Строение легких
Легкие — парные органы, расположенные в грудной полости. Состоят из долей: правое легкое содержит три доли, левое — две.
Легочная ткань состоит из пузырьков — альвеол, в которых происходит жизненно важный процесс — газообмен между кровью и атмосферным воздухом.
Легкое покрыто оболочкой — плеврой, которая переходит с поверхности легких на внутренние стенки грудной клетки. Между двумя
листками плевры образуется плевральная полость, давление в которой ниже атмосферного (его называют отрицательным давлением), что имеет принципиальное значения для акта
вдоха и выдоха.
Газообмен в легких и тканях
Воздух перемещается по воздухоносным путям и, наконец, достигает мельчайшей структуры легкого — легочного пузырька, или альвеолы.
Стенка альвеолы оплетена густой сетью капилляров — сосудов с тонкой стенкой, через которую происходит диффузия газов: из
крови в альвеолу выходит углекислый газ, а в кровь из альвеолы поступает кислород.
Кислород, растворившийся в крови, по кровеносным сосудам достигает внутренних органов и тканей организма. Замечу, что
перемещаясь по крови, газы образуют соединения с гемоглобином эритроцитов:
- Кислород (O2) — оксигемоглобин
- Углекислый газ (CO2) — карбгемоглобин
- Угарный газ (CO) — карбоксигемоглобин
Соединение гемоглобина с угарным газом гораздо устойчивее, чем остальные: угарный газ легко выигрывает в конкуренции
с кислородом и занимает его место. Этим объясняются тяжелые последствия отравлений угарным газом, который быстро скапливается
при пожаре в замкнутом помещении.
По мере того, как кровь отдает углекислый газ и принимает кислород, из венозной крови (бедной кислородом) она превращается
в кровь артериальную. В тканях происходит обратный процесс: клетки нуждаются в кислороде, необходимом для тканевого дыхания,
а углекислый газ, побочный продукт обмена веществ, требует удаления из клетки в кровь.
Я часто спрашиваю учеников — «Что движет газом, что заставляет, к примеру, кислород перемещаться сначала из альвеолы в кровь,
а в тканях — из крови к клеткам?» Запомните, что этой движущей силой является разность парциальных давлений газов.
Парциальным давлением газа называют ту часть от общего объема газа, которая приходится на долю данного газа. Не рекомендую
вам заучивать таблицу, приведенную выше, но для понимания она весьма хороша.
Заметьте, парциальное давление кислорода в
альвеоле 100-110, а в венозной крови капилляра, оплетающего стенку альвеолы, давление кислорода 40. Таким образом, кислород
устремляется из области большего давления в область меньшего — из альвеолы в кровь.
Происходящие перемещения газов можно легко зафиксировать, измерив концентрацию газов во вдыхаемом и выдыхаемом человеком
воздухе. Вероятно, многие из этих данных вам не пригодятся, но призываю вас запомнить, что в окружающем воздухе 21% кислорода и 0,03% углекислого газа — это важная информация.
Важное значение в транспорте газов имеет жидкость, покрывающая стенки альвеол — сурфактант. Изначально кислород растворяется
в сурфактанте и только после этого диффундирует через стенку капилляра, попадая в кровь. Сурфактант также препятствует
слипанию (спаданию) стенок альвеол во время выдоха.
Жизненная емкость легких
Одним из физиологически важных показателей является жизненная емкость легких (ЖЕЛ). ЖЕЛ — максимальное количество воздуха, которое
человек может выдохнуть после самого глубокого вдоха.
Этот показатель весьма вариабельный, в среднем ЖЕЛ взрослого человека около 3500 см3. У спортсменов ЖЕЛ
больше на 1000-1500 см3, а у пловцов может достигать 6500 см3. Чем больше ЖЕЛ, тем больше воздуха
поступает в легкие и кислорода — в кровеносную систему, что очень важно для клеток тканей во время занятий спортом.
ЖЕЛ легко измеряется с помощью специального прибора — спирометра (от лат. spirare — дышать).
Механизм легочного дыхания
Между наружной поверхностью легкого и стенками грудной клетки имеется плевральная полость, которая играет важнейшую
роль в процессе вдоха и выдоха, а также уменьшает трение легких при дыхательных движениях.
Давление в плевральной полости всегда ниже на 5-7 мм. рт. ст. атмосферного давления, поэтому легкие постоянно находятся
в расправленном состоянии, скреплены через плевру со стенками грудной полости.
Вообразите: легкое подтягивается к плевре, которая скреплена с грудной клеткой. А грудная клетка постоянно совершает
дыхательные движения, расширяясь и сужаясь, таким образом, легкое следует за дыхательными движениями грудной клетки.
Остается разобраться, как происходят эти дыхательные движения? Причина этому — сокращения и расслабления межреберных мышц,
в результате которых грудная клетка соответственно — поднимается и опускается. Сейчас мы детально обсудим механизм вдоха и
выдоха.
При вдохе сокращаются наружные межреберные мышцы, при этом ребра поднимаются, и грудина отодвигается вперед — грудная клетка
расширяется в передне-заднем и фронтальном (в стороны) направлениях. Диафрагма — дыхательная мышца, во время вдоха
сокращается и опускается вниз: грудная клетка расширяется в вертикальном направлении.
При выдохе сокращаются внутренние межреберные мышцы, ребра опускаются, грудина отодвигается назад — грудная клетка
сужается в передне-заднем и фронтальном (в стороны) направлениях. Диафрагма во время выдоха
расслабляется и поднимается вверх: грудная клетка сужается в вертикальном направлении. Благодаря этим движениям осуществляется
вдох и выдох.
Можем ли мы брать под контроль свое дыхание? Легко. Но ведь мы далеко не всегда его контролируем даже в течение дня, не говоря
о ночи. Процессом дыхания управляет дыхательный центр, расположенный в продолговатом отделе головного мозга. Дыхательный центр обладает
автоматией — периодически импульсы сами поступают к дыхательным мышцам, к примеру — во время сна.
Состав крови сильно влияет на интенсивность дыхания. В многочисленных опытах было выявлено, что увеличение концентрации CO2
возбуждает дыхательный центр. Этим можно объяснить учащение дыхания во время физической нагрузки, к примеру, бега, когда в клетках мышц
ног идет активное образование CO2 и поступление его в кровь, дыхание учащается рефлекторно.
Рефлекторную регуляцию дыхания наиболее ярко доказывает опыт с перекрестным кровообращением, при котором соединены кровеносные
системы двух собак. При пережатии трахеи у первой собаки останавливается дыхание, и углекислый газ перестает удаляться из крови —
его концентрация в крови возрастает, что приводит к возникновению одышки (учащенного дыхания) у второй собаки.
Пневмоторакс
В норме давление в плевральной полости отрицательное, оно обеспечивает растяжение легких. Однако при ранениях грудной
клетки целостность плевральной полости может нарушаться: в таком случае давление в полости становится равным атмосферному.
Нарушение целостности плевральной полости называют — пневмоторакс (от др.-греч. πνεῦμα — дуновение, воздух и θώραξ — грудь).
При наступлении пневмоторакса легкие спадаются и перестают участвовать в дыхании.
Горная и кессонная болезни
Альпинисты и любители горных походов (особенно новички) часто сталкиваются с горной болезнью. Это состояние возникает из-за того,
что при подъеме на высоту парциальное давление кислорода падает, и его концентрация в крови не соответствует потребностям организма
— ниже, чем должна быть.
Поначалу горная болезнь проявляется эйфорией (беспричинной радостью) и учащением пульса. Если покорение горных вершин продолжается,
то к этим симптомам постепенно присоединяется апатия (состояние равнодушия), мышечная слабость, судороги и головная боль.
Что же делать,
спросите вы? Необходимо немедленно прекратить дальнейший подъем, при усилении симптомов — начать спуск. Лучше всего предупредить
горную болезнь, следуя правилу — не увеличивать высоты ночевки более чем на 300-600 метров.
Кессонная болезнь возникает у водолазов, связана с увеличением парциального давления газа — азота, которое возникает при погружении под
воду. Существует закономерность: чем глубже водолаз опускается, тем больше становится растворенного в крови азота. В чем же опасность того, что
азот растворяется в крови?
При резком быстром подъеме растворимость азота в крови понижается, и кровь буквально вскипает. Только представьте, в сосудах
возникают настоящие пузыри газа! Они могут закупорить сосуды легких, сердца, других внутренних органов, в результате чего кровообращение
остановится, и последствия могут быть самыми печальными, вплоть до летального исхода.
Как же предупредить кессонную болезнь? Можно использовать в дыхательной смеси вместо азота газ гелий, который не приводит к таким
последствиям. Также необходимо придерживаться правила постепенного подъема, с остановками, избегать резкого всплытия.
© Беллевич Юрий Сергеевич 2018-2023
Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение
(в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов
без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования,
обратитесь, пожалуйста, к Беллевичу Юрию.
в условии
в решении
в тексте к заданию
в атрибутах
Категория:
Атрибут:
Всего: 48 1–20 | 21–40 | 41–48
Добавить в вариант
Выберите три верных ответа из шести и запишите в таблицу цифры, под которыми они указаны. В организме человека вдох обеспечивается.
1) повышением содержания кислорода в крови
2) сокращением диафрагмы
3) расслаблением диафрагмы
4) сокращением наружных межрёберных мышц
5) понижением давления в альвеолах
6) сокращением внутренних межрёберных мышц
Раздел: Человек
На рисунке изображены вдох и выдох человека. Определите, на каком из рисунков изображён вдох, а на каком — выдох? Объясните свой ответ. Какова роль диафрагмы в глубоком вдохе? За счёт чего диафрагма возвращается на исходное место при глубоком выдохе?
Раздел: Человек
Рассмотрите картинку и укажите, под какими цифрами указаны мышцы, работающие при вдохе.
Установите соответствие между процессами и стадиями дыхательного цикла: к каждой позиции, данной в первом столбце, подберите соответствующую позицию из второго столбца.
ПРОЦЕСС
А) сокращение наружных межрёберных мышц
Б) повышение давления в грудной клетке
В) сокращение диафрагмы
Г) увеличение объёма грудной клетки
Д) сокращение внутренних межрёберных мышц
Е) уменьшение расстояния между рёбрами
Запишите в таблицу выбранные цифры под соответствующими буквами:
А | Б | В | Г | Д | Е |
Раздел: Человек
Установите последовательность процессов вдоха и выдоха у человека, начиная с повышения концентрации СО2 в крови. Запишите в таблицу соответствующую последовательность цифр.
1) насыщение кислородом капилляров альвеол
2) повышение концентрации кислорода в тканях и клетках
3) возбуждение хеморецепторов продолговатого мозга
4) расслабление диафрагмы и наружных межрёберных мышц, сокращение внутренних межрёберных мышц
5) сокращение диафрагмы и наружных межрёберных мышц
Объясните, почему для обнаружения едва уловимого запаха человек делает более резкий и глубокий вдох носом. Ответ поясните. Почему при сухости в носу нарушается восприятие запахов.
Источник: ЕГЭ по биологии 2020. Досрочная волна. Вариант 1
Спирограмма женщины показала, что жизненная ёмкость её лёгких составляет 3600 см3, резервный объем вдоха — 1700 см3, а дыхательный объем — 400 см3. Определите резервный объем выдоха женщины. Ответ дайте в кубических сантиметрах.
Спирограмма мужчины показала, что дыхательный объем его лёгких составляет 600 см3, жизненная ёмкость лёгких — 4700 см3, а резервный объем выдоха — 1700 см3. Определите резервный объем вдоха мужчины. Ответ дайте в кубических сантиметрах.
Спирограмма мужчины показала, что резервный объем вдоха его лёгких составляет 2100 см3, жизненная ёмкость лёгких — 5200 см3, а резервный объем выдоха — 1900 см3. Определите дыхательный объем мужчины. Ответ дайте в кубических сантиметрах.
Спирограмма женщины показала, что жизненная ёмкость её лёгких составляет 4200 см3, резервный объем вдоха — 2000 см3, а дыхательный объем — 500 см3. Определите резервный объем выдоха женщины. Ответ дайте в кубических сантиметрах.
Спирограмма мужчины показала, что дыхательный объем его лёгких составляет 700 см3, жизненная ёмкость лёгких — 3900 см3, а резервный объем выдоха — 1500 см3. Определите резервный объем вдоха мужчины. Ответ дайте в кубических сантиметрах
Как осуществляются дыхательные движения у человека при спокойных вдохе и выдохе? Ответ обоснуйте.
Источник: Демонстрационная версия ЕГЭ—2016 по биологии
Расположите в правильном порядке процессы, протекающие во время дыхательного движения у млекопитающего, начиная с возбуждения центра вдоха. В ответе запишите соответствующую последовательность цифр.
1) сокращение межрёберных мышц и диафрагмы
2) увеличение объёма лёгких
3) обогащение крови кислородом в альвеолах лёгких и освобождение её от избытка углекислого газа
4) уменьшение лёгких в объёме и удаление из них воздуха
5) расслабление межрёберных мышц
Источник: РЕШУ ОГЭ
Установите правильную последовательность прохождения порции кислорода через организм человека от момента вдоха до поступления кислорода в ткани. Запишите в таблицу соответствующую последовательность цифр.
1) лёгкие
2) трахея
3) носоглотка
4) бронхи
5) кровь
6) гортань
7) ткани
Установите последовательность процессов при чихании. Запишите в таблицу соответствующую последовательность цифр.
1) поступление импульсов к диафрагме и наружным межрёберным мышцам
2) раздражение рецепторов носовой полости
3) резкий ускоренный выдох через нос
4) передача нервных импульсов в продолговатый мозг
5) глубокий резкий вдох
Раздел: Человек
Прочитайте текст. Выберите три предложения, в которых даны описания идиоадаптаций. Запишите в таблицу цифры, под которыми они указаны.
(1)В процессе эволюции у млекопитающих произошли крупные, принципиально новые изменения в строении организма, существенно повышающие общий уровень их организации. (2)Четырёхкамерное сердце и теплокровность, хорошо развитые отделы головного мозга позволили млекопитающим, как и птицам, расселиться повсеместно на земном шаре. (3)У ластоногих сформировались видоизменённые в ласты конечности, носовые отверстия открываются только при вдохе и выдохе. (4)Альвеолярные лёгкие млекопитающих способствуют обогащению крови кислородом и вырабатыванию большого количества энергии, необходимой для активной жизни. (5)Иногда в процессе эволюции может появиться крайняя степень приспособленности организма к очень ограниченным условиям обитания – специализация. (6)Например, сумчатое животное коала питается только листьями нескольких видов эвкалиптов.
Раздел: Основы эволюционного учения
Установите последовательность процессов, происходящих при вдохе. Запишите в таблицу соответствующую последовательность цифр.
1) передача нервного импульса к мышцам
2) повышение концентрации в крови
3) возбуждение дыхательного центра
4) увеличение объёма грудной клетки
5) сокращение диафрагмы
Установите последовательность процессов при вдохе человека. Запишите в таблицу соответствующую последовательность цифр.
1) сокращение межрёберных мышц
2) передача импульса к мышцам
3) возбуждение дыхательного центра
4) увеличение объёма грудной клетки
5) поступление воздуха к альвеолам
Установите последовательность органов, которые проходит воздух при вдохе.
Запишите в таблицу соответствующую последовательность цифр.
1) трахея
2) глотка
3) альвеолы
4) бронхи
5) носовая полость
Установите последовательность процессов, происходящих при вдохе и последующем пассивном выдохе. Запишите в таблицу соответствующую последовательность цифр.
1) расширение альвеол лёгких
2) увеличение объёма грудной клетки
3) уменьшение объёма грудной клетки
4) сокращение диафрагмы и межрёберных мышц
5) расслабление диафрагмы и межрёберных мышц
Всего: 48 1–20 | 21–40 | 41–48
Дыхание как процесс состоит из трех компонентов:
1. Внешнее дыхание.
2. Транспорт газов кровью.
3. Внутреннее дыхание.
Внешнее дыхание. Вдох и выдох. Механизм вдоха
1. Первым делом при вдохе сокращаются наружные межреберные мышцы, в результате чего ребра приподнимаются.
2. Следом сокращается и уплощается диафрагма. Она решительно давит на органы, расположенные в брюшной полости, толкая их вниз.
3. Объемы грудной и плевральной полости растут.
4. Давление в плевральной полости еще более понижается и падает ниже атмосферного.
5. Давление в альвеолах легких также уменьшается при поднятии ребер и увеличении грудной клетки.
6. Низкое давление в альвеолах и в плевральной полости — залог поступления воздуха в легкие.
7. Грудная клетка поднята, человек вдыхает.
Механизм выдоха
1. Выдох происходит под действием тяжести опускающейся грудной клетки, воздух попросту выдавливается.
2. Сокращаются лишь внутренние межреберные мышцы, а наружные расслабляются.
3. Диафрагма вновь становится выпуклой — она как бы вдается в грудную полость.
4. Давление в легких в этот момент выше атмосферного, поэтому воздух и идет из легких наружу, из области высокого давления в область более низкого.
Дыхательные показатели легких
1. Дыхательный объем — это тот объем воздуха, который человек без усилий, спокойно вдыхает за один дыхательный цикл (у взрослого он составляет около 0,5 литра).
2. Резервный объем вдоха — объем воздуха, который возможно дополнительно, с усилием вдохнуть после обычного вдоха (это еще около 1,5 литра).
3. Резервный объем выдоха — объем воздуха, который человек способен выдохнуть после обычного выдоха (соответственно, около 1,5 литра).
4. ЖЕЛ — объем воздуха, который человек выдыхает после того, как сделал максимально глубокий вдох (он составляет в среднем 3,3–4,8 литра). Измеряют этот объем спирометром.
5. Остаточный объем — объем воздуха, остающийся в легких даже после максимального выдоха (около 1,2 литра). Как мы видим, полный выдох вовсе не означает, что в легких вовсе не осталось воздуха. В них существует невероятный, длиной в три тысячи километров, лабиринт путей, по которым движется воздух.
6. Общая емкость легких — результат сложения остаточного объема и ЖЕЛ (4,2–6 литров).
Транспорт газов кровью
100 миллилитров крови переносят около 21 миллилитра кислорода — это называется кислородной емкостью крови. Ниже мы перечислим, как, из каких мест и куда по кровяному руслу переносятся кислород и углекислый газ.
1. Кислород в альвеолах проникает в капилляры, связывается с гемоглобином эритроцитов, образуется оксигемоглобин.
2. Эритроциты передают молекулы кислорода клеткам и тканям.
3. Из клеток и тканей в обратном направлении движется углекислый газ, связывающийся с гемоглобином — в результате чего образуется карбгемоглобин, а также карбонаты; либо СО2 движется в свободном состоянии (в составе угольной кислоты).
4. Кровь, насыщенная СО2, поступает в легкие.
Тканевое (внутреннее) дыхание
1. Кровеносные капилляры отдают кислород в тканевую жидкость.
2. Газы из капилляров крови идут в тканевую жидкость по закону диффузии.
3. Из тканевой жидкости кислород идет в клетки тела, где используется для окисления.
4. Из клеток в тканевую жидкость диффузно идет углекислый газ.
5. Из тканевой жидкости углекислый газ диффузно достигает капилляра.
Интересные факты о дыхании
1. В воздухе, выдыхаемом человеком, содержится до 10 процентов кислорода и до 4 процентов углекислого газа.
2. При минимальных 4–5 процентах углекислого газа в воздухе у человека появляются признаки отравления. При 10–12 процентах человек теряет сознание, возможна смерть.
3. Кессонная болезнь развивается от перепада давления при стремительном подъеме с глубины на поверхность, например, у дайверов или исследователей, опускающихся на глубину в батискафе. В крови при этом образуются пузырьки азота, которые разрушают кровеносные сосуды, перекрывают ток крови. При этом возможны паралич и смерть.
4. Ионы водорода воздействуют на нейроны дыхательных центров головного мозга.
5. Кислород действует только на специфические хеморецепторы сосудов, не влияя на клетки дыхательных центров мозга.
6. Если суммировать общий вес крови, перекачивающейся легкими за сутки, результат нас удивит — это около 7 тонн!
Хочешь сдать экзамен на отлично? Жми сюда — мастер класс по биологии
3
ДЫХАТЕЛЬНАЯ СИСТЕМА ЧЕЛОВЕКА
Ц ель : Все животные и человек приспособились добывать энергию из синтезированных растениями органических веществ. Чтобы использовать энергию Солнца, заключённую в молекулах органических веществ, её необходимо высвободить, окислив эти вещества. Чаще всего в качестве окислителя используют кислород воздуха.
Этапы дыхания: Комплекс последовательных физиологических и физико-химических процессов, обеспечивающих дыхание, подразделяют на пять этапов.
1-й этап — внешнее дыхание, или вентиляция легких — процессы, обеспечивающие ритмическое поступление определенных объемов атмосферного воздуха в легкие (вдох) и удаление его из легких в атмосферу (выдох).
2-й этап — диффузия газов в легких (газообмен в легких) — процессы, обеспечивающие переход кислорода из альвеолярного воздуха в кровь и углекислого газа в обратном направлении.
3-й этап — транспорт газов кровью — процессы, обеспечивающие растворение кислорода и углекислого газа в крови, связывание их с гемоглобином и другими веществами и перенос с током крови.
4-й этап — диффузия газов в тканях (газообмен в тканях) — процессы, обеспечивающие диссоциацию оксигемоглобина в крови тканевых капилляров и диффузию кислорода из крови в тканевые структуры, а также диффузию углекислого газа в обратном направлении, его растворение и связывание с гемоглобином.
5-й этап — клеточное дыхание — биохимические и физико-химические процессы, обеспечивающие аэробное окисление органических веществ с получением энергии, используемой для жизнедеятельности клетки. При этом образуются углекислый газ, вода и азотистые основания (при окислении белков).
Функционирование дыхательной системы:
Название отдела |
Особенности строения |
Функции |
Полость носа и носоглотка |
Извилистые носовые ходы. Слизистая снабжена капиллярами, покрыта мерцательным эпителием и имеет много слизистых железок. Есть обонятельные рецепторы. В полости носа открываются воздухоносные пазухи костей. |
|
Гортань |
Непарные и парные хрящи. Между щитовидным и черпаловидными хрящами натянуты голосовые связки, образующие голосовую щель. Надгортанник прикреплён к щитовидному хрящу. Полость гортани выстлана слизистой оболочкой, покрытой мерцательным эпителием. |
|
Трахея и бронхи |
Трубка 10–13 см с хрящевыми полукольцами. Задняя стенка эластичная, граничит с пищеводом. В нижней части трахея разветвляется на два главных бронха. Изнутри трахея и бронхи выстланы слизистой оболочкой. |
Обеспечивает свободное поступление воздуха в альвеолы лёгких. |
Зона газообмена |
||
Лёгкие |
Парный орган — правое и левое. Мелкие бронхи, бронхиолы, легочные пузырьки (альвеолы). Стенки альвеол образованы однослойным эпителием и оплетены густой сетью капилляров. |
Газообмен через альвеолярно-капилярную мембрану. |
Плевра |
Снаружи каждое лёгкое покрыто двумя листками соединительнотканной оболочки: легочная плевра прилегает к лёгким, пристеночная — к грудной полости. Между двумя листками плевры — полость (щель), заполненная плевральная жидкостью. |
|
Носовая полость
Воздухоносные пути начинаются с носовой полости, которая через ноздри соединяется с окружающей средой. От ноздрей воздух проходит по носовым ходам, выстланным слизистым, реснитчатым и чувствительным эпителием. Наружный нос состоит из костных и хрящевых образований и имеет форму неправильной пирамиды, которая изменяется в зависимости от особенностей строения человека. В состав костного скелета наружного носа входят носовые косточки и носовая часть лобной кости. Хрящевой скелет является продолжением костного скелета и состоит из гиалиновых хрящей различной формы. Полость носа имеет нижнюю, верхнюю и две боковые стенки. Нижняя стенка образована твёрдым нёбом, верхняя — решётчатой пластинкой решётчатой кости, боковая — верхней челюстью, слёзной костью, глазничной пластинкой решётчатой кости, нёбной костью и клиновидной костью. Носовой перегородкой полость носа разделена на правую и левую части.
Гортань
Гортань — один из отделов воздухоносных путей. Сюда из носовых ходов через глотку поступает воздух. В стенке гортани есть несколько хрящей: щитовидный, черпаловидный и др. В момент глотания пищи мышцы шеи поднимают гортань, а надгортанный хрящ опускается и закрывается гортань. Поэтому пища поступает только в пищевод и не попадает в трахею.
Трахея
Гортань переходит в трахею (дыхательное горло), которая имеет форму трубки длиной около 12 см, в стенках которого есть хрящевые полукольца, не позволяющие ей спадать. Задняя стенка её образована соединительнотканной перепонкой. Полость трахеи, как и полость других воздухоносных путей выстлана мерцательным эпителием, препятствующим проникновению в лёгкие пыли и других инородных тел. При дыхании мелкие частички пыли прилипают к увлажнённой слизистой оболочке трахеи, а реснички мерцательного эпителия продвигают их обратно к выходу из дыхательных путей.
Нижни й конец трахеи делится на два бронха, которые затем многократно ветвятся, входят в правое и левое лёгкие, образуя в лёгких «бронхиальное дерево».
Бронхи
В грудной полости трахея делится на два бронха — левый и правый. Каждый бронх входит в лёгкое и там делится на бронхи меньшего диаметра, которые разветвляются на мельчайшие воздухоносные трубочки — бронхиолы. Бронхиолы в результате дальнейшего ветвления переходят в расширения — альвеолярные ходы, на стенках которых находятся микроскопические выпячивания, называемые легочными пузырьками, или альвеолами. Стенки альвеол построены из особого тонкого однослойного эпителия.
Лёгкие
Лёгкие занимают почти всю полость грудной полости и представляют собой упругие губчатые органы. В центральной части лёгкого располагаются ворота, куда входят бронх, легочная артерия, нервы, а выходят легочные вены. Правое лёгкое делится бороздами на три доли, левое на две. Снаружи лёгкие покрыты тонкой соединительнотканной плёнкой — легочной плеврой, которая переходит на внутреннею поверхность стенки грудной полости и образует пристенную плевру. Между этими двумя плёнками находится плевральная щель, заполненная жидкостью, уменьшающей трение при дыхании.
В момент вдоха, когда сокращаются наружные межреберные мышцы и ребра поднимаются, наружный листок плевры отходит от внутреннего, вследствие чего увеличивается объем плевральной полости. Поскольку легкие всегда стремятся занять максимально возможный объем в грудной полости в связи с разностью давления внутри и снаружи органа, при увеличении объема плевральной полости происходят растяжение легких и поступление в них воздуха. Это приводит к увеличению эластической тяги легких и, следовательно, уменьшению внутриплеврального давления. Чем глубже вдох, тем больше уменьшается давление. В момент глубокого вдоха оно может достигать минус 12-15 мм рт. ст. (рис. 1).
Когда в межреберных мышцах заканчивается процесс возбуждения, они расслабляются и ребра пассивно возвращаются в исходное положение; точно так же прекращение сокращения диафрагмы приводит к тому, что она занимает свое прежнее куполообразное положение. Возвращение ребер и диафрагмы в исходное положение приводит к уменьшению объема грудной полости, а следовательно, к сдавлению легких. При возвращении ребер в исходное положение давление в плевральной полости повышается, т.е. в ней уменьшается отрицательное давление, так как уменьшается эластическая тяга легких. При глубоком выдохе оно становится равным минус 3-4 мм рт. ст. При сдавлении легких из них пассивно выходит воздух — осуществляется выдох.
Упругие свойства легких. Эластическая тяга легких обусловлена тремя факторами:
-
поверхностным натяжением пленки жидкости, покрывающей внутреннюю поверхность альвеол;
-
упругостью ткани стенок альвеол вследствие наличия в них эластических волокон;
-
тонусом бронхиальных мышц.
Если бы внутренняя поверхность альвеол была покрыта водным раствором, поверхностное натяжение должно было быть в 5-8 раз больше. В таких условиях наблюдалось бы полное спадение одних альвеол (ателектаз) при перерастяжении других. Этого не происходит потому, что внутренняя поверхность альвеол выстлана веществом, имеющим низкое поверхностное натяжение, так называемым сурфактантом, имеющим толщину 20-100 нм и состоящим из белков и липидов. Пленка сурфактанта обладает замечательным свойством: уменьшение размеров альвеол сопровождается снижением поверхностного натяжения; это важно для стабилизации альвеол.
Сурфактант необходим для начала дыхания при рождении ребенка. До рождения легкие находятся в спавшемся состоянии. Ребенок после рождения делает несколько сильных дыхательных движений, легкие расправляются, а сурфактант удерживает их от спадения (коллапса). Недостаток или дефекты сурфактанта вызывают тяжелое заболевание (синдром дыхательного дистресса).
Газообмен в альвеоле
Регуляция дыхания
Нервная Гуморальная
Кора Дыхательный центр Концентрация СО2 в крови
Нервная регуляция дыхания
Дыхательный центр
Координированные дыхательные движения управляются из дыхательного центра в продолговатом мозге. Он состоит из двух половин, связанных между собою перемычками. Каждая половина координирует соответствующую половину грудной клетки. Это можно доказать в опыте на кошке, расщепив у нее продолговатый мозг по средней линии. Тогда правая и левая половина грудной клетки начинают дышать самостоятельно и с особым ритмом.
Дыхательный центр посылает импульсы к дыхательным мышцам не непосредственно, а через соответствующие центры спинного мозга. В настоящее время в дыхательном центре различают участки, раздражение которых стимулирует вдох (так называемый центр вдоха), и участки, стимулирующие выдох (так называемый центр выдоха).
Автоматия дыхательного центра
Нервные импульсы из центра дыхания в продолговатом мозге поступают каждые 4-5 сек. в нервные центры, регулирующие движения диафрагмы и межреберных мышц, которые расположены в шейном и грудном отделе спинного мозга, и вызывают их возбуждение. Это возбуждение, передаваясь по нервным волокнам, приводит в движение диафрагму и межреберные мышцы. Таким образом осуществляется автоматическое регулирование процессов вдоха и выдоха.
Высший центр дыхания
Высший центр, который регулирует дыхание, расположен в коре больших полушарий головного мозга. При участии этого высшего центра человек может произвольно задерживать дыхание в течение определенного времени, однако избыточное накопление углекислого газа в результате задержки дыхания вызывает сильное возбуждение дыхательного центра в продолговатом мозге и дыхание автоматически возобновляется.
Высший центр дыхания координирует частоту и глубину дыхательных движений при различных состояниях человека, то есть во время разговора, пения, выполнения физических упражнений, ходьбы. Под влиянием эмоций — гнева, страха и пр.— дыхание учащается, а при испуге или боли может даже остановиться. В высшем центре коры больших полушарий образуются условные рефлексы дыхания.
Рефлекторная регуляция дыхания Рефлексы с полости носа
Большое значение для нормального функционирования дыхательного аппарата имеют рефлексы с воздухоносных путей. В верхних дыхательных путях воздух согревается, насыщается парами воды и очищается от пыли и бактерий. Этому способствует узость этих путей и постоянная гиперемия слизистой оболочки. У северного оленя, вынужденного при быстром беге глубоко и сильно дышать, имеется в трахее специальное приспособление в виде желваков из кровеносных сосудов, в значительной мере согревающих холодный воздух.
Слизистая оболочка носа очень чувствительна. Чувствительность в ней разнообразная — термическая, болевая, тактильная, давления и пр. и более высокая, чем на коже. При раздражении слизистой оболочки носа вызывается ряд рефлексов секреторных, сосудистых, двигательных. Механическое раздражение слизистой оболочки носа ведет к рефлексу чихания, но сильное ее раздражение может привести к остановке дыхания. Рефлексы, возникающие при раздражении слизистой оболочки носа, оказывают большое влияние на организм, так как незатрудненное, свободное носовое дыхание обеспечивает нормальное течение многих процессов.
Кашлевой рефлекс
Большое значение имеют рефлексы, идущие с гортани, чувствительным нервом которой является передний гортанный нерв. Слизистая оболочка дыхательных путей выстлана мерцательным эпителием, который переносит случайно попавшие туда частицы к гортани. Раздражение гортани грубыми частицами вызывает рефлекс кашля — сильным выдох при одновременном сужении голосовой щели. При кашле сильной струей воздуха удаляются из трахеи раздражающие ее частицы.
Гуморальная регуляция дыхания Содержание углекислого газа в крови играет важную роль в регуляции дыхания. Увеличенное или уменьшенное содержание в крови углекислого газа, воздействуя на дыхательный центр гуморальным путем, принимает участие в регуляции дыхания. иперкапния
Гиперкапния – это увеличение содержания углекислого газа в крови.
Раздражителем центра дыхания является сдвиг реакции крови в кислую сторону, что наступает при недостатке кислорода или при избытке углекислого газа в крови – гиперкапнии. Гиперкапния может возникнуть, если большое количество людей будут находиться в помещении с закрытыми дверями и окнами долгое время, в результате чего в воздухе увеличится содержание углекислого газа. При дыхании этим воздухом в крови учащихся будет увеличиваться содержание углекислого газа, что приведет к сильному возбуждению дыхательного центра и учащению дыхания. Если класс немедленно не проветрить, то у учеников могут появиться головокружение, сонливость, зевота, общая слабость, одышка и другие нежелательные явления.
Гипокапния
Гипокапния – это снижение содержания углекислого газа в крови. Гипокапния приводит к уменьшению раздражения дыхательного центра, что выражается в урежении дыхания.
Гипокапнию можно вызвать, если с помощью нескольких глубоких выдохов снизить насыщенность крови углекислотой и тем самым понизить возбудимость центра дыхания, то дыхание прекращается на 20-30 секунд. Это состояние называют апноэ.