Всего: 117 1–20 | 21–40 | 41–60 | 61–80 …
Добавить в вариант
В правильной четырехугольной призме ABCDA1B1C1D1 сторона основания равна а боковое ребро равно 2. Точка M — середина ребра AA1. Найдите расстояние от точки M до плоскости DA1C1.
Источник: А. Ларин: Тренировочный вариант № 106.
Раздел: Стереометрия
Источник: А. Ларин: Тренировочный вариант № 5.
В правильной треугольной пирамиде SABC с вершиной S на сторонах AB и AC выбраны точки M и K соответственно так, что треугольник AMK подобен треугольнику ABC с коэффициентом подобия На прямой MK выбрана точка E так, что ME : EK = 7 : 9. Найти расстояние от точки E до плоскости BSC, если сторона основания пирамиды равна 6, а высота пирамиды равна
Источник: А. Ларин: Тренировочный вариант № 16.
В правильной треугольной пирамиде отношение бокового ребра к высоте пирамиды равно 2. Найдите отношение радиуса вписанного в пирамиду шара к стороне основания пирамиды.
Источник: А. Ларин: Тренировочный вариант № 28.
В кубе ABCDA1B1C1D1 точка O1 — центр квадрата ABCD, точка O2 — центр квадрата CC1D1D.
а) Докажите, что прямые A1O1 и B1O2 скрещиваются.
б) Найдите расстояние между прямыми A1O1 и B1O2 , если ребро куба равно 1.
Источник: А. Ларин. Тренировочный вариант № 294.
В прямоугольном параллелепипеде ABCDA1B1C1D1 через середину M диагонали AC1 проведена плоскость α перпендикулярно этой диагонали, AB = 5, BC = 3 и AA1 = 4.
а) Докажите, что плоскость α содержит точку D1.
б) Найдите отношение, в котором плоскость делит ребро A1B1.
Источник: А. Ларин: Тренировочный вариант № 7.
В равнобокой описанной трапеции ABCD, где угол B тупой, а BC и AD — основания, проведены: 1) биссектриса угла B; 2) высота из вершины С; 3) прямая, параллельная AB и проходящая через середину отрезка CD.
а) Докажите, что все они пересекаются в одной точке.
б) Найдите расстояние между центрами вписанной и описанной окружностей трапеции ABCD, если известно, что BC = 8, AD = 18.
Источник: А. Ларин: Тренировочный вариант № 130.
Источник: А. Ларин: Тренировочный вариант № 2.
Источник: А. Ларин: Тренировочный вариант № 4*.
Источник: А. Ларин: Тренировочный вариант № 1.
Источник: А. Ларин: Тренировочный вариант № 9.
В правильной треугольной пирамиде SABC с основанием ABC известны ребра и SC = 17. Найдите угол, образованный плоскостью основания и прямой AM, где M — точка пересечения медиан грани SBC.
Источник: А. Ларин: Тренировочный вариант № 105.
В прямоугольный треугольник ABC вписана окружность ω, касающаяся гипотенузы AB в точке M. Точка О — центр описанной около треугольника ABC окружности. Касательная к окружности ω, проведенная из точки О, пересекает сторону АС в точке P.
а) Докажите, что площадь треугольника ABC равна произведению длин отрезков AM и BM.
б) Найдите площадь четырехугольника BCPO, если известно, что AM = 12, BM = 5.
Источник: А. Ларин: Тренировочный вариант № 155.
В правильной треугольной призме АВСА′B′C′ сторона основания АВ равна 6, а боковое ребро АА′ равно 3. На ребре АВ отмечена точка К так, что АК = 1. Точки М и L — середины рёбер А′С′ и В′С′ соответственно. Плоскость γ параллельна прямой АС и содержит точки К и L.
а) Докажите, что прямая ВМ перпендикулярна плоскости γ.
б) Найдите расстояние от точки С до плоскости γ.
Источник: Задания 14 (С2) ЕГЭ 2016, ЕГЭ — 2016 по математике. Основная волна 06.06.2016. Вариант 410. Запад
В основании прямой призмы лежит прямоугольный треугольник ABC с гипотенузой AB, причем Через точку перпендикулярно проведена плоскость α.
а) Докажите, что сечением призмы плоскостью α является прямоугольный треугольник.
б) Найдите объем большей части призмы, на которые ее делит плоскость α, если известно, что
Источник: А. Ларин: Тренировочный вариант № 199.
В треугольной пирамиде ABCD ребра AB и CD взаимно перпендикулярны, угол между ребром DC и гранью ABC равен
а) Докажите, что середина ребра AB равноудалена от плоскости ACD и плоскости BCD.
б) Найдите угол между ребром AB и гранью ACD.
Источник: А. Ларин: Тренировочный вариант № 254.
Источник: А. Ларин: Тренировочный вариант № 17.
Ребро куба ABCDA1B1C1D1 равно 4. Точка N — середина СВ, а точка M лежит на ребре AA1, причем AM : MA1 = 3 : 1. Определите расстояние между прямыми MN и BC1.
Источник: А. Ларин: Тренировочный вариант № 110.
Окружность радиуса касается сторон AC и BC треугольника ABC в точках K и P и пересекает строну AB в точках M и N (точка N между точками B и M). Известно, что MP и AC параллельны,
а) Найдите угол BCA.
б) Найдите площадь треугольника BKN.
Источник: А. Ларин. Тренировочный вариант № 275.
Всего: 117 1–20 | 21–40 | 41–60 | 61–80 …
Координаты вектора
Вектор – отрезок, имеющий длину и указывающий направление.
На самом деле, понимать, что такое вектор для решения задач методом координат необязательно. Можно просто использовать это понятие, как необходимый инструмент для решения задач по стереометрии. Любое ребро или отрезок на нашей фигуре мы будем называть вектором.
Для того, чтобы определить координаты вектора, нужно из координат конечной точки вычесть координаты начальной точки. Пусть у нас есть две точки (Рис. 4) :
$$ т.А(x_A,y_A,z_A); $$
$$ т.B(x_B,y_B,z_B); $$
Тогда координаты вектора (vec{AB}) можно определить по формуле:
$$ vec{AB}={x_B-x_A,y_B-y_A,z_B-z_A}. $$
Скрещивающиеся прямые
И так, мы научились находить координаты точек, и при помощи них определять координаты векторов. Теперь познакомимся с формулой нахождения косинуса угла между скрещивающимися прямыми (векторами). Пусть даны два вектора:
$$ a={x_a,y_a,z_a};$$
$$ b={x_b,y_b,z_b}; $$
тогда угол (alpha) между ними находится по формуле:
$$ cos{alpha}=frac{x_a*x_b+y_a*y_b+z_a*z_b}{sqrt{{x_a}^2+{y_a}^2+{z_a}^2}*sqrt{{x_b}^2+{y_b}^2+{z_b}^2}}. $$
Уравнение плоскости
В задачах №14 (С2) ЕГЭ по профильной математике часто требуется найти угол между прямой и плоскостью и расстояние между скрещивающимися прямыми. Но для этого вы должны уметь выводить уравнение плоскости. В общем виде уравнение плоскости задается формулой:
$$ A*x+B*y+C*z+D=0,$$
где (A,B,C,D) – какие-то числа.
Если найти (A,B,C,D), то мы мы найдем уравнений плоскости. Плоскость однозначно задается тремя точками в пространстве, значит нужно найти координаты трех точек, лежащий в данной плоскости, а потом подставить их в общее уравнение плоскости.
Например, пусть даны три точки:
$$ K(x_K,y_K,z_K);,L(x_L,y_L,z_L);,P(x_P,y_P,z_P). $$
Подставим координаты точек в общее уравнение плоскости:
$$begin{cases} A*x_K+B*y_K+C*z_K+D=0,\ A*x_L+B*y_L+C*z_L+D=0, \ A*x_P+B*y_P+C*z_P+D=0.end{cases}$$
Получилась система из трех уравнений, но неизвестных 4: (A,B,C,D). Если наша плоскость не проходит через начало координат, то мы можем (D) приравнять (1), если же проходит, то (D=0). Объяснение этому простое: вы можете поделить каждое ваше уравнения на (D), от этого уравнение не изменится, но вместо (D) будет стоять (1), а остальные коэффициенты будут в (D) раз меньше.
Теперь у нас есть три уравнения и три неизвестные – можем решить систему:
Пример 3
Найти уравнение плоскости, проходящей через точки
$$ K(1;2;3);,P(0;1;0);,L(1;1;1). $$
Подставим координаты точек в уравнение плоскости (D=1):
$$begin{cases} A*1+B*2+C*3+1=0,\ A*0+B*1+C*0+1=0, \ A*1+B*1+C*1+1=0.end{cases}$$
$$begin{cases} A+2*B+3*C+1=0,\ B+1=0, \ A+B+C+1=0.end{cases}$$
$$begin{cases} A-2+3*C+1=0,\ B=-1, \ A=-C.end{cases}$$
$$begin{cases} A=-0.5,\ B=-1, \ C=0.5.end{cases}$$
Получаем искомое уравнение плоскости:
$$ -0.5x-y+0.5z+1=0.$$
Расстояние от точки до плоскости
Зная координаты некоторой точки (M(x_M;y_M;z_M)), легко найти расстояние до плоскости (Ax+By+Cz+D=0:)
$$ rho=frac{|A*x_M+B*y_M+C*z_M+D|}{sqrt{A^2+B^2+C^2}}. $$
Пример 4
Найдите расстояние от т. (H (1;2;0)) до плоскости, заданной уравнением
$$ 2*x+3*y-sqrt{2}*z+4=0.$$
Из уравнения плоскости сразу находим коэффициенты:
$$ A=2,,B=3,,C=-sqrt{2},,D=4.$$
Подставим их в формулу для нахождения расстояния от точки до плоскости.
$$ rho=frac{|2*1+3*2-sqrt{2}*0+4|}{sqrt{2^2+3^2+{-sqrt{2}}^2}}. $$
$$ rho=frac{12}{sqrt{16}}=3.$$
Расстояние между скрещивающимися прямыми
Расстояние между скрещивающимися прямыми – это расстояние от любой точки одной из прямых до параллельной ей плоскости, проходящей через вторую прямую.
Таким образом, если требуется найти расстояние между скрещивающимися прямыми, то нужно через одну из них провести плоскость параллельно второй прямой. Затем найти уравнение этой плоскости и по формуле расстояния от точки до плоскости найти расстояние между скрещивающимися прямыми. Точку на прямой можно выбрать произвольно (у которой легче всего найти координаты).
Пример 5
Рассмотрим задачу из досрочного ЕГЭ по математике 2018 года.
Дана правильная треугольная призма (ABCFDE), ребра которой равны 2. Точка (G) — середина ребра (CE).
- Докажите, что прямые (AD) и (BG) перпендикулярны.
- Найдите расстояние между прямыми (AD) и (BG).
Решение:
Решим задачу полностью методом координат.
Нарисуем рисунок и выберем декартову систему координат. (Рис 5).
Муниципальное бюджетное общеобразовательное учреждение
средняя общеобразовательная школа №2
Мастер-класс по теме
«Применение координатно-векторного метода при решении стереометрических задач»
Подготовила
учитель математики МБОУ СОШ №2
Гергель Анна Анатольевна
11 ноября 2020
Если ученик берется за решение стереометрической задачи, то в большинстве случаев действует поэтапно-вычислительным методом, используя определения, признаки и свойства различных фигур. Однако этот метод требует безупречного знания и понимания основных теорем, связанных с взаимным расположением прямых и плоскостей в пространстве и не всегда оказывается эффективным.
Целью моего выступления является рассмотреть и проанализировать координатно-векторный метод решения стереометрических задач. Координатный метод позволяет избежать указанных трудностей. Основная нагрузка при решении задачи координатным методом приходится на вычислительную часть. Практика показывает, что учащиеся быстро осваивают метод координат, так как при его использовании необходимо придерживаться общего алгоритма:
– рационально расположить фигуру относительно системы координат;
– вычислить координаты необходимых точек, расположенных на многогранниках;
– применить соответствующую формулу.
Координатным методом можно вычислять расстояния: между скрещивающимися прямыми, между точкой и плоскостью, между плоскостями. Следует отметить, что координатный метод в чистом виде применяется редко. На практике используют комбинированный, то есть координатно-векторный метод, который позволяет расширить спектр решаемых задач. Использование векторов позволяет находить углы между прямыми, между прямой и плоскостью, между плоскостями. Рассмотрим использование координатно-векторного метода для решения стереометрических задач, предлагаемых на ЕГЭ по математике профильного уровня. Для начала разберем наиболее удобные способы расположения системы координат относительно различных видов многогранников.
1. Куб.
При таком расположении системы координат (рис. 4) вершины куба будут иметь следующие координаты: А(0;0;0), В(0;а;0), С(а;а;0), D(а;0;0), А1(0;0;а), В1(0;а;а), С1(а;а;а), D1(а;0;а).
Такое же расположение системы координат удобно использовать для прямоугольного параллелепипеда. Еще один вариант расположения кубаотносительно системы координат связан с размещением начала координат в точке пересечения диагоналей основания.
2. Правильная треугольная призма. Пусть в правильной треугольной призме АВСDА1В1С1D1 сторона основания равна а, а боковое ребро равно b. Разместим начало координат в точке А, ось абсцисс будет направлена вдоль ребра АС, ось ординат проходит через точку А перпендикулярно АС, ось Оz направлена вдоль бокового ребра АА1 (см. рис. 5).
Тогда вершины призмы будут иметь координаты: А(0;0;0), В(𝑎/2; 𝑎 √3/2;0), C(a;0;0), A1(0;0;b), B1(𝑎/2;𝑎√3/2;𝑏), C1(a;0;b).
Другой возможный вариант расположения правильной треугольной призмы относительно прямоугольной декартовой системы координат показан на рисунке 6.
3. Правильная шестиугольная призма.
Пусть в правильной шестиугольной призме АВСDЕFА1В1С1D1Е1F1 сторона основания равна а, а боковое ребро равно b. Разместим начало координат в точке А, ось абсцисс направим вдоль ребра АF, ось Оу – через точку А перпендикулярно АF, ось Оz – вдоль бокового ребра АА1 (смотри рисунок 7).
Тогда вершины призмы будут иметь координаты: А(0;0;0), В(−𝑎/2;𝑎√3/2;0),
C(0; a√3;0), D(а; a√3;0), Е(3а/2;𝑎√3/2;0), F(а;0;0), A1(0;0;b), B1(−𝑎/2;𝑎√3/2;𝑏),
C1(0; a√3;b), D1(а; a√3;b), Е1(3а/2;𝑎√3/2;𝑏), F1(а;0;b).
Другой вариант расположения правильной шестиугольной призмы относительно прямоугольной декартовой системы координат представлен на рисунке 8.
4. Правильная треугольная пирамида.
Пусть в правильной треугольной пирамиде МАВС сторона основания равна а, а высота равна h. Разместим начало координат в точке А, ось абсцисс
направим вдоль ребра АС, ось Оу – через точку А перпендикулярно АС, ось Оz– через точку А перпендикулярно плоскости АВС (смотри рисунок 9).
Тогда вершины пирамиды имеют координаты: А(0;0;0), В(𝑎/2;𝑎√3/2;0), C(а;0;0), М(𝑎/2;𝑎√3/6;ℎ).
Еще один вариант расположения правильной треугольной пирамиды относительно системы координат представлен на рисунке.
5. Правильная четырехугольная пирамида.
Пусть в правильной четырехугольной пирамиде МАВСD сторона основания равна а, а высота равна h.
Разместим начало координат в точке А, ось абсцисс направим вдоль ребра АD, ось Оу – вдоль ребра АВ, ось Оz – через точку А перпендикулярно плоскости АВС. Тогда вершины пирамиды имеют координаты: А(0;0;0), В(0;а;0), С(а;а;0), D(а;0;0), М(𝑎/2;𝑎/2;ℎ).
6. Правильная шестиугольная пирамида. Пусть в правильной шестиугольной пирамиде МАВСDЕF сторона основания равна а, а высота равна h. Разместим начало координат в точке А, ось абсцисс направим вдоль ребра АС, ось Оу – через точку А перпендикулярно АС, ось Оz – проходит через точку А перпендикулярно плоскости АВС (смотри рисунок 12).
Тогда вершины пирамиды имеют координаты А(0;0;0), В(−𝑎/2;𝑎√3/2;0),
C(0; a√3;0), D(а; a√3;0), Е(3𝑎/2;𝑎√3/2;0), F(а;0;0), М(𝑎/2;𝑎√3/2;ℎ).
Еще один вариант расположения правильной шестиугольной пирамиды относительно прямоугольной декартовой системы координат показан на рисунке 13
Примеры решения задач
(Сборник Лысенко Ф. Ф., Кулабухова С. Ю. Математика. Подготовка к ЕГЭ 2021. Профильный уровень.)
1. Вариант 16 № 14.
ABCDA1B1C1D1 — правильная четырехугольная призма, на ребре СС1 отмечена точка Р такая, что СР:РС1 =3:5. Плоскость проходит через точки D и Р и параллельна прямой АС. Эта плоскость пересекает ребро ВВ1 в точке F.
а) Докажите, что сечение призмы плоскостью является ромбом.
б) Найдите длину ребра ВВ1, если АВ=6, а площадь сечения призмы плоскостью равна 72.
а) Т. к. противоположные грани параллелепипеда параллельны, то по свойству параллельных плоскостей сечение является параллелограммом. Для доказательства перпендикулярности диагоналей воспользуемся методом координат.
Введем прямоугольную систему координат, как показано на рисунке. Тогда D (6;0;0), К (0; 0; 3а), Р (6; 6; 3а), F (0; 6; z). Значение z вычислим из равенства векторов DK и PF. DK{-6; 0; 3a}, PF {-6; 0 z-3a}. Z=6a.
Вычислим скалярное произведение DF * KP. DF {-6; 6; 6a}, KP {6; 6; 0}.
DF * KP= -36+36+0=0, значит DF KP, а значит параллелограмм DKFP – ромб.
б) Sp = .
(по условию)
2 + а2 =8
, ВВ1 = 8а = 8
Ответ: 8
2. Вариант 33 №14
Диаметр АВ верхнего основания цилиндра перпендикулярен диаметру СD нижнего основания, при этом диаметр основания цилиндра в раз больше высоты цилиндра. Докажите, что тетраэдр АВСD – правильный.
Задачи для самостоятельного решения
1. В единичном кубе АВСDА1В1С1D1 найти угол между прямой АD1 и плоскостью α, проходящей через точки А1, Е и М, где точка Е – середина ребра С1D1, а точка М лежит на ребре DD1, так, что D1М = 2DМ.
2. В правильной шестиугольной призме АВСDЕFА1В1С1D1Е1F1, все ребра которой равны 1, найти угол между прямой АВ1 и плоскостью АСЕ1.
3. В правильной четырехугольной пирамиде МАВСК, все ребра которой равны 1, найти угол между прямой КЕ, где Е – середина апофемы МР грани АМВ, и плоскостью АМС.
Справочный материал
1. Отрезок, для которого указано, какой из его концов считается началом, а какой – концом, называется вектором
2. Длиной ненулевого вектора АВ называется длина отрезка АВ
3. Два ненулевых вектора называются коллинеарными, если они лежат на одной прямой или на параллельных прямых
4. Векторы называются равными, если они сонаправлены и их длины равны.
5. Сложение векторов:
Правило треугольника:
— отложить от какой-нибудь точки А вектор АВ, равный а (см. рис.);
— отложить от точки В вектор ВС, равный в;
— вектор АС , называется суммой векторов а и в .
Правило параллелограмма
— отложить векторы а и в от одной точки;
— построить на векторах а и в параллелограмм;
— диагональ полученного параллелограмма будет суммой векторов 𝑎а и в (см. рис.).
Правило многоугольника:
построение суммы трех и более векторов выполняют по правилу
многоугольника, состоящему в использовании правила треугольника нужное число раз.
6. Произведением ненулевого вектора а на число к называется такой вектор в , длина которого равна |к|∙|в |, причем векторы а и в сонаправлены при k > 0 и противоположно направлены при k < 0.
7. На плоскости любой вектор можно разложить по двум данным неколлинеарным векторам, причем коэффициенты разложения определяются единственным образом
8. Скалярным произведением двух векторов называется произведение их длин на косинус угла между ними
9. Условие перпендикулярности векторов: два вектора перпендикулярны, если их скалярное произведение равно нулю.
10. Скалярный квадрат вектора равен квадрату его длины
11. Координаты вектора. Каждая координата вектора равна разности соответствующих координат его конца и начала.
12. Длина вектора вычисляется по формуле
13. Координаты середины отрезка.
Каждая координата середины отрезка равна полусумме соответствующих координат его концов, т.е. если С(х; у) – середина отрезка АВ, А(х1; у1) и В(х2; у2) – его концы, то х=(х1+х2)/2, у=(у1+у2)/2
14. Расстояние между двумя точками.
Если М1(х1; у1) и М2(х2; у2), то М1М2 =
15. Уравнение окружности радиуса r с центром в точке О(х0; у0) имеет вид (х – х0)2 + (у – у0)2 = r2.
16. Уравнение прямой ах + by + c = 0.
17. Направляющим вектором прямой l называют ненулевой вектор р(а;в) лежащий на данной прямой l
18. Расстояние от точки М(х0; у0) до прямой ах + by + c = 0 вычисляется по формуле
19. Угол между прямыми. Если 𝑎 (𝑥1;𝑦1;𝑧1) и 𝑏⃗ (𝑥2;𝑦2;𝑧2) – направляющие векторы прямых a и b, φ – угол между прямыми a и b, то
20. Ненулевой вектор п , перпендикулярный к плоскости α, называют нормальным вектором плоскости α.
21. Расстояние от точки до плоскости. Если М(х0, у0, z0) — данная точка,
aх + bу +сz +d = 0 – уравнение данной плоскости α, то
Литература
1. Атанасян, Л.С., Бутузов, В.Ф., Кадомцев С.Б. и др. Геометрия. 7-9 классы: учеб. для общеобразоват. организаций. – М.: Просвещение, 2018
2. Александров А.Д. Геометрия. 9 класс: учеб. для общеобразоват. организаций. – М.: Просвещение, 2014.
3. Атанасян Л.С., Бутузов В.Ф., Кадомцев С.Б. и др. Геометрия. 10-11 классы: учеб. для общеобразоват. организаций. – М.: Просвещение, 2020.
4. Корянов А.Г., Прокофьев А.А. Многогранники: типы задач и методы их решения. – 102
5. Лысенко Ф. Ф., Кулабухова С. Ю. Математика. Подготовка к ЕГЭ 2021. Профильный уровень.