решите уравнение: displaystyle 8sin^{2}x-2sqrt{3}cosleft ( frac{pi }{2}-x right )-9=0.
б) Найдите все корни этого уравнения, принадлежащие отрезку displaystyle left [ -frac{5pi }{2}; -pi right ].

Решение:

а)  Чтобы упростить уравнение displaystyle 8sin^{2}x-2sqrt{3}cosleft ( frac{pi }{2}-x right )-9=0, применяем формулу приведения.

Так как displaystyle cosleft ( frac{pi }{2}-x right )=sinx, получим:

displaystyle 8sin^{2}x-2sqrt{3}sinx-9=0.

Сделаем замену:  sinx=t.  Получим квадратное уравнение:

8t^{2}-2sqrt{3}t-9=0;

displaystyle frac{D}{4}=3+72=75.

displaystyle t_1={frac{3sqrt{3}}{4}}; t_{2}=-frac{sqrt{3}}{2}.

Сделаем обратную замену.

1) displaystyle sinx={frac{3sqrt{3}}{4}} — нет решений, т. к.  displaystyle {frac{3sqrt{3}}{4}}textgreater 1.

2) displaystyle sinx=-frac{sqrt{3}}{2}Leftrightarrow left[begin{array}{c}displaystyle x=-frac{pi }{3}+2pi k, kin Z\displaystyle x=-frac{2pi }{3}+2pi k\end{array}right. .

б) Найдем корни уравнения, принадлежащие отрезку displaystyle left [ -frac{5pi }{2}; -pi right ], с помощью двойного неравенства.

Для серии решений displaystyle x=-frac{pi }{3}+2pi k, kin Z получим:

displaystyle -frac{5pi }{2}leq -frac{pi }{3}+2pi kleq -pi;

displaystyle -frac{13}{12}leq kleq -frac{2}{6}.

Так как kin Z, то displaystyle k=-1; x=-frac{7pi }{3}.

Для серии решений displaystyle x=-frac{2pi }{3}+2pi k получим:

displaystyle -frac{5pi }{2}leq -frac{2pi }{3}+2pi kleq -pi; отсюда

displaystyle -frac{11}{12}leq kleq -frac{1}{6}.

У этого неравенства нет целых решенией, и значит, из второй серии ни одна точка в указанный отрезок не входит.

Ответ: а) displaystyle -frac{pi }{3}+2pi k; -frac{2pi }{3}+2pi k, kin Z.
б) displaystyle -frac{7pi }{3}.

к оглавлению ▴

Разложение на множители

Во многих случаях уравнение удаётся представить в таком виде, что в левой части стоит произведение двух или нескольких множителей, а в правой части — ноль. Произведение двух или нескольких множителей равно нулю тогда и только тогда, когда хотя бы один из них равен нулю. Сложное уравнение, таким образом, распадается в совокупность более простых.

4. а) Решите уравнение: sin2x=cosx.
б) Найдите все корни уравнения на отрезке [-pi; pi ].

Решение:

а) Применяем формулу синуса двойного угла:

2sinxcosx=cosx.

Ни в коем случае не сокращайте на косинус! Ведь может случиться, что cos x обратится в нуль, и мы потеряем целую серию решений. Переносим всё в одну часть, и общий множитель выносим за скобки:

2sinxcosx-cosx=0;

cosxleft ( 2sinx-1 right )=0.

Полученное уравнение равносильно совокупности двух уравнений: cosx = 0 и 2sinx — 1 = 0.

Получим:

left[begin{array}{c}cosx=0\displaystyle sinx=frac{1}{2}\end{array}right. Leftrightarrow left[begin{array}{c}displaystyle x=frac{pi }{2}+2pi n, nin Z\\displaystyle x=frac{pi }{6}+2pi n\\displaystyle x=frac{5pi }{6}+2pi n\end{array}right. .

Все эти три серии решений являются ответом в части (а).

б) Отметим отрезок [-pi; pi ]. и найденные серии решений на единичной окружности.

Видим, что данному отрезку принадлежат точки displaystyle x_{1}=frac{pi }{6}; x_{2}=frac{5pi }{6}.

Ответ: а) displaystyle frac{pi }{6}+2pi n; frac{pi }{2}+2pi n; frac{5pi }{6}+2pi n, nin Z.
б) displaystyle frac{pi }{6}; frac{5pi }{6}.

5. а) Решите уравнение: sin3x+sin7x=2sin5x.
б) Найдите все корни уравнения на отрезке displaystyle left [ -frac{pi }{2}; pi right ].

Решение:

Применим формулу суммы синусов:

2sin5xcos2x=2sin5x.

Дальше действуем так же, как и в предыдущей задаче:

2sin5xcos2x-2sin5x=0;

2sin5xleft (cos2x-1 right )=0.

Решаем уравнение sin5x=0:

displaystyle x=frac{pi n}{5}, nin Z. (1)

Решаем уравнение cos2x-1=0:

x=pi n, nin Z (2)

Ну что, перечисляем обе серии (1) и (2) в ответе через запятую? Нет! Серия (2) является в данном случае частью серии (1). Действительно, если в формуле (1) число n кратно 5, то мы получаем все решения серии (2).

Поэтому ответ в пункте (а): displaystyle x=frac{pi n}{5}, nin Z.

б) Найдем корни уравнения, принадлежащие отрезку displaystyle left [ -frac{pi }{2}; pi right ], с помощью двойного неравенства:

displaystyle -frac{pi }{2}leq frac{pi n}{5}leq pi;

displaystyle -frac{5}{2}leq {n}leq 5.

Этот промежуток содержит 8 целых чисел: -2; -1; 0; 1; 2; 3; 4; 5.

Для каждого из этих n найдем x. Получим 8 решений на данном промежутке:

displaystyle -frac{2pi }{5}; -frac{pi }{5}; 0; frac{pi }{5}; frac{2pi }{5}; frac{3pi }{5}; frac{4pi }{5}; pi .

Ответ: а) displaystyle frac{pi n}{5}, nin Z.
б) displaystyle -frac{2pi }{5}; -frac{pi }{5}; 0; frac{pi }{5}; frac{2pi }{5}; frac{3pi }{5}; frac{4pi }{5}; pi .

6. В следующей задаче также применяется метод разложения на множители. Но это заметно не сразу.

а) Решите уравнение:sin^{2}2x+sin^{2}3x=1.
б) Найдите все корни уравнения на отрезке displaystyle left [ 0; frac{pi }{2} right ].

Решение:

Используем формулу понижения степени: displaystyle sin^{2}alpha =frac{1-cos2alpha }{2}.

Получаем:

displaystyle frac{1-cos4x}{2}+frac{1-cos6x}{2}=1;

cos4x+cos6x=0.

Применяем формулу суммы косинусов: displaystyle cosalpha +cosbeta =2cosfrac{alpha +beta }{2}cdot cosfrac{alpha -beta }{2}.

Получаем: 2cos5xcdot cosx=0.

Произведение двух множителей равно нулю тогда и только тогда, когда хотя бы один из множителей равен нулю, а другой при этом имеет смысл. Уравнение равносильно совокупности:

left[begin{array}{c}cos5x=0\cosx=0\end{array}right.Leftrightarrow left[begin{array}{c}displaystyle 5x=frac{pi }{2}+pi n, nin Z\\displaystyle x=frac{pi }{2}+pi k, kin Z\end{array}right. Leftrightarrow left[begin{array}{c}displaystyle x=frac{pi }{10}+frac{pi n}{5}, nin Z\\displaystyle x=frac{pi }{2}+pi k, kin Z\end{array}right. .

б) Найдем корни уравнения, принадлежащие отрезку displaystyle left [ 0; frac{pi }{2} right ], с помощью двойного неравенства:

1) displaystyle 0leq frac{pi }{10}+frac{pi n}{5}leq frac{pi }{2}.

Решив неравенство, получим: -0,5leq nleq 2,5.

Так как n ∈ Z, получим для n целые значения: 0, 1, 2.

Им соответствуют решения: displaystyle frac{pi }{10}; frac{3pi }{10}; frac{pi }{2}.

2) Из серии решений displaystyle frac{pi }{2}+pi k, kin Z на указанном отрезке лежит только корень displaystyle x=frac{pi }{2}. Но он уже входит в первую серию решений.

Можно также заметить, что вся вторая серия решений является подмножеством первой.

Ответ: а) displaystyle frac{pi }{10}+frac{pi n}{5}, nin Z.
б) displaystyle frac{pi }{10}; frac{3pi }{10}; frac{pi }{2}.

к оглавлению ▴

Однородные уравнения

7. а) Решите уравнение: sin^{2}x+2sinxcosx-3cos^{2}x=0.
б) Найдите все корни уравнения на отрезке displaystyle left [ -frac{3pi }{2}; frac{pi }{2} right ].

Решение:

Такое уравнение называется однородным.

Степень каждого слагаемого в левой части равна двум. Точно так же, как в обычном многочлене a^{2}+2ab-3b^{2}, степень каждого слагаемого равна двум. Мы помним, что степень одночлена — это сумма степеней входящих в него сомножителей.

Для однородных уравнений существует стандартный приём решения — деление обеих его частей на cos^{2}x.

Возможность этого деления, однако, должна быть обоснована: а что, если косинус равен нулю?

Следующий абзац предлагаем выучить наизусть и всегда прописывать его при решении однородных уравнений.

Предположим, что cosx = 0. Тогда в силу уравнения и sinx = 0, что противоречит основному тригонометрическому тождеству. Следовательно, любое решение данного уравнения удовлетворяет условию cosx neq 0, и мы можем поделить обе его части на cos^{2}x.

В результате деления приходим к равносильному квадратному уравнению относительно тангенса: tg^{2}x+2tgx-3=0.

Сделаем замену: tgx=t, получим:

left[begin{array}{c}tgx=-3 \tgx=1\end{array}right. Leftrightarrow left[begin{array}{c}x=-arctg3+pi k, kin Z \displaystyle x=frac{pi }{4}+pi k, kin Z\end{array}right..

б) Отметим отрезок displaystyle left [ -frac{3pi }{2}; frac{pi }{2} right ] и найденные серии решений на единичной окружности.

О том, как отметить на единичной окружности точки из первой серии решений, то есть арктангенс минус трех, читайте здесь: Простейшие тригонометрические уравнения, часть 2.

Видим, что данному отрезку принадлежат  точки:

x_{1}=-pi -arctg3;

displaystyle x_{2}=-pi +frac{pi }{4}=-frac{3pi }{4};

x_{3}= -arctg3;

displaystyle x_{4}=frac{pi }{4}.

Ответ: а) displaystyle -arctg3+pi k; frac{pi }{4}+pi k, kin Z.
б) -pi -arctg3; displaystyle -frac{3pi }{4}; -arctg3; frac{pi }{4}.

8. а) Решите уравнение: 10sin^{2}x+5sinxcosx+cos^{2}x=3.
б) Найдите все корни уравнения на отрезке displaystyle left [ 0; frac{pi }{2} right ].

Если бы в правой части стоял нуль, уравнение было бы однородным. Мы поправим ситуацию изящным приёмом: заменим число 3 на выражение 3(sin^{2}x+cos^{2}x):

10sin^{2}x+5sinxcosx+cos^{2}x=3(sin^{2}x+cos^{2}x);

7sin^{2}x+5sinxcosx-2cos^{2}x=0.

Получили однородное уравнение второй степени.

Так как не существует такой точки на единичной окружности, в которой одновременно синус и косинус равнялись бы нулю, мы разделим обе части уравнения на cos^{2}xneq 0.

Получим: 7tg^{2}x+5tgx-2=0.

Выполним замену: tgx = y, получим:

7y^{2}x+5y-2=0.

D=25+56=81;

displaystyle y_{1,2}=frac{-5pm 9}{14};left[begin{array}{c}y=-1\displaystyle y=frac{2}{7}\end{array}right. .

Обратная замена: left[begin{array}{c}tgx=-1\displaystyle tgx=frac{2}{7}\end{array}right. Leftrightarrow left[begin{array}{c}displaystyle x=-frac{pi }{4}+pi k, kin Z\displaystyle x=arctgfrac{2}{7}+pi k, kin Z\end{array}right. .

Ответом в пункте (а) являются  две серии решений.

б) Найдем корни уравнения, принадлежащие отрезку displaystyle left [ 0; frac{pi }{2} right ], с помощью единичной окружности. Для этого отметим на ней данный отрезок и  найденные серии решений.

Видим, что данному отрезку принадлежит только точка displaystyle x_1=arctgfrac{2}{7}.

Ответ: а) displaystyle  -frac{pi }{4}+pi k; arctgfrac{2}{7}+pi k, kin Z.
б) displaystyle arctgfrac{2}{7}.

к оглавлению ▴

Введение дополнительного угла

Этот метод применяется для уравнений вида acosx + bsinx=c. Он присутствует в школьных учебниках. Правда, в них рассматриваются только частные случаи — когда числа a и b являются значениями синуса и косинуса углов в 30°, 45° или 60°.

9. а) Решим уравнение: sqrt{3}sinx+cosx=2.
б) Найдите все корни уравнения на отрезке [0; 3pi ].

Решение:

Делим обе части на 2:

displaystyle frac{sqrt{3}}{2}sinx+frac{1}{2}cosx=1.

Замечаем, что displaystyle frac{sqrt{3}}{2}=cosfrac{pi }{6}; frac{1}{2}=sinfrac{pi }{6}:

displaystyle cosfrac{pi }{6}sinx+sinfrac{pi }{6}cosx=1.

В левой части получили синус суммы:

displaystyle sinleft ( x+frac{pi }{6} right )=1, отсюда displaystyle x+frac{pi }{6}=frac{pi }{2}; x=frac{pi }{3}+2pi n, nin Z.

б) Отметим на единичной окружности отрезок [0; 3pi ]. и найденные серии решений.

Обратите внимание, что в этой задаче отрезок больше, чем полный круг. Как нам поступить? Один из способов – нарисовать рядом две окружности.


Видим, что данному отрезку принадлежат точки: displaystyle x_{1}=frac{pi }{3}; x_{2}=2pi +frac{pi }{3}=frac{7pi }{3}.

Ответ: а) displaystyle frac{pi }{3}+2pi n, nin Z.
б) displaystyle frac{pi }{3}; frac{7pi }{3}.

Другой пример.

10. а) Решите уравнение: cosx+sinx=1.
б) Найдите все корни уравнения на отрезке [0; pi ].

Решение:

Делим обе части на sqrt{2}:

displaystyle frac{1}{sqrt{2}}cosx+frac{1}{sqrt{2}}sinx=frac{1}{sqrt{2}}.

Сделаем теперь для разнообразия в левой части косинус разности:

displaystyle cosfrac{pi }{4}cosx+sinfrac{pi }{4}sinx=frac{1}{sqrt{2}};

displaystyle cosleft ( x-frac{pi }{4} right )=frac{1}{sqrt{2}};

displaystyle x-frac{pi }{4}=pm frac{pi }{4}+2pi n;

displaystyle x_{1}=frac{pi }{2}+2pi n; x_{2}=2pi n, nin Z.

б) Найдем корни уравнения, принадлежащие отрезку [0; pi ] с помощью единичной окружности. Отметим на ней данный отрезок и найденные серии решений.

Видим, что данному отрезку принадлежат  точки 0 и displaystyle frac{pi }{2}.

Ответ: а) displaystyle frac{pi }{2}+2pi n; 2pi n, nin Z.
б) 0; displaystyle frac{pi }{2}.

Покажем, как применяется метод введения дополнительного угла в общем случае.

Рассмотрим  уравнение acosx+bsinx=c.

Делим обе части на sqrt{a^{2}+b^{2}}:

displaystyle frac{a}{sqrt{a^{2}+b^{2}}}cosx+frac{b}{sqrt{a^{2}+b^{2}}}sinx=frac{c}{sqrt{a^{2}+b^{2}}}. (4)

Для чего мы выполнили это деление? Всё дело в получившихся коэффициентах при косинусе и синусе. Легко видеть, что сумма их квадратов равна единице:

displaystyle left ( frac{a}{sqrt{a^{2}+b^{2}}} right )^{2}+left ( frac{b}{sqrt{a^{2}+b^{2}}} right )^{2}=1.

Это означает, что данные коэффициенты сами являются косинусом и синусом некоторого угла :

displaystyle frac{a}{sqrt{a^{2}+b^{2}}}=cosalpha , frac{b}{sqrt{a^{2}+b^{2}}}=sinalpha.

Соотношение (4) тогда приобретает вид:

displaystyle cosalpha cosx+sinalpha sinx=frac{c}{sqrt{a^{2}+b^{2}}}

или

displaystyle cos(x-alpha )=frac{c}{sqrt{a^{2}+b^{2}}}.

Исходное уравнение сведено к простейшему. Теперь понятно, почему рассматриваемый метод называется введением дополнительного угла. Этим дополнительным углом как раз и является угол alpha .

к оглавлению ▴

Универсальная подстановка

Запомним две важные формулы:

Их ценность в том, что они позволяют выразить синус и косинус через одну и ту же функцию — тангенс половинного угла. Именно поэтому они получили название универсальной тригонометрической подстановки. 

Единственная неприятность, о которой не надо забывать: правые части этих формул не определены при . Поэтому если применение универсальной подстановки приводит к сужению ОДЗ, то данную серию нужно проверить непосредственно.

11. а) Решите уравнение: 
б) Найдите все корни уравнения на отрезке [0; pi ].

Решение:

Выражаем , используя универсальную тригонометрическую подстановку:

Делаем замену  :

Получаем кубическое уравнение:

Оно имеет единственный корень .

Стало быть, , откуда .

Сужения ОДЗ в данном случае не было, так как уравнение с самого начала содержало .

б) Найдем корни уравнения, принадлежащие отрезку [0; pi ],   с помощью двойного неравенства:

displaystyle 0leq frac{pi }{4}+pi nleq pi , nin Z;

displaystyle -frac{1}{4}leq nleq frac{3}{4}.

Получим, что displaystyle n=0; x=frac{pi }{4}.

Ответ: а) displaystyle frac{pi }{4}+pi n, nin Z.
б) displaystyle frac{pi }{4}.

Универсальная тригонометрическая подстановка может также пригодиться при решении задач по планиметрии из второй части ЕГЭ. Поэтому формулы лучше выучить.

к оглавлению ▴

Учет ОДЗ уравнения

12. а) Рассмотрим уравнение: 
б) Найдите все корни уравнения на отрезке displaystyle left [ -frac{pi }{2}; frac{3pi }{2} right ].

Решение:

Перепишем уравнение в виде, пригодном для возведения в квадрат:

Тогда наше уравнение равносильно системе:

Решаем уравнение системы:

,

,

Второе уравнение данной совокупности не имеет решений, а первое даёт две серии:

Теперь нужно произвести отбор решений в соответствии с неравенством . Серия  не удовлетворяет этому неравенству, а серия удовлетворяет ему. Следовательно, решением исходного уравнения служит только серия .

Ответ в пункте (а):  .

б) Найдем корни уравнения, принадлежащие отрезку displaystyle left [ -frac{pi }{2}; frac{3pi }{2} right ], с помощью двойного неравенства:

displaystyle frac{-pi }{2}leq -frac{pi }{3}+2pi nleq frac{3pi }{2};

displaystyle -frac{1}{12}leq nleq frac{11}{12}.

Неравенство имеет единственное целое решение n=0.

Тогда displaystyle x=-frac{pi }{3}.

Ответ: а) displaystyle -frac{pi }{3}+2pi n, nin Z.
б) displaystyle -frac{pi }{3}.

Мы рассмотрели основные методы решения тригонометрических уравнений, которые применяются в задаче 12 ЕГЭ.

Где же еще нам могут встретиться тригонометрические уравнения? Конечно, в задачах с параметрами. Или на олимпиадах по математике. Сейчас мы увидим еще несколько полезных приемов решения.

к оглавлению ▴

Метод оценки

В некоторых уравнениях на помощь приходят оценки .

13. Рассмотрим уравнение: 

Так как оба синуса не превосходят единицы, данное равенство может быть выполнено лишь в том случае, когда они равны единице одновременно:

Таким образом, должны одновременно выполняться следующие равенства:

Обратите внимание, что сейчас речь идёт о пересечении множества решений (а не об их объединении, как это было в случае разложения на множители). Нам ещё предстоит понять, какие значения x удовлетворяют обоим равенствам. Имеем:

Умножаем обе части на 90 и сокращаем на π:

;

;

Правая часть, как видим, должна делиться на 5. Число n при делении на 5 может давать остатки от 0 до 4; иначе говоря, число n может иметь один из следующих пяти видов: 5n, 5m + 1, 5m + 2, 5m + 3 и 5m + 4, где. Для того, чтобы 9n+ 1 делилось на 5, годится лишь n = 5m + 1.

Искать k, в принципе, уже не нужно. Сразу находим x:

Ответ:

14. Рассмотрим уравнение: 

Ясно, что данное равенство может выполняться лишь в двух случаях: когда оба синуса одновременно равны 1 или −1. Действуя так, мы должны были бы поочерёдно рассмотреть две системы уравнений.

Лучше поступить по-другому: умножим обе части на 2 и преобразуем левую часть в разность косинусов:

;

Тем самым мы сокращаем работу вдвое, получая лишь одну систему:

Имеем:

Ищем пересечение:

Умножаем на 21 и сокращаем на π:

Данное равенство невозможно, так как в левой части стоит чётное число, а в правой — нечётное.

Ответ: решений нет.

Это был тренировочный пример. А в задачах ЕГЭ решения есть всегда.

Посмотрите, как применяется метод оценки в задачах с параметрами.

15. Страшное с виду уравнение  также решается методом оценок.

В самом деле, из неравенства  следует, что .

Следовательно, , причём равенство возможно в том и только в том случае, когда

left{begin{matrix}sin^{5}x=sin^{2}x\cos^{8}x=cos^{2}x\end{matrix}right. .

Остаётся решить полученную систему. Это не сложно.

Перенесем в левую часть и вынесем общий множитель за скобки ,  получим:

left{begin{matrix}sin^{2}x(sin^{3}x-1)=0 \cos^{2}x(cos^{6}x-1)=0 \end{matrix}right. .

Произведение равно нулю тогда и только тогда, когда хотя бы один из множителей равен нулю, а другой при этом имеет смысл.

Каждое уравнение равносильно совокупности:

left{begin{matrix}left[begin{array}{c}sinx=0\sinx=1\end{array}right. \left[begin{array}{c}cosx=0\cosx=1\cosx=-1\end{array}right. \end{matrix}right. .

Это значит, что синус угла х равен нулю, а его косинус равен 0, 1 или -1.

Или синус угла х равен 1, а косинус этого угла равен 0, 1 или -1.

Такие углы легко найти на тригонометрическом круге. Найденные серии решений запишем в ответ.

Ответ: displaystyle 2pi n; frac{pi }{2}+2pi n; pi +2pi n, nin Z.

к оглавлению ▴

Тригонометрические уравнения повышенной сложности.
Приемы решения

16. Рассмотрим такое уравнение: 

Сделаем замену .

Как выразить  через t? Имеем:

,

откуда . Получаем:

t^{2}-1=t+1;

t^{2}-t-2=0;

t_{1}=-1; t_{2}=2.

left[begin{array}{c}cosx+sinx=-1\cosx+sinx=2\end{array}right. .

Начнем со второго уравнения.

Так как -1leq sinxleq 1 и  -1leq cosxleq 1, то их сумма может быть равна 2, только оба слагаемых равны 1. Но на единичной окружности не существует точки, в которой одновременно синус и косинус равен единице. Значит, второе уравнение корней не имеет.

Решим первое уравнение методом введения дополнительного угла.

Для этого разделим обе части уравнения на sqrt{2} и получим:

displaystyle cosx+sinx=-1Leftrightarrow frac{1}{sqrt{2}}cosx+frac{1}{sqrt{2}}sinx=-frac{1}{sqrt{2}}Leftrightarrow

displaystyle Leftrightarrow cosxcdot cosfrac{pi }{4}+sinxcdot sinfrac{pi }{4}=-frac{1}{sqrt{2}}Leftrightarrow cosleft ( x+frac{pi }{4} right )=-frac{1}{sqrt{2}}Leftrightarrow

displaystyle Leftrightarrow x+frac{pi }{4}=pm frac{3pi }{4}+2pi k, kin Z;

left[begin{array}{c}displaystyle x=frac{pi }{2}+2pi k, kin Z\x=-pi +2pi k, kin Z\end{array}right. .

Ответ: displaystyle frac{pi }{2}+2pi k; -pi +2pi k, kin Z.

17. Помним формулы косинуса и синуса тройного угла:

,

Вот, например, уравнение:

Оно сводится к уравнению относительно :

,

,

Произведение двух множителей равно нулю тогда и только тогда, когда хотя бы один из множителей равен нулю, а другой при этом имеет смысл. Уравнение равносильно совокупности:

left[begin{array}{c}sinx=0\4sin^{2}x+4sinx-3=0\end{array}right. .

Решим второе уравнение с помощью замены sinx = t.

Получим: displaystyle 4t^{2}+4t-3=0; D=16+48=64; t=-frac{3}{2} или  displaystyle t=frac{1}{2}.

Обратная замена:

left[begin{array}{c}displaystyle sinx=-frac{3}{2}\\displaystyle sinx=frac{1}{2}\end{array}right. Leftrightarrow left[begin{array}{c}xin O \\displaystyle x=frac{pi }{6}+2pi n, nin Z\\displaystyle x=frac{5pi }{6}+2pi n, nin Z\end{array}right. .

А решением первого уравнения sinx = 0 являются числа вида x=pi k, kin Z.

Ответ: displaystyle pi k, kin Z; frac{pi }{6}+2pi n; frac{5pi }{6}+2pi n, nin Z.

Интересно, что формулы синуса и косинуса тройного угла также могут пригодиться вам в решении задач по планиметрии из второй части ЕГЭ.

18. Как бороться с суммой четвёртых степеней синуса и косинуса?

Рассмотрим уравнение: 

Выделяем полный квадрат!

;

;

;

;

;

;

19. А как быть с суммой шестых степеней?

Рассмотрим такое уравнение: 

Раскладываем левую часть на множители как сумму кубов: .

Получим:

;

С суммой четвёртых степеней вы уже умеете обращаться.

Мы рассмотрели основные методы решения тригонометрических уравнений. Знать их нужно обязательно, это — необходимая база.

В более сложных и нестандартных задачах нужно ещё догадаться, как использовать те или иные методы. Это приходит только с опытом. Именно этому мы и учим на наших занятиях.

Благодарим за то, что пользуйтесь нашими публикациями.
Информация на странице «Тригонометрические уравнения» подготовлена нашими редакторами специально, чтобы помочь вам в освоении предмета и подготовке к экзаменам.
Чтобы успешно сдать нужные и поступить в ВУЗ или колледж нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими материалами из данного раздела.

Публикация обновлена:
09.03.2023

Тригонометрическими уравнениями называют уравнения, в которых переменная содержится под знаком тригонометрических функций. К их числу прежде всего относятся простейшие тригонометрические уравнения, т.е. уравнения вида $sin x=a, cos x=a, tg x=a$, где $а$ – действительное число.

Перед решением уравнений разберем некоторые тригонометрические выражения и формулы.

$1$ радиан $={180}/{π}≈57$  градусов

$1$ градус $={π}/{180}$ радиан

Значения тригонометрических функций некоторых углов

$α$ $ 0$ ${π}/{6}$ ${π}/{4}$ ${π}/{3}$ ${π}/{2}$ $π$
$sinα$ $ 0$ $ {1}/{2}$ $ {√2}/{2}$ $ {√3}/{2}$ $ 1$ $ 0$  
$cosα$ $ 1$ $ {√3}/{2}$ $ {√2}/{2}$ $ {1}/{2}$ $ 0$ $ -1$  
$tgα$ $ 0$ $ {√3}/{3}$ $ 1$ $ √3$ $ -$ $ 0$  
$ctgα$ $ -$ $ √3$ $ 1$ $ {√3}/{3}$ $ 0$ $ -$  

Периоды повтора значений тригонометрических функций

Период повторения у синуса и косинуса $2π$, у тангенса и котангенса $π$

Знаки тригонометрических функций по четвертям

Эта информация нам пригодится для использования формул приведения. Формулы приведения необходимы для понижения углов до значения от $0$ до $90$ градусов.

Чтобы правильно раскрыть формулы приведения необходимо помнить, что:

  1. если в формуле содержатся углы $180°$ и $360°$ ($π$ и $2π$), то наименование функции не изменяется; (если же в формуле содержатся углы $90°$ и $270°$ (${π}/{2}$ и ${3π}/{2}$), то наименование функции меняется на противоположную (синус на косинус, тангенс на котангенс и т. д.);
  2. чтобы определить знак в правой части формулы ($+$ или $-$), достаточно, считая угол $α$ острым, определить знак преобразуемого выражения.

Преобразовать $сos(90° + α)$. Прежде всего, мы замечаем, что в формуле содержится угол $90$, поэтому $cos$ измениться на $sin$.

$сos(90° + α)=sinα$

Чтобы определить знак перед $sinα$, предположим, что угол $α$ острый, тогда угол $90° + α$ должен оканчиваться во 2-й четверти, а косинус угла, лежащего во 2-й четверти, отрицателен. Поэтому, перед $sinα$ нужен знак $-$.

$сos(90° + α)= — sinα$ — это конечный результат преобразования

Четность тригонометрических функций

Косинус четная функция: $cos(-t)=cos t$

Синус, тангенс и котангенс нечетные функции: $sin(-t)= — sin t; tg(-t)= — tg t; ctg(-t)= — ctg t$

Тригонометрические тождества

  1. $tgα={sinα}/{cosα}$
  2. $ctgα={cosα}/{sinα}$
  3. $sin^2α+cos^2α=1$ (Основное тригонометрическое тождество)

Из основного тригонометрического тождества можно выразить формулы для нахождения синуса и косинуса

$sinα=±√{1-cos^2α}$

$cosα=±√{1-sin^2α}$

  1. $tgα·ctgα=1$
  2. $1+tg^2α={1}/{cos^2α}$
  3. $1+ctg^2α={1}/{sin^2α}$

Вычислить $sin t$, если $cos t = {5}/{13} ; t ∈({3π}/{2};2π)$

Найдем $sin t$ через основное тригонометрическое тождество. И определим знак, так как $t ∈({3π}/{2};2π)$ -это четвертая четверть, то синус в ней имеет знак минус

$sin⁡t=-√{1-cos^2t}=-√{1-{25}/{169}}=-√{{144}/{169}}=-{12}/{13}$

Формулы двойного угла

  1. $sin2α=2sinα·cosα$
  2. $cos2α=cos^2α-sin^2α=2cos^2α-1=1-2sin^2α$
  3. $tg2α={2tgα}/{1-tg^2α}$

Формулы суммы и разности

$cosα+cosβ=2cos{α+β}/{2}·cos{α-β}/{2}$

$cosα-cosβ=2sin{α+β}/{2}·sin{β-α}/{2}$

$sinα+sinβ=2sin{α+β}/{2}·cos{α-β}/{2}$

$sinα-sinβ=2sin{α-β}/{2}·cos{α+β}/{2}$

Формулы произведения

$cosα·cosβ={cos(α-β)+cos(α+β)}/{2}$

$sinα·sinβ={cos(α-β)-cos(α+β)}/{2}$

$sinα·cosβ={sin(α+β)+sin(α-β)}/{2}$

Формулы сложения

$cos(α+β)=cosα·cosβ-sinα·sinβ$

$cos(α-β)=cosα·cosβ+sinα·sinβ$

$sin(α+β)=sinα·cosβ+cosα·sinβ$

$sin(α-β)=sinα·cosβ-cosα·sinβ$

Вычислить $sin12cos18+cos12sin18$

Данное выражение является синусом суммы

$sin12cos18+cos12sin18= sin⁡(12+18)=sin30=0.5$

Задача (Вписать в ответ число)

Вычислить $sin{5π}/{12} cos {π}/{12}+cos {π}/{12} sin {5π}/{12}$

Решение:

Данное выражение является синусом суммы

$sin {5π}/{12} cos {π}/{12}+cos {π}/{12} sin {5π}/{12}=sin⁡({π}/{12}+{5π}/{12})=sin {6π}/{12}=sin {π}/{2}=1$

Ответ: $1$

Обратные тригонометрические функции и простейшие тригонометрические уравнения

Арккосинус

Если, $|а|≤1$, то $arccos а$ – это такое число из отрезка $[0;π]$, косинус которого равен $а$.

Если, $|а|≤1$, то $arccos а = t ⇔ {table cos (t)=a; ≤t≤π;$

$arcos(-a) = π-arccos⁡a$, где $0≤а≤1$

Уравнение вида $cos t=a$, eсли, $|а|≤1$, имеет решение

$t=±arccos ⁡ a+2πk; k∈Z$

Частные случаи

$cos t =1, t = 2πk;k∈Z$

$cos t = 0, t = {π}/{2}+πk;k∈Z$

$cos t = -1, t=π+2πk;k∈Z$

Найдите наименьший положительный корень уравнения $сos{2πx}/{3}=-{√3}/{2}$

$сos{2πx}/{3}=-{√3}/{2}$

${2πx}/{3}=±arccos⁡(-{√3}/{2})+2πk;kϵZ$

${2πx}/{3}=±(π-arccos{√3}/{2})+2πk;kϵZ$

${2πx}/{3}=±(π-{π}/{6})+2πk;kϵZ$

${2πx}/{3}=±{5π}/{6} +2πk;kϵZ$

Далее избавимся от всех величин, мешающих иксу. Для этого разделим обе части уравнения на ${2π}/{3}$

$x=±{5π·3}/{6·2π} +{2π·3}/{2π}k$

$x=±1,25+3k$

Чтобы найти наименьший положительный корень, подставим вместо $k$ целые значения

$k=0$

$x_1= -1,25$

$x_2=1,25$

$к=1$

$х_1=3-1,25=1,75$

$х_2=3+1,25=4,25$

Нам подходит $1,25$ – это и есть результат

Ответ: $1,25$

Арксинус

Если, $|а|≤1$, то $arcsin a$ – это такое число, из отрезка $[-{π}/{2};{π}/{2}]$, синус которого равен $а$.

Если, $|а|≤1$, то $arcsin a = t ⇔ {table sint=a; -{π}/{2}≤t≤{π}/{2};$

$arcsin(-a)= — arcsin a$, где $0≤а≤1$

Если, $|а|≤1$, то уравнение $sin t =a$ можно решить и записать двумя способами:

$1. t_1 = arcsin a+2πk;k∈Z$

$t_2 = (π- arcsin a)+ 2πk;k∈Z$

$2. t=(-1)^n arcsin ⁡ a+πn; n∈Z$

$3.$ Частные случаи

$sin t = 0, t=πk;k∈Z$

$sin t = 1, t={π}/{2}+2πk;k∈Z$

$sin t = -1,t=-{π}/{2}+2πk;k∈Z$

Арктангенс

$arctg a$ — это такое число, из отрезка $[-{π}/{2};{π}/{2}]$, тангенс которого равен $а$.

$arctg a = t ⇔ {table tgt=a; -{π}/{2}≤t≤{π}/{2};$

$arctg(-a)= — arctg a$

Уравнение $tg t = a$ имеет решение $t= arctg a+πk;k∈Z$

Задание №12. Уравнения — профильный ЕГЭ по математике

Задание 12 Профильного ЕГЭ по математике – это решение уравнений. Чаще всего, конечно, это тригонометрические уравнения. Но встречаются и другие типы – показательные, логарифмические, комбинированные.

Сейчас задание 12 Профильного ЕГЭ на решение уравнения состоят из двух пунктов: собственно решения и отбора корней на определенном отрезке.

Что нужно знать, чтобы справиться с этой задачей на ЕГЭ? Вот необходимые темы для повторения.

Что необходимо помнить при решении уравнений?

1) Помним про область допустимых значений уравнения! Если в уравнении есть дроби, корни, логарифмы или арксинусы с арккосинусами — сразу записываем ОДЗ. А найдя корни, проверяем, входят они в эту область или нет. Есть в уравнении есть — помним, что он существует, только если

2) Стараемся записывать решение в виде цепочки равносильных переходов.

3) Если есть возможность сделать замену переменной — делаем замену переменной! Уравнение сразу станет проще.

4) Если еще не выучили формулы тригонометрии — пора это сделать! Много формул не нужно. Самое главное — тригонометрический круг, формулы синусов и косинусов двойных углов, синусов и косинусов суммы (разности), понижения степени. Формулы приведения не надо зубрить наизусть! Надо знать, как они получаются.

5) Как отбирать решения с помощью тригонометрического круга? Вспомним, что крайняя правая точка тригонометрического круга соответствует числам Дальше всё просто. Смотрим, какая из точек этого типа попадает в указанный в условии промежуток. И к ней прибавляем (или вычитаем) нужные значения.

Например, вы нашли серию решений , где — целое, а найти надо корни на отрезке На указанном промежутке лежит точка . От нее и будем отсчитывать. Получим:

6) Получив ответ, проверьте его правильность. Просто подставьте найденные решения в исходное уравнение!

а) Решите уравнение

б) Найдите все корни этого уравнения, принадлежащие промежутку

Упростим левую часть по формуле приведения.

Вынесем за скобки. Произведение двух (или нескольких) множителей равно нулю тогда и только тогда, когда хотя бы один из них равен нулю.

б) Отметим на тригонометрическом круге найденные серии решений и отрезок

Видим, что указанному отрезку принадлежат решения

Как отбирать решения с помощью тригонометрического круга? Вспомним, что крайняя правая точка тригонометрического круга соответствует числам Дальше всё просто. Смотрим, какая из точек этого типа попадает в указанный в условии промежуток. И к ней прибавляем (или вычитаем) нужные значения.

Например, вы нашли серию решений , где — целое, а найти надо корни на отрезке На указанном промежутке лежит точка От нее и отсчитываем.

2. а) Решите уравнение

б) Найдите все корни этого уравнения, принадлежащие отрезку

Это уравнение — комбинированное. Кроме тригонометрии, применяем свойства степеней.

Степени равны, их основания равны. Значит, равны и показатели.

Это ответ в пункте (а).

б) Отберем корни, принадлежащие отрезку

Отметим на тригонометрическом круге отрезок и найденные серии решений.

Видим, что указанному отрезку принадлежат точки и из серии

Точки серии не входят в указанный отрезок.

А из серии в указанный отрезок входит точка

Ответ в пункте (б):

3. а) Решите уравнение

б) Найдите все корни этого уравнения, принадлежащие отрезку

Применим формулу косинуса двойного угла:

Перенесем всё в левую часть уравнения и разложим по формуле разности квадратов.

Обратите внимание: мы отметили серии решений на тригонометрическом круге. Это помогло нам увидеть, как их записать одной формулой.

б) Для разнообразия отберем корни на отрезке с помощью двойного неравенства.

Какой способ отбора корней лучше — с помощью тригонометрического круга или с помощью двойного неравенства? У каждого из них есть «плюсы» и «минусы».

Пользуясь тригонометрическим кругом, вы не ошибетесь. Вы видите и интервал, и сами серии решений. Это наглядный способ.

Зато, если интервал больше, чем один круг, удобнее отбирать корни с помощью двойного неравенства. Например, надо найти корни из серии на отрезке Это больше 10 кругов! Конечно, в таком случае лучше решить двойное неравенство.

4. а) Решите уравнение

б) Найдите все корни этого уравнения, принадлежащие отрезку

Самое сложное здесь — область допустимых значений (ОДЗ). Условие заметно сразу. А условие появляется, поскольку в уравнении есть

Уравнение равносильно системе:

Отберем решения с помощью тригонометрического круга. Нам нужны те серии решений, для которых , то есть те, что соответствуют точкам справа от оси .

Ответ в пункте а)

б) Отметим на тригонометрическом круге найденные серии решений и отрезок

Как обычно, ориентируемся на начало круга. Видим, что указанному промежутку принадлежат точки

5. а) Решите уравнение

б) Найдите корни, принадлежащие отрезку

Выражение под корнем должно быть неотрицательно, а произведение двух множителей равно нулю тогда и только тогда, когда хотя бы один из них равен нулю.

Это значит, что уравнение равносильно системе:

Решим эту систему с помощью тригонометрического круга. Отметим на нем углы, для которых или . Заметим, что среди них находятся и углы, для которых

Числа серии не могут быть корнями исходного уравнения, т.к. для этих чисел не выполнено условие . Остальные серии решений нас устраивают.

Тогда в ответ в пункте (а) войдут серии решений:

б) Отберем корни, принадлежащие отрезку любым способом — с помощью тригонометрического круга или с помощью двойного неравенства.

Материал для подготовки к заданию номер 12 из ЕГЭ по профильной математике

Все уравнения можно разделить на несколько групп:

— Целые рациональные уравнения

Каждая группа уравнений имеет свои особенности. На первый взгляд может показаться, что это очень большой материал и на его изучение понадобится много времени, однако на самом деле для подготовки в экзамену и выполнению задания номер 12 можно подготовиться достаточно быстро, используя верно подобранные материалы и разбирая примеры заданий

Комбинируя все представленные в данных материалах способы и обладая базовыми знаниями математики, можно успешно решить большинство уравнений, которые могут встретиться учащимся во время обучения в средней и старшей школе а так же успешно решить задания на данную тему в контрольно-измерительных материалах

СОВЕТ: после прохождения какой-либо темы в моём пособии, необходимо прорешать похожие уравнения (этой же группы) на одном из подобранных мной сайтов (смотрите ниже)

Часть I. Способы решения уравнений. Метод “Замена переменной”

Уравнение вида af²(x)+bf (x)+c=0 Такие уравнения (их иногда называют трехчленными) являются одними из наиболее распространенных. Скорее всего, самый известный и яркий пример этого типа уравнений — биквадратное уравнение ax⁴ + bx2 + c = 0 (здесь f (x) = x 2 ). Заменой переменной t = f (x) трехчленное уравнение сводится к квадратному относительно переменной t уравнению at² + bt + c = 0

Решить уравнение (2x² – 3x + 1) = 22x² – 33x + 1.

Задание 12. Тригонометрическое уравнение

Типичная задача №12 из ЕГЭ по математике 2022 содержит два пункта:

  1. Решить несложное тригонометрическое уравнение (хотя иногда попадаются довольно сложные).
  2. Среди полученных корней отобрать те, которые принадлежат заданному отрезку. Вот здесь большинство учеников «пасует».

Все видеоуроки по задачам 12, опубликованные на моем сайте, содержат оба пункта: и решение уравнения (со всеми тонкостями), и различные подходы к отбору корней.

Глава 1. Тригонометрические уравнения § 1. Задача C1: тригонометрические уравнения с ограничением § 2. Задача C1: тригонометрические уравнения и формула двойного угла § 3. Задача C1: тригонометрия и показательная функция — 1 вариант § 4. Задача C1: тригонометрия и показательная функция — 2 вариант Глава 2. Показательные и логарифмические уравнения § 1. Задача C1: показательные уравнения с ограничением § 2. Задача C1: еще одно показательное уравнение § 3. Логарифмические уравнения в задаче C1 § 4. Задача C1: логарифмы и тригонометрия в одном уравнении § 5. Вебинар по заданию 13: тригонометрия § 6. Формулы двойного угла в тригонометрических уравнениях из ЕГЭ § 7. Отбор корней из некрасивых арктангенсов, арксинусов и т.д. § 8. Нестандартные периоды и отбор корней в тригонометрическом уравнении § 11. Задача из пробного ЕГЭ 2016 от 3 марта § 12. Вебинар по заданию 13: предварительное задание

источники:

http://vc.ru/u/1019775-egor-borodin/330865-material-dlya-podgotovki-k-zadaniyu-nomer-12-iz-ege-po-profilnoy-matematike

http://www.berdov.com/ege/equation-root/

Понравилась статья? Поделить с друзьями:
  • Уравнения содержащие модуль егэ
  • Уравнения со степенями егэ профиль
  • Уравнения смешанного типа решу егэ профиль
  • Уравнения смешанного типа егэ математика профиль
  • Уравнения с радикалами решу егэ