Уровни организации живой природы егэ по биологии теория

Иерархичность организации живой материи позволяет условно подразделить её на ряд уровней.

Уровень организации живой материи — это функциональное место биологической структуры определённой степени сложности в общей иерархии живого.

Выделяют следующие уровни организации живой материи.

Необходимо отметить, что биогеоценотический и биосферный уровни организации живой материи выделяют не всегда, поскольку они представлены биокосными системами, включающими не только живое вещество, но и неживое. Также часто не выделяют субклеточный и органно-тканевой уровни, включая их в клеточный и организменный соответственно.

Возраст Земли около 4,6 млрд лет. Жизнь на Земле возникла в океане более 3,5 млрд лет назад.
Историю развития жизни на Земле изучают по ископаемым останкам организмов или следам их жизнедеятельности. Они встречаются в горных породах разного возраста.
Геохронологическая шкала истории Земли разделена на эры и периоды.

Эра, возраст (в млн лет) Период, продолжительность (в млн лет) Мир животных Мир растений Важнейшие ароморфозы Кайнозойская, 62–70 Антропоген, 1,5 Современный животный мир. Эволюция и господство человека Современный растительный мир Интенсивное развитие коры головного мозга; прямохождение Неоген, 23,0 Палеоген, 41±2 Доминируют млекопитающие, птицы, насекомые. Появляются первые приматы (лемуры, долгопяты), позднее парапитеки и дриопитеки. Исчезают многие группы пресмыкающихся, головоногих моллюсков Широко распространяются цветковые растения, особенно травянистые; сокращается флора голосеменных   Мезозойская, 240 Мел, 70 Преобладают костистые рыбы, первоптицы, мелкие млекопитающие; появляются и распространяются плацентарные млекопитающие и современные птицы; вымирают гигантские пресмыкающиеся Появляются и начинают доминировать покрытосеменные; сокращаются папоротники и голосеменные Возникновение цветка и плода. Появление матки Юра, 60 Господствуют гигантские пресмыкающиеся, костистые рыбы, насекомые, головоногие моллюски; появляется археоптерикс; вымирают древние хрящевые рыбы Господствуют современные голосеменные; вымирают древние голосеменные   Триас, 35±5 Преобладают земноводные, головоногие моллюски, травоядные и хищные пресмыкающиеся; появляются костистые рыбы, яйцекладущие и сумчатые млекопитающие Преобладают древние голосеменные; появляются современные голосеменные; вымирают семенные папоротники Появление четырёхкамерного сердца; полное разделение артериального и венозного кровотока; появление теплокровности; появление молочных желёз Палеозойская, 570 Пермь, 50±10 Господствуют морские беспозвоночные, акулы; быстро развиваются пресмыкающиеся и насекомые; возникают зверозубые и травоядные пресмыкающиеся; вымирают стегоцефалы и трилобиты Богатая флора семенных и травянистых папоротников; появляются древние голосеменные; вымирают древовидные хвощи, плауны и папоротники Образование пыльцевой трубки и семени Карбон, 65±10 Доминируют земноводные, моллюски, акулы, двоякодышащие рыбы; появляются и быстро развиваются крылатые формы насекомых, пауки, скорпионы; возникают первые пресмыкающиеся; заметно уменьшаются трилобиты и стегоцефалы Обилие древовидных папоротникообразных, образующих «каменноугольные леса»; возникают семенные папоротники; исчезают псилофиты Появление внутреннего оплодотворения; появление плотных оболочек яйца; ороговение кожи Девон, 55 Преобладают панцирные, моллюски, трилобиты, кораллы; появляются кистепёрые, двоякодышащие и лучепёрые рыбы, стегоцефалы Богатая флора псилофитов; появляются мхи, папоротниковидные, грибы Расчленение тела растений на органы; преобразование плавников в наземные конечности; появление органов воздушного дыхания Силур, 35 Богатая фауна трилобитов, моллюсков, ракообразных, кораллов; появляются панцирные рыбы, пер вые наземные беспозвоночные (многоножки, скорпионы, бескрылые насекомые) Обилие водорослей; растения выходят на сушу — появляются псилофиты Дифференцировка тела растений на ткани; разделение тела животных на отделы; образование челюстей и поясов конечностей у позвоночных Ордовик, 55±10 Кембрий, 80±20 Преобладают губки, кишечнополостные, черви, иглокожие, трилобиты; появляются бесчелюстные позвоночные (щитковые), моллюски Процветание всех отделов водорослей   Протерозойская, 2600   Широко распространены простейшие; появляются все типы беспозвоночных, иглокожих; появляются первичные хордовые — подтип Бесчерепные Широко распространены сине-зелёные и зелёные водоросли, бактерии; появляются красные водоросли Появление двусторонней симметрии Архейская, 3500   Возникновение жизни: прокариоты (бактерии, сине-зелёные водоросли), эукариоты (простейшие), примитивные много-клеточные Появление фотосинтеза; появление аэробного дыхания; появление эукариотических клеток; появление полового процесса; появление многоклеточности

Уровни организации живого

Видео урок

Схема

s конспект схема уровни

Теория

Под уровнем организации живой материи понимают то функциональное место, которое данная биологическая структура занимает в общей системе организации мира.

Молекулярно-генетический (молекулярный) уровень

Биологическая система

Биологические макромолекулы (нуклеиновые кислоты, белки, углеводы) и другие вещества (липиды, АТФ и т.п.)

Элементарные процессы

Распад и синтез макромолекул в клетке, самосборка и матричное копирование макромолекул, генные мутации и т.д.

Характеристика

На этом уровне элементарной структурной единицей является ген (участок ДНК), а ДНК — носитель наследственной информации у всех живых организмов. С этого уровня начинаются важнейшие процессы жизнедеятельности организма: обмен веществ превращение энергии, передача наследственной информации.

Субклеточный уровень

Биологическая система

Органоиды

Элементарные процессы

Деление полуавтономных органоидов (митохондрии, пластиды), сборка органоидов и т.д.

Характеристика

На уровне субклеточных (надмолекулярных) структур изучают строение и функции органоидов (хромосом, митохондрий, рибосом и др.), а также включений клетки.

Клеточный уровень

Биологическая система

Клетка

Элементарные процессы

Жизненный цикл клетки. Митоз. Мейоз. Амитоз. Метаболизм и т.д.

Характеристика

Клетка — основная струк­турно-функциональная единица всех жи­вых организмов, элементарная живая система, единица размножения и развития всех живых организмов, обитающих на Земле. Минимальная единица, которой присущи все свойства живого.

Тканевый уровень

Биологическая система

Ткань

Элементарные процессы

Регенерация ткани, дифференциация, специализация. и т.д.

Характеристика

Ткань – совокупность сходных по строению клеток и межклеточного вещества, объединенных выполнением общей функции. Этот уровень присутствует только у многоклеточных организмов

Органный уровень

Биологическая система

Орган

Элементарные процессы

Процессы, связанные с функциями органов: пищеварение, газообмен и т.д.

Характеристика

Орган – структурно-функциональное объединение нескольких типов тканей.

Организменный уровень

Биологическая система

Особь

Элементарные процессы

Процессы онтогенеза (индивидуальное развитие), включающие процессы эмбрионального и постэмбрионального развития, обмен веществ, размножение и т.д.

Характеристика

Организм — целостная одноклеточная или многоклеточная живая система, способная к самостоятельному существованию. Многоклеточный организм образован совокупностью тканей и органов, специализированных на выполнении различных функций.

Популяционно-видовой уровень

Биологическая система

Популяция и вид

Элементарные процессы

Процессы, приводящие к видообразованию: дрейф генов, популяционные волны, дивергенция и т.д.

Характеристика

Популяция – это совокупность организмов одного и того же вида, достаточно долго проживающих на определенной территории и полностью или частично изолированные от других популяций. Вид – совокупность схожих особей, имеющих общее происхождение, свободно скрещивающихся между собой и дающие плодовитое потомство.

Биоценотический (экосистемный, биогеоценотический) уровень

Биологическая система

Биоценоз

Элементарные процессы

Круговорот веществ и энергии, межвидовые взаимодействия, передача энергии по цепям питания, сукцессии и т.д.

Характеристика

Экосистема — биологическая система (биогеоценоз), состоящая из сообщества живых организмов (биоценоз), среды их обитания (биотоп), системы связей, осуществляющей обмен веществом и энергией между ними

Биосферный уровень

Биологическая система

Биосфера

Элементарные процессы

Глобальный круговорот веществ и превращение энергии и т.д.

Характеристика

Биосфера – оболочка Земли, заселенная живыми организмами, находящаяся под их воздействием и занятая продуктами их жизнедеятельности совокупность всех биогеоценозов, включает все явления жизни на Земле. На этом уровне происходит круговорот веществ и превращение энергии, связанные с жизнедеятельностью всех живых организмов.

Термины

Отработать термины по теме «Уровни организации живого»

Список использованных источников

ЕГЭ. Биология. Пошаговая подготовка / Ю.А. Садовниченко. — Москва : Эксмо, 2015. — 320 с

Биология (Общие закономерности). 10 кл. : учебное пособие к элективному курсу для общеобразоват. организаций (углублённый уровень) / А.А. Вахрушев, М.А. Корженевская, А.П. Пуговкин, Н.А. Пуговкина, П.М. Скворцов. – М . : Баласс, 2015. – 400 с.: ил. (Образовательная система «Школа 2100»).


Просмотров: 55775

Основные уровни организации живой природы

Уровни организации живых систем отражают соподчиненность, иерархичность структурной организации жизни; отличаются друг от друга сложностью организации системы (клетка устроена проще по сравнению с многоклеточным организмом или популяцией).

Биологический уровень жизни – это форма и способ ее существования (вирус существует в виде молекулы ДНК или РНК, заключенной в белковую оболочку) – это форма существования вируса. Однако свойства живой системы вирус проявляет, только попав в клетку другого организма, где он размножается – это способ его существования.

ЕГЭ по биологии 3-1

Уровни организации живой материи (размерная схема)

ЕГЭ по биологии 3-2

Биология — сложная наука, которая не только изучает организмы животных, растений, грибов на уровне отдельных субъектов, но и пытается заглянуть за эту субъектность, объединяя организмы в определенные группы, которые затем становятся единицами изучения ученых.

Также ученые стремятся рассмотреть отдельные составляющие организма, проследить взаимодействие этих составляющих друг на друга и их влияние на отдельный субъект. Изучая внутренние органы животных, исследователи пытаются понять, как один орган влияет на другой (например, как головной мозг регулирует деятельность остальных органов).

То есть биология пытается развить представление о целостности живой природы на основе анализа и синтеза, поэтому учеными были выделены уровни организации живых организмов для понимания устройства и взаимодействия всего живого и неживого.

Уровни организации жизни — это иерархически соподчиненные уровни организации биосистем, то есть низшие уровни подчинены высшим, они отражают степень усложнения различных биосистем.

Существование жизни на всех уровнях подготавливается и определяется структурой низшего уровня, то есть характер клеточного уровня организации определяется молекулярным, характер организменного — клеточным уровнем.

Например, сердце формируется благодаря особому строению и функциям мышечных клеток, которое было определено их молекулярным строением.

Деление живого на уровни весьма условно, оно просто отражает системный подход в изучении природы.

Каждый отдельный уровень изучает соответствующий отдел науки о живом: молекулярной биологии, цитологии, генетики, анатомии, физиологии, экологии и других наук.

Выделяют три большие группы уровней организации:

  • суборганизменный
  • организменный (или онтогенетический)
  • надорганизменный

Суборганизменный уровень включает, в свою очередь, пять уровней: атомарный, молекулярный, субклеточный, клеточный, тканевый, органный.

Тканевый и органный уровни чаще всего объединяют в один — тканево-органный.

Организменный (или онтогенетический) уровень- это сам организм.

Надорганизменный уровень включает в себя три подуровня: популяционно- видовой, биогеоценотический, биосферный.

Эта информация доступна зарегистрированным пользователям

Мы с вами изучим основные уровни организации живых систем:

  • молекулярный
  • клеточный
  • тканевый
  • органный
  • организменный
  • популяционно-видовой
  • биогеоценотический
  • биосферный

1.  Молекулярный уровень организации жизни

Молекулярный уровень можно назвать первым и наименьшим, но именно он является определяющим в строении и функции последующих уровней организации, то есть это как бы основа всех дальнейших уровней.

Error: /home/l/ladle/public_html/system/cache/templates_c/1d007858edd8543c568f752dd6578e7e.php does not exists!

Формируют этот уровень молекулы белков, жиров, углеводов, нуклеиновых кислот, которые сами по себе вне клеточных структур не являются живыми, но именно они создают надмолекулярные клеточные структуры, в которых проявляются отдельные, но очень важные признаки жизни.

Именно на молекулярном уровне происходят различные биохимические реакции, а реализация наследственной информации происходит благодаря молекулам ДНК и РНК. Механизмы этих процессов универсальные для всех живых организмов.

Благодаря изучению молекулярного уровня можно понять, как протекали процессы зарождения и эволюции жизни на нашей планете, каковы молекулярные основы наследственности, основы последовательных биохимических реакций в организме.

К примеру, на уроке «Метаболизм. Пластический обмен» мы разбирали такое свойство генетического кода как универсальность, согласно которому гены всех организмов одинаковым образом кодируют наследственную информацию, будь это бактерии или клетки человека — принцип будет одинаковым, и эти процессы идут именно на молекулярном уровне организации живого.

Эта информация доступна зарегистрированным пользователям

Компоненты молекулярного уровня: молекулы неорганических и органических соединений, молекулярные комплексы химических соединений (клеточная мембрана или мембраны ядра).

Основные процессы молекулярного уровня:

  • объединение молекул в особые комплексы
  • осуществление упорядоченных физико-химических реакций
  • копирование (редупликация) ДНК, кодирование и передача генетической информации

Науки, ведущие исследования на этом уровне:

  • биохимия
  • биофизика
  • молекулярная биология
  • молекулярная генетика

Эта информация доступна зарегистрированным пользователям

2. Клеточный уровень организации жизни

Единицей этого уровня является клетка (клетки бактерий, цианобактерий, одноклеточных животных и водорослей, одноклеточных грибов (мукор, дрожжи), клеток многоклеточных организмов)).

Клетка- это структурная и функциональная единица всего живого.

Более подробную информацию о клетке вы можете узнать из урока «Клетка- основа жизни».

Именно на этом уровне прослеживаются все признаки живого (размножение, рост, обмен веществ, раздражение и другие признаки).

Клетка также является минимальной единицей живого, способной к самостоятельному существованию либо в виде одноклеточных организмов, либо в тканях многоклеточного организма.

Если говорить об организмах одноклеточных, то к таковым мы можем отнести бактерии и простейшие (амеб, эвглен, инфузорий), среди грибов к одноклеточным относятся дрожжи и мукор.

Если рассматривать многоклеточных организмов, то количество клеток в их организме может быть очень велико и эти клетки могут сильно отличаться по строению, хоть и находятся в одном организме. Например, посмотрим на нервную и мышечную клетки человека:

Эта информация доступна зарегистрированным пользователям

Вне клетки жизни нет, такие организмы, как вирусы, подтверждают это правило, потому что они могут проявлять признаки живого и реализовывать свою наследственную информацию только тогда, когда попали в живую клетку.

Эта информация доступна зарегистрированным пользователям

Компоненты клеточного уровня: комплексы молекул химических соединений и органеллы клетки.

Основные процессы клеточного уровня:

  • биосинтез, фотосинтез, энергетический обмен, митоз, мейоз
  • регулирование химических реакций
  • деление клетки
  • привлечение химических элементов Земли и энергии Солнца в биосистеме

Науки, ведущие исследования на клеточном уровне:

  • цитология
  • генная инженерия
  • цитогенетика
  • эмбриология
  • микробиология

3. Тканевый уровень организации жизни

Единицей этого уровня является ткань.

Ткань— это совокупность клеток и межклеточного вещества, объединенных общностью происхождения, строения и выполняемых функций.

Ткани возникли в ходе эволюционного развития вместе с многоклеточностью организмов.

В ходе онтогенеза ткани образуются на ранних стадиях эмбрионального развития благодаря дифференциации клеток.

Дифференциация клеток- процесс, в результате которого клетка становится специализированной, то есть приобретает химические, морфологические и функциональные особенности, свойственные только для нее.

У животных различают несколько типов тканей: эпителиальная, соединительная, мышечная, нервная.

Эта информация доступна зарегистрированным пользователям

У растений выделяют следующие виды тканей: образовательная, основная (фотосинтезирующая), проводящая (флоэма, ксилема), покровная, механическая.

На этом уровне происходит специализация клеток.

Более подробно вы можете узнать о тканях из наших уроков: «Ткани растений» и «Ткани животных».

Компоненты тканевого уровня — клетки и межклеточная жидкость.

Основные процессы тканевого уровня — процессы, характерные для того или иного вида тканей (гомеостаз, регенерация).

Наука, ведущая исследования на тканевом уровне:

  •  гистология

4. Органный уровень организации жизни

Составляют этот уровень органы многоклеточных организмов.

Эта информация доступна зарегистрированным пользователям

Орган- это обособленная часть организма, имеющая определенную форму, строение, расположение и выполняющая конкретную функцию.

Орган чаще всего образован несколькими видами тканей, среди которых одна (две) преобладает.

Эта информация доступна зарегистрированным пользователям

Все живое на Земле существует в виде обособленных субъектов — особей, которые формируют организменный уровень.

При изучении одноклеточных организмов ученые отмечают то, что особью является каждая отдельная клетка, например, бактерия или простейшие (амеба, инфузория, эвглена), то есть это организмы, которые одновременно могут представлены и клеточным, и организменным уровнем организации.

Эвглена зеленая:

Эта информация доступна зарегистрированным пользователям

Также на этом уровне рассматривают и многоклеточные организмы: растения, животные, грибы.

Компоненты органного уровня: клетки одноклеточных; клетки и ткани, из которых образованы органы многоклеточных организмов.

Основные процессы органного уровня:

  • раздражительность
  • размножение
  • рост и развитие
  • нервно-гуморальная регуляция процессов жизнедеятельности
  • гомеостаз

Науки, ведущие исследования на органном уровне:

  • анатомия
  • биометрия
  • морфология
  • физиология
  • гистология

Эта информация доступна зарегистрированным пользователям

Эта информация доступна зарегистрированным пользователям

1. Популяционно-видовой уровень организации жизни

Этот уровень представлен популяциями из особей одного вида.

На нем осуществляются основные эволюционные процессы, и мы можем проследить за динамикой численности живых организмов.

Вид- это группа особей, сходных по морфолого-анатомическим, физиолого-экологическим, биохимическим и генетическим признакам, занимающих естественный ареал, способных свободно скрещиваться между собой и давать плодовитое потомство.

Вид представляет собой сумму популяций.

Популяция- совокупность организмов одного вида, длительное время обитающих на одной территории (занимающих определенный ареал) и частично или полностью изолированных от особей других таких же групп.

Популяция королевских пингвинов на Фолклендских островах:

Эта информация доступна зарегистрированным пользователям

Компоненты: группы родственных особей

Основные процессы:

  • генетические преобразования в результате взаимодействия различных популяций одного вида
  • накопление элементарных эволюционных преобразований
  • выработка приспособлений к изменяющейся среде
  • видообразование: осуществление микроэволюции
  • увеличение разнообразия особей

Науки, ведущих исследования на этом уровне:

  • генетика популяций
  • теория эволюции
  • экология

2.     Биогеоценотический уровень организации жизни (экосистемный)

Этот уровень представляет собой результат взаимодействия живых организмов с окружающей средой.

Биогеоценоз — система, включающая сообщество живых организмов и совокупность факторов неживой природы (абиотических) в пределах одной территории, связанных между собой круговоротом веществ и потоком энергии (природная экосистема).

Биогеоценозы представляют собой саморегулирующиеся, исторически сложившиеся динамические сообщества, которые не являются полностью изолированными друг от друга.

Примером биогеоценоза служит биогеоценоз соснового или тропического леса, тайги, горной долины, пресного водоема, болота.

Эта информация доступна зарегистрированным пользователям

То есть в сосновом лесу могут обитать разные популяции животных и растений. При этом все они объединены общими абиотическими факторами и для жизни в этих условиях выработали особые приспособления.

Роль биогеоценотического уровня состоит в образовании устойчивых сообществ организмов разных видов, приспособленных к совместному проживанию в определенной среде обитания.

Компоненты биогеоценотического уровня: популяции различных видов, факторы среды, пищевые сети, потоки веществ и энергии.

Основные процессы биогеоценотического уровня:

  • круговорот веществ и поток энергии
  • саморегуляция и поддержание равновесия между живыми организмами и абиотической средой
  • меж- и внутривидовое взаимодействие организмов: конкуренция и размножение
  • влияние окружающей среды на организмы, влияние организмов на среду их обитания

Науки, ведущие исследования на биогеоценотическом уровне:

  • биогеография
  • биогеоценология
  • экология

3.     Биосферный уровень организации жизни

Высший уровень организации живого на земле — биосферный. Он охватывает все явления жизни на нашей планете.

Биосфера— это живое вещество планеты (совокупность всех живых организмов планеты), включая человека и измененную им окружающую среду.

Здесь происходят все вещественно-энергетические круговороты, связанные с жизнедеятельностью всех живых организмов, обитающих на Земле.

Биосфера так же, как и биогеоценозы, представляет собой динамическую, постоянно изменяющуюся систему.

Компоненты биосферного уровня: биогеоценозы, антропогенное воздействие (воздействие человека).

Основные процессы биосферного уровня:

  • активное взаимодействие живого и неживого вещества планеты
  • биологический круговорот веществ и энергии(процессы биогенной миграции атомов)
  • влияние человека: «антропогенные факторы»
  • миграция атомов и молекул в природе

Науки, ведущие исследования на биосферном уровне:

  • глобальная, космическая, социальная экология

Эта информация доступна зарегистрированным пользователям

Эта информация доступна зарегистрированным пользователям

Кажется, что просто понять и отличить живое от неживого.

Если бы вы длительно наблюдали вирус под большим увеличением, то не обнаружили бы в нем признаков жизни: он не передвигается, не питается, не размножается. Но как только вирус попадает в живую клетку, то сразу начинает проявлять признаки жизни.

Ученые выделили ряд признаков и свойств, которые помогают отличить живое от неживого.

Свойства живого:

1. Обмен веществ и энергии с окружающей средой

Обмен веществ (метаболизм)- совокупность протекающих в живых системах химических превращений, обеспечивающих их жизнедеятельность, рост, воспроизведение, развитие, самосохранение, постоянный контакт с окружающей средой, способность адаптироваться к ней и ее изменениям.

Обмен веществ является свойством живых организмов.

С точки зрения физики все живые системы открытые, то есть постоянно обмениваются с окружающей средой веществами и энергией; этот обмен является обязательным условием существования жизни.

2. Самовоспроизведение (репродукция)

Способность к размножению (воспроизведению себе подобных, самовоспроизведению) относится к одному из фундаментальных свойств живых организмов.

Размножение необходимо для того, чтобы обеспечить непрерывность существования видов, так как продолжительность жизни отдельного организма ограничена.

3. Наследственность и изменчивость

Наследственность — способность организмов передавать свои признаки и особенности развития потомству.

Очень важным свойством является изменчивость организмов, которая помогает приспосабливаться к изменяющимся условиям существования.

Изменчивость может реализовываться у отдельных организмов в ходе их индивидуального развития или в пределах группы организмов в ряду поколений при размножении.

Самовоспроизведение организмов не полностью идентично, в ходе него возникают ошибки и вариации, которые могут служить материалом для дальнейшего отбора.

Существует определенное равновесие между наследственностью и изменчивостью.

4. Свойство раздражимости

Раздражимость — способность воспринимать внешние или внутренние раздражители (воздействия) и адекватно на них реагировать.

Благодаря способности реагировать на изменение внешних условий живые организмы способны к адаптации — приспособлению к новым условиям.

У организмов, не имеющих нервной системы, реакции на внешние воздействия называются таксисы и тропизмы.

Таксисы— движения (перемещения) одноклеточных организмов к свету (фототаксис), к химическому веществу (хемотаксис); бывают положительные и отрицательные.

Тропизмы- движения, вызванные односторонним воздействием какого-либо фактора внешней среды (света, силы земного притяжения и др.). Например, гелиотропизм- это когда листья поворачиваются к солнцу; геотропизм- рост корней к центру Земли.

Настии- движения, вызванные рассеянным влиянием какого-либо фактора (света, температуры и др.). Например, ночью цветки одуванчиков закрываются.

Эта информация доступна зарегистрированным пользователям

5. Саморегуляция (гомеостаз)

 Это способность к поддержанию постоянства определенных физических и химических параметров в живом организме, в том числе и в меняющихся условиях среды.

Например, организм человека поддерживает постоянную температуру тела и давление, концентрацию в крови глюкозы и многих других веществ.

6. Дискретность (прерывный, разделенный) и целостность (непрерывность)

Это всеобщее свойство материи, в том числе и живой.

На любом уровне организации жизнь одновременно и целостна, и дискретна, то есть состоит из отдельных частей.

Например, организм дискретен, так как состоит из органов, тканей, клеток, но и целостен, поскольку все органы и ткани тесно взаимосвязаны и не могут существовать друг без друга.

7. Рост и развитие

Рост- это просто увеличение массы клеток и их количества.

Развитие- это направленное необратимое изменение объектов природы, при котором возникает новое качественное состояние, меняется состав или структура объекта, происходит, как правило, усложнение уровня организации.

Известно два вида развития живых организмов:

1.     онтогенез- индивидуальное развитие одной особи

2.     филогенез- историческое развитие в ряду поколений

Эта информация доступна зарегистрированным пользователям

Индивидуальное развитие сопровождается ростом, то есть увеличением массы клеток и их количества от момента формирования зиготы до естественной смерти особи.

Онтогенез осуществляется в конкретных условиях среды, существенно влияющей на процесс реализации генетической информации в ходе индивидуального существования особи.

В различных областях биологии, медицины, ветеринарии и других наук широко проводятся исследования по изучению процессов нормального и патологического развития организмов, выяснению закономерностей онтогенеза.

Историческое развитие живых организмов представляет собой процесс эволюции, т.е. прогрессивного (от просто организованных форм к более сложным) развития живой материи, в ходе которого возникло все многообразие живых существ.

8. Ритмичность- периодические изменения интенсивности физиологических функций живых организмов (суточные ритмы сна и бодрствования, сезонные ритмы активности и спячки у некоторых животных и так далее).

Биологический смысл- согласование, координация функций организма с состоянием внешней среды, которая на Земле также подвержена ритмическим колебаниям (вращение Земли вокруг Солнца, Луны вокруг Земли, приливы-отливы и так далее).

Таковы наиболее важные свойства живого.

Эта информация доступна зарегистрированным пользователям

Биология как наука накопила множество знаний о каждом уровне организации живой природы. Благодаря накопленным знаниям произошло разделение биологии на отдельные направления.

Эта информация доступна зарегистрированным пользователям

Биология– наука о живых существах и их взаимодействии со средой.

Наука- это сфера человеческой деятельности по получению, систематизации объективных знаний о действительности.

Объектом науки биологии является жизнь во всех ее проявлениях и формах, на разных уровнях.

Метод- это путь исследования, который использует ученый, решая какую-либо научную задачу или проблему.

Основные методы науки:

Название метода

Определение

Примеры

Моделирование

Метод, при котором создается некий образ объекта (модель) с помощью, которой ученые получают необходимые сведения об объекте

Создание модели двойной спирали ДНК, к примеру, из пластмассовых элементов

Наблюдение

Метод, с помощью которого исследователь собирает информацию об объекте

Визуальное наблюдение за поведением диких животных, наблюдение за организмами с помощью приборов (наблюдение за амебой через микроскоп);

наблюдение за сезонными изменениями в природе (сменой листвы на деревьях, линькой животных)

Эксперимент (опыт)

Метод, позволяющий изучать явления природы в искусственно созданных условиях.

Для эксперимента создаются условия, приближенные к натуральным и делаются выводы, которые потом переносятся на естественную среду

Опыт, доказывающий образование кислорода и крахмала в ходе фотосинтеза.

Скрещивание животных или растений с целью получения нового сорта или породы.

Экспериментально можно доказать, что определенная вакцина защищает от определенной инфекционной болезни

Гипотеза

Предположение, предварительное решение поставленной проблемы.

Выдвигая гипотезы, исследователь ищет взаимосвязи между фактами, явлениями, процессами. Именно поэтому гипотеза чаще всего имеет форму предположения: «если…тогда»

«Если растения при дыхании выделяют углекислый газ, то мы сможем его обнаружить с помощью известковой воды, т.к. известковая вода начинает мутнеть при взаимодействии с углекислым газом»

Теория

Это обобщение основных идей в какой- либо научной области знания

Теория эволюции обобщает все достоверные научные данные, полученные исследователями на протяжении многих десятилетий она постоянно дополняется и развивается

Частные методы в биологии:

Генеалогический метод

Применяется при составлении родословных людей, выявление характера наследования некоторых признаков

Исторический метод

Установление взаимосвязей между фактами, процессами, явлениями, происходящими на протяжении исторически длительного времени (несколько миллиардов лет)

Палеонтологический метод

Позволяет выяснить родство между древними организмами, останки которых находятся в земной коре в разных геологических слоях

Центрифугирование

Разделение смесей на составные части под действием центробежной силы. Применяется при разделении органоидов клетки; легких и тяжелых фракций органических веществ

Цитогенетический метод

Используют для изучения нормального кариотипа человека, а также при диагностике наследственных заболеваний, связанных с геномными и хромосомными мутациями. Например, синдром Дауна- это трисомия по 21 паре хромосомы

Биохимический метод

Исследование химических процессов, происходящих в организме

Близнецовый метод

Используется для выяснения степени наследственной обусловленности исследуемых признаков. Метод дает ценные результаты при изучении морфологических и физиологических признаков, изучает развитие признаков у близнецов

Гибридологический метод

Скрещивание организмов и анализ потомства

Биологические науки:

Анатомия

Раздел биологии и конкретно морфологии, изучающий строение тела организмов и их частей на уровне выше клеточного

Антропология

Совокупность научных дисциплин, занимающихся изучением человека, его происхождением, развитием, существованием в природной (естественной) и культурной (искусственной) средах

Аутоэкология

Раздел экологии, изучающий взаимоотношения организма с окружающей средой

Альгология

Наука, изучающая одноклеточные и многоклеточные водоросли

Ботаника

Наука о растениях

Биофизика

Наука о физических процессах, протекающих в биологических системах разного уровня организации и о влиянии на биологические объекты различных физических факт

Биохимия

Наука о химическом составе живых клеток и организмов, о химических процессах, лежащих в основе их жизнедеятельности

Бионика

Прикладная наука о применении в технических устройствах и системах принципов организации, свойств, функций и структур живой природы, то есть формы живого в природе и их промышленные аналоги (наука и техника)

Биогеография

Изучает закономерности географического распространения и распределения животных, растений и микроорганизмов (биология и география)

Биогеоценология

Научная дисциплина, исследующая строение и функционирование биогеоценозов, отрасль знания на стыке биологии, географии и экологии

Бриология

Наука о мхах

Вирусология

Наука о вирусах

Генетика

Наука о закономерностях наследственности и изменчивости

Генная инженерия

Совокупность приёмов, методов и технологий получения рекомбинантных РНК и ДНК, выделения генов из организма (клеток), осуществления манипуляций с генами и введения их в другие организмы, включает исследования, связанные с пересадкой генов, например, пересадка человеческого гена в бактерию

Гигиена

Наука, изучающая влияние факторов внешней среды на организм человека с целью оптимизации благоприятного и профилактики неблагоприятного воздействия

Гистология

Наука о тканях

Ихтиология

Наука о рыбах

Зоология

Наука о животных

Клеточная инженерия

Включает такие исследования как: пересадка клеточных ядер;

выращивание нового организма из яйцеклетки с замененным ядром (клонирование животных);

выращивание целого организма из одной или нескольких соматических клеток;

выращивание тканей и органов «в пробирке» (культура клеток);

объединение клеток организмов разных видов (получение гибридных клеток).

Клонирование- метод получения нескольких идентичных организмов путем бесполого (в том числе вегетативного) размножения

Микология

Наука о грибах

Микробиология

Наука о бактериях

Медицина

Область научной и практической деятельности по исследованию нормальных и патологических процессов в организме человека, различных заболеваний и патологических состояний, их лечению, сохранению и укреплению здоровья людей

Морфология

Научная дисциплина, изучающая форму и строение организмов

Молекулярная биология

Комплекс биологических наук, изучающих механизмы хранения, передачи и реализации генетической информации, строение и функции нерегулярных биополимеров (белков и нуклеиновых кислот), роль митохондрий в метаболизме и многое другое

Морфология

Изучает как внешнее строение (форму, структуру, цвет, образцы) организма, таксона или его составных частей, так и внутреннее строение живого организма

Орнитология

Раздел зоологии позвоночных, изучающий птиц

Палеонтология

Наука об ископаемых останках растений и животных

Протистология

Наука о простейших

Сравнительная физиология

Раздел физиологии животных, изучающий методом сравнения особенности физиологических функций у различных представителей животного мира

Селекция       

Наука о создании новых и улучшении существующих пород животных, сортов растений, штаммов микроорганизмов

Сравнительная анатомия

Биологическая дисциплина, изучающая общие закономерности строения и развития органов и систем органов при помощи их сравнения у животных разных таксонов на разных этапах эмбриогенеза

Синэкология

Раздел экологии, изучающий взаимоотношения организмов различных видов внутри сообщества организмов

Систематика 

Раздел биологии, призванный создать единую стройную систему живого на основе выделения системы биологических таксонов и соответствующих названий, выстроенных по определенным правилам (номенклатура)

Физиология  

Наука о закономерностях функционирования и регуляции биологических систем разного уровня организации, о пределах нормы жизненных процессов и болезненных отклонений от нее

Фенология    

Система знаний и совокупность сведений о сезонных явлениях природы, сроках их наступления и причинах, определяющих эти сроки, о закономерностях циклических изменений природных объектов и их комплексов, связанных с годичным движением Земли вокруг Солнца

Цитология

Раздел биологии, изучающий живые клетки, их органоиды, строение, функционирование, процессы клеточного размножения, старения и смерти

Экология

Наука о взаимодействиях живых организмов и их сообществ между собой и с окружающей средой

Эволюционное учение

Наука о причинах, движущих силах, механизмах и общих закономерностях эволюции живой природы

Этология

Наука о поведении живых организмов

Эмбриология

Наука, изучающая развитие зародыша

Эта информация доступна зарегистрированным пользователям

Считается, что бактерии могут существовать только на клеточном уровне.

Но давайте посмотрим, так ли это?

Да, одиночные бактерии- это одиночные клетки. Но бактерии очень не любят жить по одиночке, им необходимо находится в потоке субстрата, поэтому они образуют:

  • конгломераты или биопленки— множество микроорганизмов, расположенных на какой-либо поверхности, клетки которых прикреплены друг к другу
  • консорциумы— совокупность или ассоциация двух или более организмов

Биопленка устойчивых к антибиотикам бактерий:

Эта информация доступна зарегистрированным пользователям

В биопленке микроорганизмы могут распределять между собой функции: какие-то бактерии размножаются, в каких-то клетках происходит фотосинтез, а кто-то вообще умирает, чтоб освободить место молодым.

В целом пространственная структура биопленки очень сложная.

Особенно характерно это для бактерии золотистого стафилококка, и такая организация биопленки очень напоминает тканевый уровень организации.

В реках и других водоемах бактерии образуют структуры, которые называют микробные маты. При их разрезе ученые увидели три слоя: автотрофы (фотосинтетические бактерии), гетеротрофы (аэробы), гетеротрофы (анаэробы). Такая структура напоминает работу целого организма, у которого есть отдельные органы, выполняющие определенные функции.

Если взять азотфиксирующих бактерий, то популяции бактерий одной местности могут существенно отличаться от таких же бактерий другой местности, поэтому здесь уместно говорить и о популяционно-видовом уровне.

Невозможно переоценить роль микроорганизмов в биосфере и на биосферном уровне. Именно они сформировали облик нашей планеты. Почва, вода, потоки микроэлементов, поддержка деятельности эукариотических клеток, минерализация- это все результат работы микроорганизмов.

ТРЕНИНГ

1 Классификация организмов на основе их родства –
предмет науки

1) ботаники    

2) физиологии    

3) систематики 

4) генетики

2 Структура и число хромосом могут быть изучены с
помощью метода

1) генеалогического              

2) биохимического

3) центрифугирования          

4) цитогенетического

3 Воспроизведением новых особей из одной или
нескольких клеток занимается

1) генная инженерия             

2) клеточная инженерия

3) бионика

4) генетика

4 Взаимосвязи организмов с окружающей средой изучает

1) экология

2) систематика

3) физиология

4) морфология

5 Строение полисахаридов и их роль в клетке могут быть
изучены методом

1) биохимическим                          

2) цитогенетическим

3) отдаленной гибридизации         

4) световой микроскопии

6 Селекционеры занимаются

1) изучением влияния человека на окружающую среду     

2) разделением организмы на группы на основе их
родства         

3) получением высокопродуктивных
штаммов микроорганизмов       

4) изучением закономерностей эволюции живой
природы  

7 Строение и распространение древних пресмыкающихся
изучает наука

1) палеонтология         

2) физиология животных

2) анатомия животных          

4) экология

8 Методы конструирования клеток на основе их
гибридизации и реконструкции
используются
в

1) бионике

2) палеонтологии

3) генной инженерии            

4) клеточной инженерии       

9 Введение в геном организма новых генов производится 
методами

1) моделирования

2) центрифугирования

3) клеточной инженерии       

4) генной инженерии            

10 Для изучения
наследственности и изменчивости человека используется метод

1) гибридологический

2) искусственного
мутагенеза

3) искусственного
отбора

4)
генеалогический

11 Объектом изучения цитологии является уровень жизни

1) клеточный      

2) организменный

3) популяционно-видовой     

4) биогеоценотический

12 Реализация наследственной информации происходит на уровне

1) организменном

2) популяционно-видовом   

3) биогеоценотическом      

4) биосферном   

13 Высшим уровнем организации  жизни является

1) организм

2) популяция

3) экосистема      

4) биосфера        

14 Показатели рождаемости, смертности и возрастного
состава используются при изучении уровня жизни

1) организменного

2) популяционно-видового

3) клеточного

4) биосферного

15 Какой уровень организации жизни не изучает экология?

1) клеточный

2) биосферный

3) популяционно-видовой

4) биогеоценотический

16 Постоянство внутренней среды организма называется

1) нормой реакции

2) наследственностью

3) гомеостазом

4) биоритмом

17 Способность организма реагировать на воздействия
окружающей среды —

1) изменчивость

2) раздражимость

3) норма реакции

4) гомеостаз

18 Главный признак живого –

1) движение

2) обмен веществ

3) дыхание кислородом

4) наличие тканей

19 Обмен веществ характерен для

1) бактериофага

2) вируса табачной мозаики

3) почвенных
бактерий

4) минералов

20 Обмен веществ отсутствует у

1) одноклеточных
водорослей

2) грибов-паразитов

3) вирусов

4) болезнетворных
бактерий

Тренинг А2

А2.1. О чем
свидетельствует сходство  строения  и  жизнедеятельности  клеток  различных 
организмов

1)  о
приспособленности к окружающей среде

2)  об эволюции

3)  о
родстве

4)  о многообразии
живой природы

А2.2. М.  Шлейден 
и Т. Шванн сформулировали

1)  хромосомную
теорию наследственности

2) 
клеточную теорию

3)  основные
положения эволюционного учения

4)  биогенетический
закон

А2.3. Клетки всех эукариот имеют

1) клеточную стенку

2) пластиды

3) ядро

4) вакуоли с клеточным соком

А2.4. Одним из
положений клеточной теории является следующее утверждение.

1) Клетка –
единица строения, жизнедеятельности и развития организма.

2) В клетках
прокариот отсутствует ядро и мембранные органоиды.

3) Для клеток
животных характерно гетеротрофное питание.

4) Клетки животных
отличаются от клеток растений отсутствием хлоропластов.

А2.5. Питательные
вещества поступают в клетку путем фагоцитоза у

1) растений

2) бактерий

3) животных

4) грибов

А2.6. Согласно
клеточной теории, клетки всех организмов

1) имеют ядро и ядрышко

2) сходны по химическому составу

3) одинаковы по выполняемым функциям

4) имеют одинаковые органоиды

А2.7. В клетках
всех живых организмов происходит обмен веществ и превращение энергии, поэтому
клетка – единица

1) размножения организмов

2) генетической информации

3) жизнедеятельности организмов

4)  строения организмов

А2.8. К
прокариотам относятся

1) простейшие

2) одноклеточные водоросли

3) цианобактерии

4) плесневые грибы

А2.9. В животной
клетке в качестве запасного углевода откладывается

1) хитин

2) крахмал

3) целлюлоза

4) гликоген

А2.10. В процессе
обмена веществ в растительные клетки из окружающей среды поступают

1) нуклеиновые кислоты

2) углеводы и белки

3) углекислый газ и вода

4) липиды

ТРЕНИНГ
А3

А3.1 Химический
элемент, входящий в состав белков и нуклеиновых кислот — это

1) сера

2) азот

3) хлор

4) магний

А3.2 В качестве
запасного углевода гликоген используется в клетках

1) элодеи

2) собаки

3) вируса гриппа

4) картофеля

А3.3 В отличие от дезоксирибозы рибоза входит в состав

1) иРНК

2) ДНК

3) целлюлозы

4) крахмала

А3.4 Жиры, как и
углеводы, выполняют функции

1) информационную и
регуляторную

2)
строительную и энергетическую

3) каталитическую и
энергетическую

4) строительную и каталитическую

А3.5 Липиды
являются основным структурным компонентом

1) рибосом

2) хромосом

3)
биологических мембран

4) клеточного центра

А3.6 Благодаря
какому свойству липиды составляют основу плазматической мембраны?

1) способность
изменять пространственную структуру

2)
нерастворимость в воде

3) способность к самоудвоению

4) наличие каталитической
активности

А3.7 В состав АТФ
входят

1) аденин,
рибоза, три остатка фосфорной кислоты

2) аденин, тимин,
гуанин, цитозин

3) различные виды
аминокислот

4) углеводы и липиды

А3.8 Денатурация обратима, если не разрушены связи

1) пептидные

2) водородные

3) гидрофобные

4) ионные

А3.9 Трехмерная пространственная конфигурация молекулы
белка в виде глобулы – это структура

1) первичная

2) вторичная

3) третичная

4) четвертичная

А3.10 Вторичная структура белка представляет собой

1) несколько полипептидных цепей

2) аминокислотную последовательность

3) полипептидную цепь, закрученную в спираль

4) спираль, упакованную в клубок

А3.11
Изображенная на рисунке структура белка гемоглобина поддерживается

1) водородными
связями между  —
NH  и  -СО  группами

2) пептидными
связями между аминокислотами

3) связями между радикалами аминокислот

4) связями между разными полипептидными цепями

А3.12 В состав
нуклеотида ДНК может входить

1) рибоза, тимин
и остаток фосфорной кислоты

2) рибоза,
урацил и остаток фосфорной кислоты

3) дезоксирибоза,
урацил и остаток фосфорной кислоты

4)
дезоксирибоза, тимин и остаток фосфорной кислоты

А3.13 Матрицей для
синтеза первичной структуры белка является молекула

1) тРНК

2) иРНК

3) рРНК

4) АТФ

А3.14 Транспортные
РНК

1) являются матрицей
для синтеза белка

2)
доставляют аминокислоты к рибосомам

3) переносят глюкозу
через клеточную мембрану

4) переносят кислород

А3.15 Химические
реакции, протекающие в лизосомах, относятся к реакциям

1)  пластического
обмена

2) 
энергетического обмена

3)  хемосинтеза

4)  окислительного
фосфорилирования

А3.16
Плазматическая мембрана осуществляет избирательный транспорт веществ благодаря
своей

1) динамичности

2) стабильности

3) полупроницаемости

4) прочности

А3.17 Рибосомы
участвуют в

1) накоплении
питательных веществ

2)
пластическом обмене

3) транспорте
аминокислот

4) выведении из
клетки продуктов распада

A3.18 Обмен веществ между клеткой и окружающей средой регулируется

1) плазматической мембраной

2) ядерной оболочкой

3) клеточным центром

4) цитоплазмой

А3.19 Связь между различными органоидами клетки
осуществляет

1) аппарат Гольджи

2) веретено деления

3) митохондриальная ДНК

4) эндоплазматическая сеть

А3.20 Изображенный на рисунке органоид выполняет
функцию

1) клеточного дыхания

2) внутриклеточного транспорта

3) внутриклеточного переваривания

4) запасания питательных веществ

ТРЕНИНГ
А4

А4.1 В результате овогенеза из одной
клетки-предшественницы образуется

1) одна яйцеклетка

2) две яйцеклетки

3) четыре яйцеклетки

4) восемь яйцеклеток

А4.2 Изображенный на рисунке процесс (отмечен стрелкой)
является

1) условием сохранение диплоидного числа хромосом при митозе

2) одним из этапов процесса оплодотворения

3) фактором, обеспечивающим защиту хромосом от неблагоприятных воздействий

4) фактором, обеспечивающим перекомбинацию родительских генов
при мейозе

А4.3 В профазе первого деления мейоза, также как и в
профазе митоза происходит

1) удвоение ДНК

2) кроссинговер

3) разрушение ядерной оболочки

4) расхождение дочерних хромосом к полюсам клетки

А4.4 Для
сперматозоида не характерно наличие

1) запаса
питательных веществ

2) плазматической
мембраны

3) митохондрий

4) гаплоидного ядра

А4.5 В результате
мейоза каждая дочерняя клетка

1) становится диплоидной

2) полностью похожа
на материнскую

3) имеет такой же
хромосомный набор как материнская

4) получает
половину генома материнской клетки

А4.6 Причиной
разнообразия потомства при половом размножении не может служить

1) кроссинговер

2) случайное слияние
гамет при оплодотворении

3) случайное расхождение
хромосом в анафазе первого деления мейоза

4) удвоение
хромосом перед началом мейоза

А4.7 Постоянство
числа хромосом у особей одного вида обеспечивается

1) диплоидностью организмов

2) гаплоидностью организмов

3) процессами оплодотворения и мейоза

4) процессом деления клеток

А4.8 Мужские
гаметы образуются в

1) спорангиях

2) яичниках

3)
семенниках

4) семязачатках

А4.9 В ходе
овогенеза и сперматогенеза происходит

1) накопление в
гаметах питательных веществ

2) слияние гамет

3)
уменьшение вдвое числа хромосом в гаметах

4) восстановление
диплоидного набора хромосом в гаметах

А4.10 Мейоз и
митоз имеют сходство в том, что в обоих случаях

1) делению
предшествует удвоение ДНК

2) происходит
двойное деление

3) происходит
конъюгация гомологичных хромосом

4) образуются диплоидные
клетки

А4.11 На рисунке
изображены клетки, образовавшиеся при первом делении мейоза. Каждая из них содержит

1) диплоидный набор
одинарных хромосом

2) диплоидный набор
двойных хромосом

3) гаплоидный набор
одинарных хромосом

4)
гаплоидный набор двойных хромосом

А4.12 Кроссинговер
— это

1) обмен
участками гомологичных хромосом

2) слипание гомологичных
хромосом

3) независимое расхождение
хромосом

4) разновидность
митоза

А4.13 Соматические
клетки шимпанзе содержат 48 хромосом. В результате мейоза у самца шимпанзе
формируются сперматозоиды, содержащие хромосом

1) в два раза больше

2) в два
раза меньше

3) в четыре раза
меньше

4) столько же,
сколько в соматических клетках

А4.14
Биологический смысл большого числа сперматозоидов у животных заключается

1) в повышении
эффективности искусственного отбора

2) в улучшении жизнеспособности оплодотворенных яйцеклеток

3) в
повышении
вероятности
оплодотворения 

4) в увеличении скорости развития зародыша

А4.15 В ходе
мейоза, в отличие от митоза, происходит:

1) конденсация (спирализация)
хромосом

2)
конъюгация гомологичных хромосом

3) образование диплоидных
клеток

4) разрушение ядерной
оболочки в профазе

А4.16 В анафазе первого
деления мейоза к полюсам клетки расходятся хромосомы, каждая из которых
содержит

1) одну хроматиду

2) две
хроматиды

3) три хроматиды

4) четыре хроматиды

А4.17
Сперматозоиды млекопитающих образуются в результате

1) митоза  

2) мейоза

3) онтогенеза

4) дробления

А4.18 На рисунке
слева изображена клетка в состоянии ранней профазы. На рисунке справа эта же
клетка в состоянии

1) телофазы
первого деления мейоза

2) телофазы второго деления
мейоза

3) телофазы митоза

4) метафазы митоза

А4.19 Общим для
митоза и мейоза является

1) образование гаплоидных
клеток

2) образование
диплоидных клеток

3) удвоение
ДНК перед началом деления

4) конъюгация гомологичных
хромосом

А4.20 Клетки
печени шимпанзе содержат 48 хромосом. Сколько хромосом содержится в клетках головного
мозга?

1) 12

2) 24

3) 48

4) 96

ТРЕНИНГ
А5

А5.1 Сапрофитные бактерии используют для питания

1) органические вещества, созданные ими в процессе фотосинтеза

2) органические вещества, созданные ими в процессе хемосинтеза

3) готовые органические вещества отмерших тел

4) готовые органические вещества живых тел

А5.2 Организмы, способные синтезировать органические
вещества из неорганических, используя энергию окисления неорганических
соединений, называются

1) хемотрофами

2) фототрофами

3) сапротрофами

4) гетеротрофами

А5.3 Нитрифицирующие бактерии являются

1) фототрофами

2) хемотрофами

3) гетеротрофами

4) паразитами 

А5.4 Синтез органических веществ из неорганических за
счет солнечной энергии осуществляют

1) фототрофы

2) гетеротрофы

3) сапротрофы

4) хемотрофы

А5.5 Энергия солнечного света преобразуется в
химическую энергию в клетках

1) растений

2) животных

3) грибов

4) паразитических бактерий

А5.6 Большинство животных по способу питания являются

1) фототрофами

2) гетеротрофами

3) хемотрофами

4) автотрофами

А5.7 Образование органических соединений из
неорганических происходит в клетках

1) кожи лягушки

2) шляпки подберезовика

3) листа картофеля

4) клубеньковых бактерий

A5.8 К автотрофным организмам относится

1) хлорелла

2) мукор

3) амеба

4) инфузория-туфелька

А5.9 Какой из организмов, изображенных на
рисунке, может создавать органические вещества из неорганических?

1) 1

2) 2

3) 3

4) 4

А5.10  Клубеньковые бактерии, живущие на
корнях бобовых растений, получают от них готовые органические вещества, взамен
поставляя растению соединения азота. Клубеньковые бактерии являются

1) паразитами

2) сапрофитами

3) автотрофами

4) гетеротрофами

А5.11 К неклеточным формам жизни относятся

1) клубеньковые бактерии

2) паразитические бактерии

3) цианобактерии

4) бактериофаги

А5.12 Среди перечисленных организмов клеточного
строения не имеет

1) инфузория-туфелька

2) вирус гриппа

3) кишечная палочка

4) хламидомонада

А5.13 Из множества свойств живых организмов для
вирусов характерно наличие

1) обмена веществ

2) раздражимости

3) наследственности

4) клеточного строения

А5.14 Вирусы проявляют свойства живого только

1) в клетках других организмов

2) во внешней среде

3) при взаимодействии с другими вирусами

4) при благоприятных условиях внешней среды

А5.15 Вирусным заболеванием не является

1) грипп

2) СПИД

3) оспа

4) туберкулез

А5.16 Вирусы занимают
промежуточное положение между

1) прокариотами и эукариотами

2) телами живой и неживой природы

3) растениями и животными

4) грибами и бактериями

А5.17 Особенностью вирусов является то, что они

1) могут вызывать заболевания животных и растений

2) не имеют клеточного строения

3) не имеют оформленного ядра

4) осуществляют очень активный обмен веществ

А5.18 Синтез вирусных белков

1)  не требует
затрат энергии

2)  не требует
участия ферментов

3)  происходит только в клетке-хозяине

4) происходит во внеклеточной
среде

А5.19 Встраивают
собственную нуклеиновую кислоту в ДНК клетки-хозяина

1) паразитические грибы

2) паразитические бактерии

3) бактериофаги

4) бактерии сапрофиты

А5.20 Вирусные белки
синтезируются из

1) нуклеотидов вируса

2) нуклеотидов клетки-хозяина

3) аминокислот вируса

4) аминокислот клетки-хозяина

Основные уровни организации живой природы:

Уровни организации живых систем отражают соподчиненность, иерархичность структурной организации жизни; отличаются друг от друга сложностью организации системы (клетка устроена проще по сравнению с многоклеточным организмом или популяцией).

Уровень жизни — это форма и способ ее существования.

Уровни организации

Биологическая система

Компоненты, образующие систему

Основные процессы

1. Молекулярно-генетический уровень

Молекула

Отдельные биополимеры (ДНК, РНК, белки, липиды, углеводы и др.)

На этом уровне жизни изучаются явления, связанные с изменениями (мутациями) и воспроизведением генетического материала, обменом веществ.

2. Клеточный

Клетка

Комплексы молекул химических соединений и органоиды клетки

Синтез специфических органических веществ; регуляция химических реакций; деление клеток; вовлечение химических элементов Земли и энергии Солнца в биосистемы

3. Тканевый

Ткань

Клетки и межклеточное вещество

Обмен веществ; раздражимость

4. Органный

Орган

Ткани разных типов

Пищеварение; газообмен; транспорт веществ; движение и др.

5. Организменный

Организм

Системы органов

Обмен веществ; раздражимость; размножение; онтогенез. Нервно-гуморальная регуляция процессов жизнедеятельности. Обеспечение гармоничного соответствия организма его среде обитания

6. Популяционно-видовой

Популяция

Группы родственных особей, объединенных определенным генофондом и специфическим взаимо-действием с окружающей средой

Генетическое своеобразие; взаимодействие между особями и популяциями; накопление элементарных эволюционных преобразований; выработка адаптации к меняющимся условиям среды

7. Биогеоцено-тический

Биогеоценоз

Популяции разных видов; факторы среды; пространство с комплексом условий среды обитания

Биологический круговорот веществ и поток энергии, поддерживающие жизнь; подвижное равновесие между живым населением и абиотической средой; обеспечение живого населения условиями обитания и ресурсами

8. Биосферный

Биосфера

Биогеоценозы и антропогенное воздействие

Активное взаимодействие живого и неживого (косного) вещества планеты; биологический глобальный круговорот; активное биогеохимическое участие человека во всех процессах биосферы

1. Основные признаки жизни

Реализация жизни происходит через конкретные физические и химические процессы, а сама жизнь может существовать только при определенных физических и химических условиях.

Приведем основные признаки жизни, синтез которых, их совокупность и взаимосвязь с той или иной степенью надежности позволяют отнести организмы к живым или неживым.

Специфические особенности живых систем, отличающие их от систем неживых, определяются следующими качествами:

1. Единство химического состава и высокий уровень организации веществ, образующих биологическую систему. Живые системы состоят из тех же химических элементов, что и объекты неживой природы. Но их соотношение неодинаково. В живых организмах всего 6 элементов составляют около 98% химического состава. Это кислород, углерод, водород, азот, фосфор и кальций. Живые организмы содержат такие сложные органические вещества, как белки, нуклеиновые кислоты (ДНК и РНК), ферменты, которых нет в неживой природе.

2. Живые системы – открытые системы, используют внешние источники энергии в виде пищи, света и т.п. Через них проходит поток веществ и энергии, благодаря чему в живых организмах осуществляется обмен веществ – метаболизм. Метаболизм состоит из двух противоположных процессов:

  • анаболизм или ассимиляция – синтез веществ;
  • катаболизм или диссимиляция – распад сложных веществ пищи на простые с выделением энергии, которая используется для биосинтеза веществ, специфичных для данного организма.

3. Живые системы – самоуправляющиеся, саморегулирующиеся, самоорганизующиеся системы.

  • Саморегуляция – свойство живых систем устанавливать и поддерживать на определенном уровне физиологические или другие показатели. Такое состояние динамического равновесия системы называется гомеостаз.
  • Самоорганизация – свойство живой системы приспосабливаться к изменяющимся условиям внешней среды за счет изменения внутренней структуры управления. Управляющие факторы возникают в самой системе в процессе переработки информации, которой живая система обменивается с внешней средой. Это означает, что живые организмы — самоуправляющиеся системы.

4. Живые системы – самовоспроизводящиеся системы. Это ихсвойство сохраняет жизнь вида на длительное время. В основе само воспроизводства лежит генетическая программа, которая задает алгоритм образования новых молекул и сложных структур. Благодаряэтому живое существо всегда воспроизводит себе подобное, передавая потомкам информацию о способе существования и приспособляемости к внешним условиям. Генетический материал определяет направление развития организма.

5. Изменчивость. Рождающиеся потомки не только похожи на родителей, но и отличаются от них. Изменения появляются уже на самых ранних стадиях эмбрионального развития, так как информация в процессе передачи несколько видоизменяется, искажается. Благодаря изменчивости организм приобретает новые признаки и свойства.

6. Живые организмы растут и развиваются. Рост — увеличение в размерах и массе с сохранением общих черт строения.Развитие сопровождается возникновением новых черт и качеств. Так, у растения или животного появляются новые ветки или новые органы.

7. Раздражимость — неотъемлемая черта всего живого. Раздражимость связана с передачей информации из внешней среды живой системе и проявляется в виде ответной реакции системы. Способность реагировать на внешние раздражения — это универсальное свойствовсех живых существ, как растений, так и животных.

8. Реакция на среду и приспособление к ней. Живые организмы хорошо приспособлены к среде обитания и соответствуют своему образу жизни. Строение птицы, рыбы, дождевого червя полностью соответствует условиям, в которых они живут.

9. Способность к образованию относительно самостоятельных надорганизменных образований (биогеоценозов и экосистем).

10. Реализация инстинктивных и приобретенных форм поведения.

11. Конечность существования (смертность).

12. Дискретность и целостность. Живые системы в природе относительно обособлены друг от друга (особи, популяции, виды). Любая особь многоклеточного животного состоит из клеток, а любая клетка и одноклеточные существа – из определенных органелл. Органеллы состоят из дискретных, обычно высокомолекулярных органических веществ, которые, в свою очередь, состоят из дискретных атомов и т.д.

В то же время сложная организация немыслима без взаимодействия ее частей и структур, т. е. без целостности. Целостность — это несводимость свойств системы к сумме свойств ее элементов. Целостность биологических систем качественно отличается от целостности неживого тем, что поддерживается в процессе развития. Живые системы — это открытые системы, обменивающиеся веществом, энергией и информацией со средой. Важная особенность живых систем заключается в том, что такой обмен осуществляется под контролем специальных механизмов реализации генетической информации и внутреннего управления, которые позволяют избежать «термодинамической» смерти путем использования энергии, извлекаемой из внешней среды.

13 (см. п. 4). Способность к конвариантной редупликации — к самовоспроизведению ДНК (основных управляющих систем) на основе матричного принципа синтеза макромолекул. Благодаря способности к самовоспроизведению молекулы ДНК исполняют роль носителя наследственной информации. Ошибка в репликации ДНК ведет к мутациям, т.е. к изменениям наследственной основы организма. Последние суть фундаментальное свойство жизни и исходная предпосылка эволюции. Мутации являются элементарным эволюционным материалом, на котором работает естественный отбор.

Ни один из перечисленных признаков (а их можно привести еще 10-20) не является самым главным, определяющим. Только все признаки вместе взятые позволяют провести границу между живым и неживым в природе.

Примечание. Для закрепления можно посмотреть запись открытого мероприятия, на котором мы с помощью мини-проекта доказывали свойства живого.

Like this post? Please share to your friends:
  • Ургюу пересдача экзамена
  • Уровни организации живой природы егэ по биологии таблица
  • Уровни организации живой материи тест егэ
  • Уровни организации живой материи задания егэ биология
  • Уровни организации живого егэ тест