Внешний фотоэффект решу егэ


Пройти тестирование по этим заданиям
Вернуться к каталогу заданий

Версия для печати и копирования в MS Word

1

Задания Д11 B20 № 1801

Внешний фотоэффект  — это явление

1)  почернения фотоэмульсии под действием света

2)  вырывания электронов с поверхности вещества под действием света

3)  свечения некоторых веществ в темноте

4)  излучения нагретого твердого тела


2

Задания Д11 B20 № 1811

Система отсчета К, в которой находится наблюдатель, движется со скоростью  v вдоль прямой, соединяющей неподвижные источники света S_1 и S_2 (см. рис.).

Фотоны, излучаемые неподвижными источниками S_1 и S_2, движутся в системе отсчета К со скоростью

1)   v

2)  c

3)  c плюс v

4)  2c


3

Задания Д11 B20 № 2001

Энергия фотона, поглощенного при фотоэффекте, равна Е. Кинетическая энергия электрона, вылетевшего с поверхности металла под действием этого фотона,

1)  больше E

2)  равна E

3)  меньше E

4)  может быть больше или меньше Е при разных условиях


4

Задания Д11 B20 № 2014

Как изменится минимальная частота света, при которой возникает внешний фотоэффект, если пластинке сообщить отрицательный заряд?

1)  не изменится

2)  увеличится

3)  уменьшится

4)  увеличится или уменьшится в зависимости от рода вещества


5

Задания Д11 B20 № 2015

Какой график соответствует зависимости максимальной кинетической энергии фотоэлектронов Е от частоты nu падающих на вещество фотонов при фотоэффекте (см. рис.)?

1)  1

2)  2

3)  3

4)  4

Пройти тестирование по этим заданиям

в условии
в решении
в тексте к заданию
в атрибутах

Категория:

Атрибут:

Всего: 228    1–20 | 21–40 | 41–60 | 61–80 …

Добавить в вариант

Монохроматический свет с энергией фотонов Eф падает на поверхность металла, вызывая фотоэффект. Запирающее напряжение, при котором фототок прекращается, равно Uзап. Как изменятся модуль запирающего напряжения Uзап и длина волны λкр, соответствующая «красной границе» фотоэффекта, если энергия падающих фотонов Eф увеличится?

Для каждой величины определите соответствующий характер изменения:

1) увеличится

2) уменьшится

3) не изменится

Запишите в ответ выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.

Модуль

запирающего напряжения Uзап

«Красная граница»

фотоэффекта λкр

Источник: Демонстрационная версия ЕГЭ—2015 по физике., Демонстрационная версия ЕГЭ—2022 по физике, ЕГЭ по физике 2022. Досрочная волна. Вариант 2


Задания Д32 C3 № 9255

Частота красной границы фотоэффекта для калия равна 5,33 · 1014 Гц. Если другой металл облучить светом с такой же длиной волны, то кинетическая энергия вылетевших электронов будет в 3 раза меньше работы выхода для этого вещества. Чему равна частота красной границы фотоэффекта для неизвестного металла?

Источник: ЕГЭ по физике 07.06.2017. Основная волна


Для проведения опытов по наблюдению фотоэффекта взяли пластину из металла с работой выхода 3,4 · 10–19 Дж и стали освещать её светом частоты 6 · 1014 Гц. Как изменятся длина волны, соответствующая красной границе фотоэффекта, и максимальная сила тока, создаваемого фотоэлектронами (сила тока насыщения), если при неизменной интенсивности падающего света в 2 раза уменьшить его частоту?

Для каждой величины определите соответствующий характер изменения:

1)  увеличится;

2)  уменьшится;

3)  не изменится.

Запишите в таблицу выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.

Длина волны, соответствующая

красной границе фотоэффекта

Максимальная сила тока,

создаваемого фотоэлектронами


Красная граница фотоэффекта для вещества фотокатода λ0 = 290 нм. При облучении катода светом с длиной волны λ фототок прекращается при напряжении между анодом и катодом U = 1,9 В. Определите длину волны λ. Ответ выразить в нм и округлить до целого. Заряд электрона принять равным 1,6·10−19 Кл, постоянную Планка  — 6,6·10−34 Дж·с, а скорость света  — 3·108 м/с.


Задания Д32 C3 № 9044

При увеличении в 2 раза частоты света, падающего на поверхность металла, запирающее напряжение для вылетающих с этой поверхности фотоэлектронов увеличилось в 3 раза. Первоначальная длина волны падающего света была равна 250 нм. Какова частота, соответствующая «красной границе» фотоэффекта для этого металла?

Источник: ЕГЭ по физике 2017. Досрочная волна. Вариант 101


Максимальная кинетическая энергия фотоэлектронов, вылетающих из металлической пластинки при её освещении монохроматическим светом, равна 0,8 эВ. Красная граница фотоэффекта для этого металла 495 нм. Установите соответствие между физическими величинами и их численными значениями, выраженными в СИ. К каждой позиции первого столбца подберите соответствующую позицию из второго столбца и запишите в таблицу выбранные цифры под соответствующими буквами.

ФИЗИЧЕСКАЯ ВЕЛИЧИНА

А)  работа выхода металла

Б)  энергия фотона в световом потоке, падающем на пластинку

Запишите в ответ цифры, расположив их в порядке, соответствующем буквам:


Учащимся в классе при электрическом освещении лампами накаливания показали опыт: цинковый шар электрометра зарядили эбонитовой палочкой, потёртой о сукно. При этом стрелка электрометра отклонилась, заняв положение, указанное на рисунке, и в дальнейшем не меняла его. Когда на шар направили свет аргоновой лампы, стрелка электрометра быстро опустилась вниз. Объясните разрядку электрометра, учитывая приведённые спектры (зависимость интенсивности света I от длины волны lambda) лампы накаливания и аргоновой лампы. Красная граница фотоэффекта для цинка lambda_кр=290нм.

Источник: ЕГЭ по физике 2021. Досрочная волна. Вариант 1


Фотоэффект наблюдают, освещая поверхность металла светом фиксированной частоты. При этом задерживающая разность потенциалов равна U. После изменения частоты света задерживающая разность потенциалов увеличилась на Delta U=1,2В. На какую величину изменилась частота падающего света? (Ответ дать в 1014 Гц, округлив до десятых. Элементарный заряд  — 1,6·10−19 Кл, постоянная Планка  — 6,6·10−34 Дж·с.)


Фотоэффект наблюдают, освещая поверхность металла светом с частотой nu. При этом задерживающая разность потенциалов равна U. Частота света увеличилась на Delta nu =2 умножить на 10 в степени левая круглая скобка 14 правая круглая скобка Гц. Каково изменение задерживающей разности потенциалов? (Ответ выразите в вольтах, округлив до сотых.) Заряд электрона принять равным 1,6·10−19 Кл, а постоянную Планка  — 6,6·10−34 Дж·с.


Фотоэффект наблюдают, освещая поверхность металла светом с частотой nu . При этом задерживающая разность потенциалов равна U. Частота света увеличилась на Delta nu = 3 умножить на 10 в степени левая круглая скобка 14 правая круглая скобка Гц. Каково изменение задерживающей разности потенциалов? (Ответ выразите в вольтах и округлите с точностью до десятых.) Заряд электрона принять равным 1,6·10−19 Кл, а постоянную Планка  — 6,6·10−34 Дж·с.


Фотоэффект наблюдают, освещая поверхность металла светом с частотой nu . При этом задерживающая разность потенциалов равна U. Частота света увеличилась на Delta nu = 1,5 умножить на 10 в степени левая круглая скобка 14 правая круглая скобка Гц. Каково изменение задерживающей разности потенциалов? (Ответ выразите в вольтах и округлите с точностью до сотых.) Заряд электрона принять равным 1,6·10−19 Кл, а постоянную Планка  — 6,6·10−34 Дж·с.


Фотоэффект наблюдают, освещая поверхность металла светом с частотой nu . При этом задерживающая разность потенциалов равна U. Частота света увеличилась на Delta nu = 2,5 умножить на 10 в степени левая круглая скобка 14 правая круглая скобка Гц. Каково изменение задерживающей разности потенциалов? (Ответ выразите в вольтах и округлите с точностью до сотых.) Заряд электрона принять равным 1,6·10−19 Кл, а постоянную Планка  — 6,6·10−34 Дж·с.


Фотоэффект наблюдают, освещая поверхность металла светом с частотой nu . При этом задерживающая разность потенциалов равна U. После изменения частоты света задерживающая разность потенциалов увеличилась на Delta U = 1,5В. Каково изменение частоты падающего света? (Ответ дать в 1014 Гц, округлив до десятых. Заряд электрона принять равным 1,6·10−19 Кл, а постоянную Планка  — 6,6·10−34 Дж·с.)


Фотоэффект наблюдают, освещая поверхность металла светом с частотой nu . При этом задерживающая разность потенциалов равна U. После изменения частоты света задерживающая разность потенциалов увеличилась на Delta U = 0,9В. Каково изменение частоты падающего света? (Ответ дайте в 1014 Гц, округлив до десятых.) Заряд электрона принять равным 1,6·10−19 Кл, а постоянную Планка  — 6,6·10−34 Дж·с.


Фотоэффект наблюдают, освещая поверхность металла светом с частотой nu . При этом задерживающая разность потенциалов равна U. После изменения частоты света задерживающая разность потенциалов увеличилась на Delta U = 0,6В. Каково изменение частоты падающего света? (Ответ дайте в 1014 Гц, округлив до десятых.) Заряд электрона принять равным 1,6·10−19 Кл, а постоянную Планка  — 6,6·10−34 Дж·с.


Фотоэффект наблюдают, освещая поверхность металла светом с частотой nu. При этом задерживающая разность потенциалов равна U. После изменения частоты света задерживающая разность потенциалов увеличилась на Delta U = 1,3В. Каково изменение частоты падающего света? (Ответ дайте в 1014 Гц, округлив до десятых.) Заряд электрона принять равным 1,6·10−19 Кл, а постоянную Планка  — 6,6·10−34 Дж·с.


Металлическую пластину освещали монохроматическим светом с длиной волны lambda =500 нм. Что произойдет с частотой падающего света, импульсом фотонов и кинетической энергией вылетающих электронов при освещении этой пластины монохроматическим светом с длиной волны lambda =700 нм одинаковой интенсивности? Фотоэффект наблюдается в обоих случаях.

Для каждой величины определите соответствующий характер изменения:

1)  увеличилась;

2)  уменьшилась;

3)  не изменилась.

Запишите в таблицу выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.

Частота падающего света Импульс фотонов Кинетическая энергия фотоэлектронов

При освещении металлической пластины светом наблюдается фотоэффект. Частоту света nu плавно изменяют. Установите соответствие между графиками и физическими величинами, зависимости которых от частоты падающего света эти графики могут представлять. К каждой позиции первого столбца подберите соответствующую позицию второго и запишите в таблицу выбранные цифры под соответствующими буквами.

ГРАФИКИ

А)  

Б)  

ФИЗИЧЕСКИЕ ВЕЛИЧИНЫ

1)  работа выхода фотоэлектрона из металла

2)  максимальный импульс фотоэлектронов

3)  энергия падающего на металл фотона

4)  максимальная кинетическая энергия фотоэлектронов


В опыте по изучению фотоэффекта одну из пластин плоского конденсатора облучают светом с энергией фотона 6 эВ. Напряжение между пластинами изменяют с помощью реостата, силу фототока в цепи измеряют амперметром. На графике приведена зависимость фототока I от напряжения U между пластинами. Какова работа выхода электрона с поверхности металла, из которого сделаны пластины конденсатора? (Ответ дать в электрон-вольтах.)


Для наблюдения фотоэффекта поверхность некоторого металла облучают светом, частота которого равна  nu. Затем частоту света увеличивают вдвое. Как изменятся следующие физические величины: длина волны падающего света, работа выхода электрона, максимальная кинетическая энергия вылетающих электронов?

Для каждой величины определите соответствующий характер изменения:

1)  увеличится;

2)  уменьшится;

3)  не изменится.

Запишите в таблицу выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться

Длина волны

падающего света

Работа выхода

электрона

Максимальная

кинетическая энергия
вылетающих электронов

Источник: Яндекс: Тренировочная работа ЕГЭ по физике. Вариант 2.

Всего: 228    1–20 | 21–40 | 41–60 | 61–80 …

в условии
в решении
в тексте к заданию
в атрибутах

Категория:

Атрибут:

Всего: 228    1–20 | 21–40 | 41–60 | 61–80 | 81–100 …

Добавить в вариант

В опыте по изучению фотоэффекта катод освещается жёлтым светом, в результате чего в цепи возникает ток (рисунок 1). Зависимость показаний амперметра I от напряжения U между анодом и катодом приведена на рисунке 2. Используя законы фотоэффекта и предполагая, что отношение числа фотоэлектронов к числу поглощённых фотонов не зависит от частоты света, объясните, как изменится представленная зависимость I(U), если освещать катод зелёным светом, оставив мощность поглощённого катодом света неизменной.

Источник: ЕГЭ 20.06.2016 по физике. Основная волна. Вариант 428. (Часть С)


Катод из ниобия облучают светом частотой nu=1,1 умножить на 10 в степени левая круглая скобка 15 правая круглая скобка Гц, соответствующей красной границе фотоэффекта для германия. При этом максимальная кинетическая энергия вылетевших фотоэлектронов в два раза меньше, чем работа выхода для ниобия. Найдите частоту красной границы фотоэффекта для ниобия.

Источник: ЕГЭ по физике 01.04.2019. Досрочная волна. Санкт-Петербург. Часть С




Задания Д32 C3 № 3044

Красная граница фотоэффекта для вещества фотокатода lambda_0=290нм. Фотокатод облучают светом с длиной волны lambda=220нм. При каком напряжении между анодом и катодом фототок прекращается?


Задания Д32 C3 № 3055

Фотокатод облучают светом с длиной волны 300 нм. Красная граница фотоэффекта фотокатода 450 нм. Вычислите запирающее напряжение U  между анодом и катодом.


Задания Д32 C3 № 3083

В двух опытах по фотоэффекту металлическая пластинка облучалась светом с длинами волн соответственно lambda _1=350 нм и lambda _2=540 нм. В этих опытах максимальные скорости фотоэлектронов отличались в  дробь: числитель: v _1, знаменатель: v _2 конец дроби =2 раза. Какова работа выхода с поверхности металла?


Установите соответствие между определением физического явления и названием явления, к которому оно относится.

К каждому элементу первого столбца подберите соответствующий элемент из второго и внесите в строку ответов выбранные цифры под соответствующими буквами

ФИЗИЧЕСКОЕ ЯВЛЕНИЕ

А)  Сложение в пространстве волн, при котором наблюдается устойчивая во времени картина усиления или ослабления результирующих световых колебаний в разных точках пространства.

Б)  Явление вырывания электронов из вещества под действием света.

НАЗВАНИЕ ЯВЛЕНИЯ

1)  Дифракция

2)  Интерференция

3)  Фотоэффект

4)  Поляризация


Установите соответствие между физическими явлениями и приборами, в которых используются или наблюдаются эти явления. К каждой позиции первого столбца подберите соответствующую позицию второго и запишите в таблицу выбранные цифры под соответствующими буквами.

ФИЗИЧЕСКИЕ ЯВЛЕНИЯ

А)  ионизация газа

Б)  фотоэффект

ПРИБОРЫ

1)  вакуумный фотоэлемент

2)  дифракционная решетка

3)  счетчик Гейгера

4)  стеклянная призма


Установите соответствие между физическими величинами и уравнениями, в которых они используются.

УРАВНЕНИЯ, В КОТОРЫХ ОНИ ИСПОЛЬЗУЮТСЯ

1)  уравнение теплового баланса

2)  уравнение движения

3)  уравнение Менделеева — Клапейрона

4)  уравнение Эйнштейна для фотоэффекта


При освещении металлической пластины светом наблюдается фотоэффект. Длину волны света lambda плавно изменяют. Установите соответствие между графиками и физическими величинами, зависимости которых от длины волны падающего света эти графики могут представлять. К каждой позиции первого столбца подберите соответствующую позицию второго и запишите в таблицу выбранные цифры под соответствующими буквами.

ГРАФИКИ

А)  

Б)  

ФИЗИЧЕСКИЕ ВЕЛИЧИНЫ

1)  работа выхода фотоэлектрона из металла

2)  импульс падающего на металл фотона

3)  сила фототока

4)  максимальная кинетическая энергия фотоэлектронов


Металлический фотокатод освещён светом длиной волны λ  =  0,42 мкм. Максимальная скорость фотоэлектронов, вылетающих с поверхности фотокатода,  v =580км/с. Какова длина волны красной границы фотоэффекта для этого металла? (Ответ приведите в микрометрах с точностью до сотых. Постоянную Планка примите равной 6,6·10–34 Дж · с.)

Источник: ЕГЭ по физике 05.05.2014. Досрочная волна. Вариант 2.


Уровни энергии электрона в атоме водорода задаются формулой En  =  −13,6/n2 эВ, где n = 1, 2, 3, …. При переходе атома из состояния Е2 в состояние Е1 атом испускает фотон. Попав на поверхность фотокатода, фотон выбивает фотоэлектрон. Длина волны света, соответствующая красной границе фотоэффекта для материала поверхности фотокатода, λкр = 300 нм. Чему равен максимально возможный импульс фотоэлектрона? (Ответ дать в 10–24 кг·м/с, округлив до десятых.) Постоянную Планка принять равной 6,6·10−34 Дж·с, а скорость света  — 3·108 м/с.


На металлическую пластинку направили пучок света от лазера, вызвав фотоэффект. Интенсивность лазерного излучения плавно увеличивают, не меняя его частоты. Как меняются в результате этого число вылетающих в единицу времени фотоэлектронов и их максимальная кинетическая энергия?

Для каждой величины определите соответствующий характер изменения:

1) увеличится

2) уменьшится

3) не изменится

Запишите в ответ выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.

Число фотоэлектронов, вылетающих

в единицу времени

Максимальная кинетическая энергия

фотоэлектронов

Источник: Демонстрационная версия ЕГЭ—2016 по физике.


Чему равна длина волны красной границы фотоэффекта для цезия? Работа выхода для цезия Aвых = 0,29 · 10–18 Дж. Ответ дайте в нанометрах и округлите до целого числа. (Постоянную Планка примите равной 6,6 умножить на 10 в степени левая круглая скобка минус 34 правая круглая скобка Дж умножить на с.)


Максимальная кинетическая энергия фотоэлектронов, вылетающих из металлической пластинки под действием света, равна 2 эВ. Длина волны падающего монохроматического света составляет  дробь: числитель: 2, знаменатель: 3 конец дроби длины волны, соответствующей «красной границе» фотоэффекта для этого металла. Какова работа выхода электронов? Ответ приведите в электрон-вольтах.

Источник: ЕГЭ по физике 2020. Досрочная волна. Вариант 1


На металлическую пластинку падает монохроматический свет с длиной волны λ = 400 нм. «Красная граница» фотоэффекта для металла пластинки λкр = 600 нм. Чему равно отношение максимальной кинетической энергии фотоэлектронов к работе выхода для этого металла?

Источник: ЕГЭ по физике 2020. Досрочная волна. Вариант 2


Установите соответствие между физическими опытами и физическими явлениями, которые наблюдаются в этих опытах. К каждой позиции первого столбца подберите соответствующую позицию из второго столбца и запишите в таблицу выбранные цифры под соответствующими буквами.

ФИЗИЧЕСКИЙ ОПЫТ

А)  При освещении ярким светом металлической пластины конденсатора из неё вылетают электроны — это можно зарегистрировать, включив конденсатор в электрическую цепь.

Б)  Если поместить внутрь тщательно вакуумированной колбы лёгкую крыльчатку и направить на неё яркий свет, то крыльчатка будет вращаться.

ФИЗИЧЕСКОЕ ЯВЛЕНИЕ

1)  давление света

2)  преломление света

3)  фотоэффект

4)  интерференция света

Запишите в ответ цифры, расположив их в порядке, соответствующем буквам:


При исследовании зависимости кинетической энергии фотоэлектронов от длины волны падающего света фотоэлемент освещался через различные светофильтры. В первой серии опытов использовался светофильтр, пропускающий только красный свет, а во второй  — пропускающий только зелёный свет. В каждом опыте наблюдали явление фотоэффекта и измеряли запирающее напряжение. Как изменяются модуль запирающего напряжения и максимальная скорость фотоэлектронов при переходе от первой серии опытов ко второй? Для каждой величины определите соответствующий характер её изменения:

1)  увеличивается

2)  уменьшается

3)  не изменяется

Запишите в ответ цифры, расположив их в порядке, соответствующем буквам:

Модуль

запирающего

напряжения

Максимальная

скорость

фотоэлектронов

Источник: ЕГЭ по физике 2021. Досрочная волна. Вариант 1


В некоторых опытах по изучению фотоэффекта одну и ту же пластину освещают при различных частотах падающего света nu, пропорциональных частоте красной границы фотоэффекта nu_кр.

В таблице представлены результаты одного из первых таких опытов.

Частота падающего светаnu

2nu_кр

6nu_кр

Максимальная энергия выбитых электронов E_krm max

2 эВ

Какое значение максимальной энергии выбитых электронов должно быть на месте прочерка?

Источник: ЕГЭ по физике 2022. Досрочная волна. Вариант 1

Всего: 228    1–20 | 21–40 | 41–60 | 61–80 | 81–100 …

В сегодняшней статье нашей традиционной рубрики «физика» разбираем задачи на фотоэффект.

Подпишитесь на наш телеграм и не пропускайте важные новости. А на втором канале ищите скидки и приятные бонусы для клиентов.

Нужна помощь?

Доверь свою работу кандидату наук!

Задачи на фотоэффект с решениями

Прежде чем приступать к решению задач, напоминаем про памятку и формулы. Эти материалы пригодятся при решении задач по любой теме.

Задача на фотоны и фотоэффект №1

Условие

Найти энергию фотона ε (в Дж) для  электромагнитного излучения с частотой ϑ=100·1014Гц.

Решение

Это типичная задача на энергию фотона. Применим формулу:

ε=hcλ=hϑ

Здесь h — постоянная Планка. Произведем расчет:

ε=6,63·10-34·10·1014=6,63·10-18Дж

Ответ: ε=6,63·10-18 Дж.

Задача на фотоны и фотоэффект №2

Условие

При фиксированной частоте падающего света в опытах №1 и №2 получены вольтамперные характеристики фотоэффекта (см. рис.). Величины фототоков насыщения равны I1 и I2, соответственно. Найти отношение числа фотоэлектронов N1 к N2 в этих двух опытах.

Задача на фотоны и фотоэффект №2

I1=13,5 мкАI2=10,6 мкА

Решение

Вольтамперная характеристика фотоэффекта показывает зависимость тока от напряжения между электродами. При выходе тока на насыщение все фотоэлектроны, выбитые из фотокатода, попадают на анод. Таким образом, величина тока насыщения пропорциональна числу фотоэлектронов. Тогда:

N1N2=I1I2=13,510,6=1,27

Ответ: 1,27.

Задача на фотоны и фотоэффект №3

Условие

На поверхность металла падают монохроматические лучи с длиной волны 0,1 мкм. Красная  граница фотоэффекта 0,3 мкм. Какая доля энергии фотона расходуется на сообщение электрону кинетической энергии? 

Решение

Энергия падающего фотона равна:

ε=hcλ

Далее для решения задачи примененим уравнение Эйнштейна для фотоэффекта, которое можно записать в виде:

hcλ=hcλ0+Eк

Отсюда найдем кинетическую энергию:

Eк=hcλ-hcλ0=hcλ0-λλλ0

Чтобы найти искомую долю, разделим кинетическую энергию на энергию фотона:

W=Eкε=hcλ0-λλhc·λλ0=λ0-λλ0=3·10-7-10-73·10-7=0,667

Ответ: W=0,667.

Задача на фотоны и фотоэффект №4

Условие

Максимальная энергия фотоэлектронов, вылетающих из металла при его освещении лучами с длиной волны 325 нм, равна Tтax=2,3·10-19Дж. Определите работу выхода и красную границу фотоэффекта. 

Решение

Формула Эйнштейна для фотоэффекта имеет вид:

hϑ=hcλ=A+Tmax

Отсюда работа выхода A равна:

A=hcλ-Tmax

Красная граница фотоэффекта определяется условием Tmax=0, поэтому получаем:

A=hcλ0λ0=hcA

Найдем:

A=6,63·10-34·3·1083,25·10-7-2,3·10-9=3,81·10-19 Дж

λ0=6,63·10-34·3·1083,81·10-19=520 нм

Ответ: A=3,81·10-19Дж; λ0=520 нм.

Задача на фотоны и фотоэффект №5

Условие

Наибольшая длина волны света λ0, при которой еще может наблюдаться фотоэффект на сурьме, равна 310 нм. Найдите скорость электронов, выбитых из калия светом с длиной волны 140 нм. 

Решение

Красная граница фотоэффекта определяется условием Tmax=0, поэтому для работы выхода получаем:

A=hcλ0

Формула Эйнштейна для фотоэффекта имеет вид:

hcλ=A+Tmax

Учитывая, что Tmax=mv2max2, определим максимальную скорость электронов при фотоэффекте:

vmax=2hcm1λ-1λ0

Произведем вычисления:

vmax=2·6,63·10-349,1·10-3111,4·10-7-13,1·10-7=1,3·106 мс

Ответ: 1,3·106 мс.

Вопросы с ответами на тему «Фотоны и фотоэффект»

Вопрос 1. В чем суть фотоэффекта?

Ответ. Фотоэффект — это явление «выбивания» электронов из вещества под действием света (электромагнитного излучения).

Вопрос 2. Что такое ток насыщения?

Ответ. Ток насыщения при фотоэффекте — максимальное значение фототока.

Вопрос 3. Что такое красная граница фотоэффекта?

Ответ. Это минимальная частота или максимальная длина волны света излучения, при которой еще возможен внешний фотоэффект.

Вопрос 4. Что такое работа выхода?

Ответ. Это минимальная энергия, которую надо сообщить электрону, чтобы выбить его из металла.

Вопрос 5. Что такое квант?

Ответ. Неделимая порция какой-либо величины в физике.

Посмотри примеры работ и убедись, что мы поможем на совесть!

Нужна помощь в решении задач и выполнении других типов заданий? Обращайтесь в профессиональный сервис для учащихся по любому вопросу.

Физика, 11 класс

Урок 22. Фотоэффект

Перечень вопросов, рассматриваемых на уроке:

  • предмет и задачи квантовой физики;
  • гипотеза М. Планка о квантах;
  • опыты А.Г. Столетова;
  • определение фотоэффекта, кванта, тока насыщения, задерживающего напряжения, работы выхода, красной границы фотоэффекта;
  • уравнение Эйнштейна для фотоэффекта;
  • законы фотоэффекта.

Глоссарий по теме:

Квантовая физика — раздел теоретической физики, в котором изучаются квантово-механические и квантово-полевые системы и законы их движения.

Фотоэффект – это вырывание электронов из вещества под действием света.

Квант — (от лат. quantum — «сколько») — неделимая порция какой-либо величины в физике.

Ток насыщения — некоторое предельное значение силы фототока.

Задерживающее напряжение — минимальное обратное напряжение между анодом и катодом, при котором фототок равен нулю.

Работа выхода – это минимальная энергия, которую надо сообщить электрону, чтобы он покинул металл. которую нужно сообщить электрону, для того чтобы он мог преодолеть силы, удерживающие его внутри металла.

Красная граница фотоэффекта – это минимальная частота или максимальная длина волны света излучения, при которой еще возможен внешний фотоэффект.

Основная и дополнительная литература по теме урока:

1. Мякишев Г. Я., Буховцев Б. Б., Чаругин В. М. Физика. 11 класс. Учебник для общеобразовательных организаций М.: Просвещение, 2017. – С. 259 – 267.

2. Рымкевич А. П. Сборник задач по физике. 10-11 класс.- М.:Дрофа,2009. – С. 153 – 158.

3. Элементарный учебник физики. Учебное пособие в 3 т./под редакцией академика Ландсберга Г. С.: Т.3. Колебания и волны. Оптика. Атомная и ядерная физика. – 12-е изд. – М.: ФИЗМАТЛИТ, 2001. С. 422 – 429.

4. Тульчинский М. Е. Качественные задачи по физике в средней школе. Пособие для учителей. Изд. 4-е, переработ. и доп. М. «Просвещение», 1972. С. 157.

Теоретический материал для самостоятельного изучения

В начале 20-го века в физике произошла величайшая революция. Попытки объяснить наблюдаемые на опытах закономерности распределения энергии в спектрах теплового излучения оказались несостоятельными. Законы электромагнетизма Максвелла неожиданно «забастовали». Противоречия между опытом и практикой были разрешены немецким физиком Максом Планком.

Гипотеза Макса Планка: атомы испускают электромагнитную энергию не непрерывно, а отдельными порциями – квантами. Энергия Е каждой порции прямо пропорциональна частоте ν излучения света: E = hν.

Коэффициент пропорциональности получил название постоянной Планка, и она равна:

h = 6,63 ∙ 10-34 Дж∙с.

После открытия Планка начала развиваться самая современная и глубокая физическая теория – квантовая физика.

Квантовая физика — раздел теоретической физики, в котором изучаются квантово-механические и квантово-полевые системы и законы их движения.

Поведение всех микрочастиц подчиняется квантовым законам. Но впервые квантовые свойства материи были обнаружены именно при исследовании излучения и поглощения света.

В 1886 году немецкий физик Густав Людвиг Герц обнаружил явление электризации металлов при их освещении.

Явление вырывания электронов из вещества под действием света называется внешним фотоэлектрическим эффектом.

Законы фотоэффекта были установлены в 1888 году профессором московского университета Александром Григорьевичем Столетовым.

Схема установки для изучения законов фотоэффекта

Первый закон фотоэффекта: фототок насыщения — максимальное число фотоэлектронов, вырываемых из вещества за единицу времени, — прямо пропорционален интенсивности падающего излучения.

Зависимость силы тока от приложенного напряжения

Увеличение интенсивности света означает увеличение числа падающих фотонов, которые выбивают с поверхности металла больше электронов.

Второй закон фотоэффекта: максимальная кинетическая энергия фотоэлектронов не зависит от интенсивности падающего излучения и линейно возрастает с увеличением частоты падающего излучения.

Третий закон фотоэффекта: для каждого вещества существует граничная частота такая, что излучение меньшей частоты не вызывает фотоэффекта, какой бы ни была интенсивность падающего излучения. Эта минимальная частота излучения называется красной границей фотоэффекта.

min = Aв

где Ав – работа выхода электронов;

h – постоянная Планка;

νmin — частота излучения, соответствующая красной границе фотоэффекта;

с – скорость света;

λкр – длина волны, соответствующая красной границе.

Фотоэффект практически безынерционен: фототок возникает одновременно с освещением катода с точностью до одной миллиардной доли секунды.

Работа выхода – это минимальная энергия, которую надо сообщить электрону, чтобы он покинул металл.

Для большинства веществ фотоэффект возникает только под действием ультрафиолетового облучения. Однако некоторые металлы, например, литий, натрий и калий, испускают электроны и при облучении видимым светом.

Известно, что фототоком можно управлять, подавая на металлические пластины различные напряжения. Если на систему подать небольшое напряжение обратной полярности, «затрудняющее» вылет электронов, то ток уменьшится, так как фотоэлектронам, кроме работы выхода, придется совершать дополнительную работу против сил электрического поля.

Задерживающее напряжение — минимальное обратное напряжение между анодом и катодом, при котором фототок равен нулю.

Задерживающее напряжение

Максимальная кинетическая энергия электронов выражается через задерживающее напряжение:

где — максимальная кинетическая энергия электронов;

Е – заряд электрона;

– задерживающее напряжение.

Теорию фотоэффекта разработал Альберт Эйнштейн. На основе квантовых представлений Эйнштейн объяснил фотоэффект. Электрон внутри металла после поглощения одного фотона получает порцию энергии и стремится вылететь за пределы кристаллической решетки, т.е. покинуть поверхность твердого тела. При этом часть полученной энергии он израсходует на совершение работы по преодолению сил, удерживающих его внутри вещества. Остаток энергии будет равен кинетической энергии:

В 1921 году Альберт Эйнштейн стал обладателем Нобелевской премии, которая, согласно официальной формулировке, была вручена «за заслуги перед теоретической физикой и особенно за открытие закона фотоэлектрического эффекта».

Если фотоэффект сопровождается вылетом электронов с поверхности вещества, то его называют внешним фотоэффектом или фотоэлектронной эмиссией, а вылетающие электроны — фотоэлектронами. Если фотоэффект не сопровождается вылетом электронов с поверхности вещества, то его называют внутренним.

Примеры и разбор решения заданий

1. Монохроматический свет с длиной волны λ падает на поверхность металла, вызывая фотоэффект. Фотоэлектроны тормозятся электрическим полем. Как изменятся работа выхода электронов с поверхности металла и запирающее напряжение, если уменьшить длину волны падающего света?

Для каждой величины определите соответствующий характер изменения:

1) увеличится

2) уменьшится

3) не изменится

Запишите в таблицу выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.

Работа выхода

Запирающее напряжение

Решение:

Работа выхода — это характеристика металла, следовательно, работа выхода не изменится при изменении длины волны падающего света.

Запирающее напряжение — это такое минимальное напряжение, при котором фотоэлектроны перестают вылетать из металла. Оно определяется из уравнения:

Следовательно, при уменьшении длины волны падающего света, запирающее напряжение увеличивается.

Ответ:

Работа выхода

Запирающее напряжение

не изменится

увеличится

2. Красная граница фотоэффекта для вещества фотокатода λ0 = 290 нм. При облучении катода светом с длиной волны λ фототок прекращается при напряжении между анодом и катодом U = 1,5 В. Определите длину волны λ.

Решение.

Запишем уравнение для фотоэффекта через длину волны:

Условие связи красной границы фотоэффекта и работы выхода:

Запишем выражение для запирающего напряжения – условие равенства максимальной кинетической энергии электрона и изменения его потенциальной энергии при перемещении в электростатическом поле:

Решая систему уравнений (1), (2), (3), получаем формулу для вычисления длины волны λ:

Подставляя численные значения, получаем: λ ≈ 215 нм.

Ответ: λ ≈ 215 нм.

Фотоэффект

  • Темы кодификатора ЕГЭ: гипотеза М.Планка о квантах, фотоэффект, опыты А.Г.Столетова, уравнение Эйнштейна для фотоэффекта.

  • Опыты Столетова

  • Зависимость фототока от напряжения

  • Законы фотоэффекта

  • Трудности классического объяснения фотоэффекта

  • Гипотеза Планка о квантах

  • Уравнение Эйнштейна для фотоэффекта

Автор статьи — профессиональный репетитор, автор учебных пособий для подготовки к ЕГЭ Игорь Вячеславович Яковлев

Темы кодификатора ЕГЭ: гипотеза М.Планка о квантах, фотоэффект, опыты А.Г.Столетова, уравнение Эйнштейна для фотоэффекта.

Фотоэффект — это выбивание электронов из вещества падающим светом. Явление фотоэффекта было открыто Генрихом Герцем в 1887 году в ходе его знаменитых экспериментов по излучению электромагнитных волн.
Напомним, что Герц использовал специальный разрядник (вибратор Герца) — разрезанный пополам стержень с парой металлических шариков на концах разреза. На стержень подавалось высокое напряжение, и в промежутке между шариками проскакивала искра. Так вот, Герц обнаружил, что при облучении отрицательно заряженного шарика ультрафиолетовым светом проскакивание искры облегчалось.

Герц, однако, был поглощён исследованием электромагнитных волн и не принял данный факт во внимание. Год спустя фотоэффект был независимо открыт русским физиком Александром Григорьевичем Столетовым. Тщательные экспериментальные исследования, проведённые Столетовым в течение двух лет, позволили сформулировать основные законы фотоэффекта.

к оглавлению ▴

Опыты Столетова

В своих знаменитых экспериментах Столетов использовал фотоэлемент собственной конструкции (Фотоэлементом называется любое устройство, позволяющее наблюдать фотоэффект). Его схема изображена на рис. 1.

Рис. 1. Фотоэлемент Столетова

В стеклянную колбу, из которой выкачан воздух (чтобы не мешать лететь электронам), введены два электрода: цинковый катод K и анод A. На катод и анод подаётся напряжение, величину U которого можно менять с помощью потенциометра и измерять вольтметром V.

Сейчас на катод подан «минус», а на анод — «плюс», но можно сделать и наоборот (и эта перемена знака — существенная часть опытов Столетова). Напряжению на электродах приписывается тот знак, который подан на анод (Поэтому поданное на электроды напряжение U часто называют анодным напряжением). В данном случае, например, напряжение U положительно.

Катод освещается ультрафиолетовыми лучами УФ через специальное кварцевое окошко, сделанное в колбе (стекло поглощает ультрафиолет, а кварц пропускает). Ультрафиолетовое излучение выбивает с катода электроны e, которые разгоняются напряжением U и летят на анод. Включённый в цепь миллиамперметр mA регистрирует электрический ток. Этот ток называется фототоком, а выбитые электроны, его создающие, называются фотоэлектронами.

В опытах Столетова можно независимо варьировать три величины: анодное напряжение, интенсивность света и его частоту.

к оглавлению ▴

Зависимость фототока от напряжения

Меняя величину и знак анодного напряжения, можно проследить, как меняется фототок. График этой зависимости, называемый характеристикой фотоэлемента, представлен на рис. 2.

Рис. 2. Характеристика фотоэлемента

Давайте обсудим ход полученной кривой. Прежде всего заметим, что электроны вылетают из катода с различными скоростями и в разных направлениях; максимальную скорость, которую имеют фотоэлектроны в условиях опыта, обозначим v.

Если напряжение U отрицательно и велико по модулю, то фототок отсутствует. Это легко понять: электрическое поле, действующее на электроны со стороны катода и анода, является тормозящим (на катоде «плюс», на аноде «минус») и обладает столь большой величиной, что электроны не в состоянии долететь до анода. Начального запаса кинетической энергии не хватает — электроны теряют свою скорость на подступах к аноду и разворачиваются обратно на катод. Максимальная кинетическая энергия вылетевших электронов оказывается меньше, чем модуль работы поля при перемещении электрона с катода на анод:

frac{displaystyle mv^2}{displaystyle 2 vphantom{1^a}} < eU.

Здесь m = 9,1 cdot 10^{-31}  кг — масса электрона, e = -1,6 cdot 10^{-19}  Кл — его заряд.

Будем постепенно увеличивать напряжение, т.е. двигаться слева направо вдоль оси U из далёких отрицательных значений.

Поначалу тока по-прежнему нет, но точка разворота электронов становится всё ближе к аноду. Наконец, при достижении напряжения U_3, которое называется задерживающим напряжением, электроны разворачиваются назад в момент достижения анода (иначе говоря, электроны прибывают на анод с нулевой скоростью). Имеем:

frac{displaystyle mv^2}{displaystyle 2 vphantom{1^a}} < eU_3. (1)

Таким образом, величина задерживающего напряжения позволяет определить максимальную кинетическую энергию фотоэлектронов.

При небольшом превышении задерживающего напряжения появляется слабый фототок. Его формируют электроны, вылетевшие с максимальной кинетической энергией почти точно вдоль оси колбы (т.е. почти перпендикулярно катоду): теперь электронам хватает этой энергии, чтобы добраться до анода с ненулевой скоростью и замкнуть цепь. Остальные электроны, которые имеют меньшие скорости или полетели в сторону от анода, на анод не попадают.

При повышении напряжения фототок увеличивается. Анода достигает большее количество электронов, вылетающих из катода под всё большими углами к оси колбы. Обратите внимание, что фототок присутствует при нулевом напряжении!

Когда напряжение выходит в область положительных значений, фототок продолжает возрастать. Оно и понятно: электрическое поле теперь разгоняет электроны, поэтому всё большее их число получают шанс оказаться на аноде. Однако достигают анода пока ещё не все фотоэлектроны. Например, электрон, вылетевший с максимальной скоростью перпендикулярно оси колбы (т.е. вдоль катода), хоть и развернётся полем в нужном направлении, но не настолько сильно, чтобы попасть на анод.

Наконец, при достаточно больших положительных значениях напряжения ток достигает своей предельной величины I_H, называемой током насыщения, и дальше возрастать перестаёт.

Почему? Дело в том, что напряжение, ускоряющее электроны, становится настолько велико, что анод захватывает вообще все электроны, выбитые из катода — в каком бы направлении и с какими бы скоростями они не начинали движение. Стало быть, дальнейших возможностей увеличиваться у фототока попросту нет — ресурс, так сказать, исчерпан.

к оглавлению ▴

Законы фотоэффекта

Величина I_H тока насыщения — это, по существу, количество электронов, выбиваемых из катода за одну секунду. Будем менять интенсивность света, не трогая частоту. Опыт показывает, что ток насыщения меняется пропорционально интенсивности света.

Первый закон фотоэффекта. Число электронов, выбиваемых из катода за секунду, пропорционально интенсивности падающего на катод излучения (при его неизменной частоте).

Ничего неожиданного в этом нет: чем больше энергии несёт излучение, тем ощутимее наблюдаемый результат. Загадки начинаются дальше.

А именно, будем изучать зависимость максимальной кинетической энергии фотоэлектронов от частоты и интенсивности падающего света. Сделать это несложно: ведь в силу формулы (1) нахождение максимальной кинетической энергии выбитых электронов фактически сводится к измерению задерживающего напряжения.

Сначала меняем частоту излучения nu при фиксированной интенсивности. Получается такой график (рис. 3):

Рис. 3. Зависимость энергии фотоэлектронов от частоты света

Как видим, существует некоторая частота nu_0, называемая красной границей фотоэффекта, разделяющая две принципиально разные области графика. Если nu < nu_0, то фотоэффекта нет.

Если же nu > nu_0, то максимальная кинетическая энергия фотоэлектронов линейно растёт с частотой.

Теперь, наоборот, фиксируем частоту и меняем интенсивность света. Если при этом nu < nu_0, то фотоэффект не возникает, какова бы ни была интенсивность! Не менее удивительный факт обнаруживается и при nu > nu_0: максимальная кинетическая энергия фотоэлектронов от интенсивности света не зависит.

Все эти факты нашли отражение во втором и третьем законах фотоэффекта.

Второй закон фотоэффекта. Максимальная кинетическая энергия фотоэлектронов линейно возрастает с частотой света и не зависит от его интенсивности.

Третий закон фотоэффекта. Для каждого вещества существует красная граница фотоэффекта — наименьшая частота света nu_0, при которой фотоэффект ещё возможен. При nu < nu_0 фотоэффект не наблюдается ни при какой интенсивности света.

к оглавлению ▴

Трудности классического объяснения фотоэффекта

Как можно было бы объяснить фотоэффект с точки зрения классической электродинамики и волновых представлений о свете?

Известно, что для вырывания электрона из вещества требуется сообщить ему некоторую энергию A, называемую работой выхода электрона. В случае свободного электрона в металле это работа по преодолению поля положительных ионов кристаллической решётки, удерживающего электрон на границе металла. В случае электрона, находящегося в атоме, работа выхода есть работа по разрыву связи электрона с ядром.

В переменном электрическом поле световой волны электрон начинает совершать колебания.

И если энергия колебаний превысит работу выхода, то электрон будет вырван из вещества.

Однако в рамках таких представлений невозможно понять второй и третий законы фотоэффекта. Действительно, почему кинетическая энергия выбитых электронов не зависит от интенсивности излучения? Ведь чем больше интенсивность, тем больше напряжённость электрического поля в электромагнитной волне, тем больше сила, действующая на электрон, тем больше энергия его колебаний и с тем большей кинетической энергией электрон вылетит из катода. Логично? Логично. Но эксперимент показывает иное.

Далее, откуда берётся красная граница фотоэффекта? Чем «провинились» низкие частоты? Казалось бы, с ростом интенсивности света растёт и сила, действующая на электроны; поэтому даже при низкой частоте света электрон рано или поздно будет вырван из вещества — когда интенсивность достигнет достаточно большого значения. Однако красная граница ставит жёсткий запрет на вылет электронов при низких частотах падающего излучения.

Кроме того, неясна безынерционность фотоэффекта. Именно, при освещении катода излучением сколь угодно слабой интенсивности (с частотой выше красной границы) фотоэффект начинается мгновенно — в момент включения освещения. Между тем, казалось бы, электронам требуется некоторое время для «расшатывания» связей, удерживающих их в веществе, и это время «раскачки» должно быть тем больше, чем слабее падающий свет. Аналогия такая: чем слабее вы толкаете качели, тем дольше придётся их раскачивать до заданной амплитуды.

Выглядит опять-таки логично, но опыт — единственный критерий истины в физике! — этим доводам противоречит.

Так на рубеже XIX и XX столетий в физике возникла тупиковая ситуация: электродинамика, предсказавшая существование электромагнитных волн и великолепно работающая в диапазоне радиоволн, отказалась объяснять явление фотоэффекта.

Выход из этого тупика был найден Альбертом Эйнштейном в 1905 году. Он нашёл простое уравнение, описывающее фотоэффект. Все три закона фотоэффекта оказались следствиями уравнения Эйнштейна.

Главная заслуга Эйнштейна состояла в отказе от попыток истолковать фотоэффект с позиций классической электродинамики. Эйнштейн привлёк к делу смелую гипотезу о квантах, высказанную Максом Планком пятью годами ранее.

к оглавлению ▴

Гипотеза Планка о квантах

Классическая электродинамика отказалась работать не только в области фотоэффекта. Она также дала серьёзный сбой, когда её попытались использовать для описания излучения нагретого тела (так называемого теплового излучения).

Суть проблемы состояла в том, что простая и естественная электродинамическая модель теплового излучения приводила к бессмысленному выводу: любое нагретое тело, непрерывно излучая, должно постепенно потерять всю свою энергию и остыть до абсолютного нуля. Как мы прекрасно знаем, ничего подобного не наблюдается.

В ходе решения этой проблемы Макс Планк высказал свою знаменитую гипотезу.

Гипотеза о квантах. Электромагнитная энергия излучается и поглощается не непрерывно, а отдельными неделимыми порциями — квантами. Энергия кванта пропорциональна частоте излучения:

E = h nu. (2)

Cоотношение (2) называется формулой Планка, а коэффициент пропорциональности hпостоянной Планка.

Принятие этой гипотезы позволило Планку построить теорию теплового излучения, прекрасно согласующуюся с экспериментом. Располагая известными из опыта спектрами теплового излучения, Планк вычислил значение своей постоянной:

h = 6,63 cdot 10^{-34} Дж·с. (3)

Успешность гипотезы Планка наводила на мысль, что законы классической физики неприменимы к малым частицам вроде атомов или электронов, а также к явлениям взаимодействия света и вещества. Подтверждением данной мысли как раз и послужило явление фотоэффекта.

к оглавлению ▴

Уравнение Эйнштейна для фотоэффекта

Гипотеза Планка говорила о дискретности излучения и поглощения электромагнитных волн, то есть о прерывистом характере взаимодействия света с веществом. При этом Планк считал, что распространение света — это непрерывный процесс, происходящий в полном соответствии с законами классической электродинамики.

Эйнштейн пошёл ещё дальше: он предположил, что свет в принципе обладает прерывистой структурой: не только излучение и поглощение, но также и распространение света происходит отдельными порциями — квантами, обладающими энергией E = h nu.

Планк рассматривал свою гипотезу лишь как математический трюк и не решился опровергнуть электродинамику применительно к микромиру. Физической реальностью кванты стали благодаря Эйнштейну.

Кванты электромагнитного излучения (в частности, кванты света) стали впоследствии называться фотонами. Таким образом, свет состоит из особых частиц — фотонов, движущихся в вакууме со скоростью c.

Каждый фотон монохроматического света, имеющего частоту nu, несёт энергию h nu.

Фотоны могут обмениваться энергией и импульсом с частицами вещества (об импульсе фотона речь пойдёт в следующем листке); в таком случае мы говорим о столкновении фотона и частицы. В частности, происходит столкновение фотонов с электронами металла катода.

Поглощение света — это поглощение фотонов, то есть неупругое столкновение фотонов с частицами (атомами, электронами). Поглощаясь при столкновении с электроном, фотон передаёт ему свою энергию. В результате электрон получает кинетическую энергию мгновенно, а не постепенно, и именно этим объясняется безынерционность фотоэффекта.

Уравнение Эйнштейна для фотоэффекта есть не что иное, как закон сохранения энергии. На что идёт энергия фотона h? при его неупругом столкновении с электроном? Она расходуется на совершение работы выхода A по извлечению электрона из вещества и на придание электрону кинетической энергии mv^2/2:

h nu = A + frac{displaystyle mv^2}{displaystyle 2 vphantom{1^a}}. (4)

Слагаемое mv^2/2 оказывается максимальной кинетической энергией фотоэлектронов. Почему максимальной? Этот вопрос требует небольшого пояснения.

Электроны в металле могут быть свободными и связанными. Свободные электроны «гуляют» по всему металлу, связанные электроны «сидят» внутри своих атомов. Кроме того, электрон может находиться как вблизи поверхности металла, так и в его глубине.

Ясно, что максимальная кинетическая энергия фотоэлектрона получится в том случае, когда фотон попадёт на свободный электрон в поверхностном слое металла — тогда для выбивания электрона достаточно одной лишь работы выхода.

Во всех других случаях придётся затрачивать дополнительную энергию — на вырывание связанного электрона из атома или на «протаскивание» глубинного электрона к поверхности.

Эти лишние затраты приведут к тому, что кинетическая энергия вылетевшего электрона окажется меньше.

Замечательное по простоте и физической ясности уравнение (4) содержит в себе всю теорию фотоэффекта. Давайте посмотрим, какое объяснение получают законы фотоэффекта с точки зрения уравнения Эйнштейна.

1. Число выбиваемых электронов пропорционально числу поглощённых фотонов. С увеличением интенсивности света количество фотонов, падающих на катод за секунду, возрастает.

Стало быть, пропорционально возрастает число поглощённых фотонов и, соответственно, число выбитых за секунду электронов.

2. Выразим из формулы (4) кинетическую энергию:

frac{displaystyle mv^2}{displaystyle 2 vphantom{1^a}} = h nu - A.

Действительно, кинетическая энергия выбитых электронов линейно растёт с частотой и не зависит от интенсивности света.

Зависимость кинетической энергии от частоты имеет вид уравнения прямой, проходящей через точку (A/h,0). Этим полностью объясняется ход графика на рис. 3.

3. Для того, чтобы начался фотоэффект, энергии фотона должно хватить как минимум на совершение работы выхода: h nu geqslant A. Наименьшая частота nu_0, определяемая равенством

h nu_0 = A,

как раз и будет красной границей фотоэффекта. Как видим, красная граница фотоэффекта nu_0 = A/h определяется только работой выхода, т.е. зависит лишь от вещества облучаемой поверхности катода.

Если nu < nu_0, то фотоэффекта не будет — сколько бы фотонов за секунду не падало на катод. Следовательно, интенсивность света роли не играет; главное — хватает ли отдельному фотону энергии, чтобы выбить электрон.

Уравнение Эйнштейна (4) даёт возможность экспериментального нахождения постоянной Планка. Для этого надо предварительно определить частоту излучения и работу выхода материала катода, а также измерить кинетическую энергию фотоэлектронов.

В ходе таких опытов было получено значение h, в точности совпадающее с (3). Такое совпадение результатов двух независимых экспериментов — на основе спектров теплового излучения и уравнения Эйнштейна для фотоэффекта — означало, что обнаружены совершенно новые «правила игры», по которым происходит взаимодействие света и вещества. В этой области классическая физика в лице механики Ньютона и электродинамики Максвелла уступает место квантовой физике — теории микромира, построение которой продолжается и сегодня.

Это была необходимая теория. Разберем задачи ЕГЭ по теме «Фотоэффект».

Задача 1. Поток фотонов с энергией 10 эВ выбивает из металла электроны. Какова максимальная кинетическая энергия электронов, если работа выхода электронов с поверхности данного металла равна 6 эВ?

Решение:

Eф = Авых + Ек.

Eк = Eф — Авых = 10 – 6 = 4 эВ.

Ответ: 4.

Задача 2. Когда на металлическую пластину падает электромагнитное излучение с длиной волны lambda, максимальная кинетическая энергия фотоэлектронов равна 4,5 эВ. Если длина волны падающего излучения равна 2lambda,то максимальная кинетическая энергия фотоэлектронов равна 1 эВ. Чему равна работа выхода электронов из металла?

Решение:

Запишем уравнение фотоэффекта для двух случаев:

Домножим второе уравнение на 2 и вычтем из первого уравнения второе:


_________________________________

Ответ: 2,5.

Задача 3. Красная граница фотоэффекта исследуемого металла соответствует длине волны lambda _{kp}=600 нм. Какова длина волны света, выбивающего из него фотоэлектроны, максимальная кинетическая энергия которых в 2 раза меньше работы выхода?

Решение:

По условию задачи,

Подставим это в уравнение фотоэффекта:

Ответ: 400.

Задача 4. Фотоны с энергией 2,1 эВ вызывают фотоэффект с поверхности цезия, для которого работа выхода равна 1,9 эВ. На сколько нужно уменьшить энергию фотона, чтобы максимальная кинетическая энергия фотоэлектронов уменьшилась в 2 раза?

Решение:

Запишем два уравнения фотоэффекта для двух случаев и учтём, что по условию задачи

Тогда получаем:

Из первого уравнения получаем, что

Тогда из второго уравнения получаем, что

Значит энергию падающих фотонов нужно уменьшить на

Ответ: 0,1.

Задача 5. Работа выхода электронов из металла равна 1,6cdot 10^{-19} Дж. Задерживающая разность потенциалов для фотоэлектронов, вылетевших с поверхности этого металла под действием излучения с некоторой длиной волны lambda, равна 3 В. Чему будет равна задерживающая разность потенциалов для фотоэлектронов в случае длины волны излучения 2lambda?

Решение:

Переведём работу выхода в электронвольты:

Теперь из уравнения фотоэффекта найдём энергию фотонов в первом случае:

Если длину волны увеличить в 2 раза, то энергия фотона уменьшится тоже в 2 раза, так как энергия фотона обратно пропорциональна длине волны. Тогда во втором случае энергия фотона будет равна:

Тогда:

Ответ: 1.

Спасибо за то, что пользуйтесь нашими материалами.
Информация на странице «Фотоэффект» подготовлена нашими авторами специально, чтобы помочь вам в освоении предмета и подготовке к ЕГЭ и ОГЭ.
Чтобы успешно сдать необходимые и поступить в ВУЗ или колледж нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими материалами из разделов нашего сайта.

Публикация обновлена:
09.03.2023

Слайд 1

ФОТОЭФФЕКТ решение задач части 2 © ГБОУ СОШ № 591 Невского района Санкт-Петербурга Учитель: Григорьева Л.Н.

Слайд 3

Задача (М, Б. Демидова, В. А. Грибов, А. И. Гиголо ; 1000 задач с ответами и решениями. Физика., М., «Экзамен», 2020) № 17, стр. 222 Металлическую пластину освещают монохроматическим светом с длиной волны Каков максимальный импульс фотоэлектронов, если работа выхода электронов из данного металла Дж?

Слайд 4

Дано: м Дж Дж · с кг Решение 1) Максимальный импульс фотоэлектронов определяется их максимальной скоростью : 2) Запишем уравнение Эйнштейна для фотоэффекта: максимальная кинетическая энергия фотоэлектронов 3) Выразим скорость: 4 ) Максимальный импульс будет равен: справочные данные

Слайд 5

Подставим значения величин: Ответ:

Слайд 6

Задача (М, Б. Демидова, В. А. Грибов, А. И. Гиголо ; 1000 задач с ответами и решениями. Физика., М., «Экзамен», 2020) № 20, стр. 222 При увеличении в 2 раза частоты света, падающего на поверхность металла, запирающее напряжение для фотоэлектронов увеличилось в 3 раза. Первоначальная частота падающего света была равна Гц. Какова длина волны, соответствующая «красной границе» фотоэффекта для этого металла?

Слайд 7

Дано: м/с Решение Запишем уравнение для фотоэффекта: Кинетическая энергия фотоэлектронов определяет запирающее напряжение: При изменение частоты падающего света «красная граница» фотоэффекта ( ) не изменяется. Поэтому для ситуации в задаче можно записать: e

Слайд 8

Решим систему полученных уравнений: разделим первое уравнение на второе Подставим значения величин: м Ответ : м

Слайд 9

Задача (М, Б. Демидова, В. А. Грибов, А. И. Гиголо ; 1000 задач с ответами и решениями. Физика., М., «Экзамен», 2020) № 24, стр. 223 Фотокатод облучают светом с длиной волны . Красная граница фотоэффекта для вещества фотокатода . Какое напряжение нужно создать между анодом и катодом, чтобы фототок прекратился?

Слайд 10

Дано: Кл Решение U : , Подставим значения величин: Ответ:

Слайд 11

Задача (М, Б. Демидова, В. А. Грибов, А. И. Гиголо ; 1000 задач с ответами и решениями. Физика., М., «Экзамен», 2020) № 32 , стр. 225 При облучении металлической пластинки квантами света с энергией 3 эВ из нее выбиваются электроны, которые проходят ускоряющую разность потенциалов Какова работа выхода , если максимальная энергия ускоренных электронов равна удвоенной энергии фотонов, выбивающих их из металла?

Слайд 12

Дано: Дж Кл Решение: Энергия падающих квантов, полученная электроном: Пройдя ускоряющую разность потенциалов в электрическом поле между катодом и анодом, электрон приобретает энергию Эта энергия равна сумме кинетической энергии электрона, полученной от фотона и потенциальной энергии , приобретенной после прохождения ускоряющей разности потенциалов: = по условию =

Слайд 13

Составим систему уравнений и решим ее: = 4) Вычисления : Дж Ответ: Дж

Слайд 14

Задача (М, Б. Демидова, В. А. Грибов, А. И. Гиголо ; 1000 задач с ответами и решениями. Физика., М., «Экзамен», 2020) № 3 5 , стр. 226 Фотокатод с работой выхода Дж освещается светом. Вылетевшие из катода электроны попадают в однородное магнитное поле с индукцией Тл перпендикулярно линиям индукции этого поля и движутся по окружностям. Максимальный радиус такой окружности 2 см. какова частота падающего света?

Слайд 15

Дано: Тл м Дж ·с кг Кл Решение По уравнению фотоэффекта: Скорость электронов, вылетевших из катода: В магнитном поле на движущийся электрон действует сила Лоренца: По второму закону Ньютона: , Объединим выражения для силы Лоренца:

Слайд 16

Выразим скорость электрона : Приравняем выражения для скорости: Возведем в квадрат левую и правую части полученного уравнения: Решим уравнение относительно : + Гц Ответ: Гц

Слайд 17

Задача (М, Б. Демидова, В. А. Грибов, А. И. Гиголо ; 1000 задач с ответами и решениями. Физика., М., «Экзамен», 2020) № 42 , стр. 227 Для разгона космических аппаратов и коррекции их орбит предложено использовать солнечный парус – скрепленный с аппаратом легкий экран большой площади из тонкой пленки, которая зеркально отражает солнечный свет. Какой должна быть площадь паруса S , чтобы аппарат массой 500 кг (включая массу паруса) имел ускорение ? Мощность W солнечного излучения, падающего на 1 м² поверхности, перпендикулярной солнечным лучам, составляет 1370 Вт/м².

Слайд 18

Дано: Решение По второму закону Ньютона сила, действующая на солнечный парус: При зеркальном отражении фотонов солнечного света происходит изменение их импульса: и — изменение импульса фотона и энергия фотона соответственно 3) ,

Слайд 19

Объединяем полученные уравнения: , отсюда Подставим значения величин: Ответ:

Понравилась статья? Поделить с друзьями:
  • Внешний вид студента на экзамене
  • Внешний вид страны лицо страны должны быть предметом заботы государства егэ
  • Внешний вид на экзамене в школе
  • Внешний вид на экзамене в вузе
  • Внешний вид на егэ правила