Все формулы механики по физике для егэ с пояснениями

3 сентября 2022

В закладки

Обсудить

Жалоба

Все формулы по физике для ЕГЭ

В сборник включены все формулы базового курса школьной программы по физике.

Они полностью соответствуют кодификатору ЕГЭ — перечню всех теоретических фактов, которыми должен владеть выпускник школы, сдающий физику. Формулы, отмеченные звёздочками, рекомендуется запомнить и применять при решении задач. Но они не входят в кодификатор ЕГЭ. Поэтому при оформлении развёрнутого решения заданий второй части экзамена эти формулы необходимо вывести самостоятельно.

formuls.pdf

Основные формулы по физике: кинематика, динамика, статика

Итак, как говорится, от элементарного к сложному. Начнём с кинетических формул:

Формулы по механике

Также давайте вспомним движение по кругу:

Формулы по кинематике

Медленно, но уверенно мы перешли более сложной теме – к динамике:

Формулы по динамике

Уже после динамики можно перейти к статике, то есть к условиям равновесия тел относительно оси вращения:

Формулы по статике

После статики можно рассмотреть и гидростатику:

Формулы по гидростатике

Куда же без темы “Работа, энергия и мощность”. Именно по ней даются много интересных, но сложных задач. Поэтому без формул здесь не обойтись:

Формулы по работе, энергии и мощности

Нужна помощь в написании работы?

Мы — биржа профессиональных авторов (преподавателей и доцентов вузов). Наша система гарантирует сдачу работы к сроку без плагиата. Правки вносим бесплатно.

Цена работы

Основные формулы термодинамики и молекулярной физики

Последняя тема в механике – это “Колебания и волны”:

Формулы по колебаниям и волнам

Теперь можно смело переходить к молекулярной физике:

Формулы по молекулярной физике

Плавно переходим в категорию, которая изучает общие свойства макроскопических систем. Это термодинамика:

Формулы по термодинамике

Основные формулы электричества

Для многих студентов тема про электричество сложнее, чем про термодинамика, но она не менее важна. Итак, начнём с электростатики:

Формулы по электростатике

Переходим к постоянному электрическому току:

Формулы по постоянному электрическому току

Далее добавляем формулы по теме: “Магнитное поле электрического тока”

Формулы по магнитному полю электрического тока

Электромагнитная индукция тоже важная тема для знания и понимания физики. Конечно, формулы по этой теме необходимы:

Формулы по электромагнитной индукции

Ну и, конечно, куда же без электромагнитных колебаний:

Формулы по электромагнитным колебаниям

Основные формулы оптической физики

Переходим к следующему разделу по физике – оптика. Здесь даны 8 основных формул, которые необходимо знать. Будьте уверены, задачи по оптике – частое явление:

Формулы по оптике 1

Формулы по оптике 2

Основные формулы элементов теории относительности

И последнее, что нужно знать перед экзаменом. Задачи по этой теме попадаются реже, чем предыдущие, но бывают:

Формулы по элементам теории относительности

Основные формулы световых квантов

Этими формулами приходится часто пользоваться в силу того, что на тему “Световые кванты” попадается немало задач. Итак, рассмотрим их:

Формулы по световым квантам

На этом можно заканчивать. Конечно, по физике есть ещё огромное количество формул, но они вам не столь не нужны.

Это были основные формулы физики

В статье мы подготовили 50 формул, которые понадобятся на экзамене в 99 случая из 100.

Совет: распечатайте все формулы и возьмите их с собой. Во время печати, вы так или иначе будете смотреть на формулы, запоминая их. К тому же, с основными формулами по физике в кармане, вы будете чувствовать себя на экзамене намного увереннее, чем без них.

Надеемся, что подборка формул вам понравилась!

P.S. Хватило ли вам 50 формул по физике, или статью нужно дополнить? Пишите в комментариях.

Физика — одна из самых важных наук на Земле, которая описывает практически все известные человеку процессы и явления. В данной статье мы подробнее остановимся на ее большом разделе, который называется «механикой».

Что изучает механика в физике

Механика — это одна из физических наук, которая изучает движение тел и их взаимодействие друг с другом во время движения. Этот раздел физики описывает движение как искусственно созданных летательных аппаратов, так и физических небесных объектов; атмосферные и подводные течения; движение жидкостей и газов в природе; перемещение среды в электромагнитных полях; движение крови по сосудам и т.д.

Движение в механике — это изменение во времени и пространстве положения тел (или их частей) относительно друг друга.

Науку механику в зависимости от свойств пространства, времени и материи, на которых основывается каждая механическая теория, подразделяют на следующие виды:

  • классическую (раздел физической науки, основанный на открытиях Ньютона и Галилея);
  • релятивистскую (раздел физической науки, который описывает процессы механического движения, происходящие при скоростях, сопоставимых со скоростью света);
  • квантовую (наука о физических явлениях и процессах, действия которых можно сравнить с постоянной Планка).

Основные направления, формулы и пояснения

В механике выделяют следующие основные разделы:

  • кинематику (науку, которая описывает количественные характеристики движения: время, расстояние, скорость);
  • статику (науку о телах, находящихся в равновесии при воздействии на них внешних сил);
  • динамику (науку о движении тел при воздействии на них внешних сил).

Механика изучает движения материальных тел, при этом все материальные объекты делятся на 3 вида:

  1. Материальная точка (это материальное тело, чьи размеры можно не учитывать). 
  2. Твердое тело (тело, в котором расстояние между любыми его точками неизменно).
  3. Сплошная среда (газ, жидкость и другие вещества, подверженные деформации).

По предмету изучения механику подразделяют на:

  • теоретическую (наука об общих законах движения, которая изучает и описывает движение материальных точек и твердых тел);
  • механику сплошных сред (наука, которая изучает движение тел, непрерывно заполняющих пространство и представляющих собой сплошную среду);
  • прикладную (наука, которая описывает принцип работы технических механизмов).

Рассмотрим детальнее основные разделы механики. И начнем с кинематики.

Кинематика

Раздел кинематики отвечает на вопросы о том, как именно происходит механическое движение тела.

Механическое движение 

Механическое движение — это перемещение тела с течением времени и относительно других объектов в пространстве. 

Для расчета этих изменений понадобится система отсчета, которая состоит из:

  • объекта, относительно которого будет происходить отсчет движения;
  • системы координат, в которой находится объект отсчета;
  • часов (для измерения времени).

В системе отсчета метр является единицей длины, а секунда — единицей времени.

Другими важными определениями в кинематике являются:

  1. Материальная точка — это объект, размеры которого можно не учитывать в расчетах.  
  2. Траектория движения тела (линия, по которой движется объект).
  3. Путь, пройденный телом (определенный участок траектории, пройденный объектом за определенное время).

Существует 2 вида движения согласно траектории:

  • прямое;
  • криволинейное.

Поступательное и вращательное движение твердого тела

В кинематике выделяют два вида движения:

  • поступательное;
  • вращательное.

Поступательное движение — это движение твердого тела, при котором все его точки проходят одну и ту же траекторию и в любой момент времени обладают одинаковыми по направлению и величине векторами скорости и ускорения, синхронно меняющихся для любой точки объекта.

Вращательное движение — это вид механического движения, при котором материальное тело проходит траекторию окружности. При этом все точки тела описывают окружности, которые находятся в параллельных плоскостях. Центры всех окружностей находятся на одной прямой, которая перпендикулярна к плоскостям окружностей (называется осью вращения).

Кинематические уравнения движения

Определение местоположения материальной точки в пространстве можно осуществить двумя способами:

  • учитывая зависимость координат от времени;
  • учитывая зависимость от времени радиус-вектора.

График

Источник: csri.ru

Эту зависимости можно представить в виде кинематических уравнений движения:

(x=xleft(tright) )

(y=yleft(tright))

(z=zleft(tright))

или 

(vec r=vec rleft(tright))

Нулевой вектор на данной иллюстрации — это радиус-вектор положения точки в начальный момент времени.

Кинематические характеристики (скорость, ускорение)

Основными кинематическими характеристиками являются:

  • скорость;
  • ускорение.

Скорость ((vec v)) — это векторная величина, которая характеризует направление и быстроту движения.

Среднюю скорость можно вычислить по формуле:

(vec v=frac{Deltavec r}{Delta t})

где (Deltavec r ) — перемещение, (Delta t) — время, за которое это перемещение произошло.

Символом (∆) обозначается разность однотипных величин или совсем маленьких интервалов.

Мгновенная скорость может быть вычислена тогда, когда (Delta trightarrow0) и вектор перемещения совпадает с путем перемещения:

(vec v=frac{dvec r}{dt}=frac{dS}{dt})

Ускорение тела (a) является величиной, равной отношению изменения скорости движения тела к длительности промежутка времени, за которое это изменение скорости произошло. Оно рассчитывается по формуле:

(a=frac{Delta V}{Delta t})

Мгновенным ускорение будет являться тогда, когда среднее ускорение за промежуток ∆t → 0, м/с²:

(a=frac{dv}{dt})

Динамика, законы Ньютона

Динамика — это раздел механики, который изучает причины изменения движения тел. Классическая механика видит причины этих изменений в воздействии на объекты различных сил. Расскажем подробно, какими параметрами и характеристиками оперирует раздел динамики.

Динамические характеристики поступательного движения

Основными характеристиками в динамике являются:

  1. Сила ((vec F)) — это векторная величина, которая характеризует воздействие тел друг на друга, из-за чего с ними происходят определенные изменения: они приобретают ускорение или подлежат деформации. Сила, как любой вектор, имеет модуль, направление и точку приложения.
  2. Масса ((m)) — это физическая величина, характеризующая гравитационные и инерционные свойства объекта.
  3. Импульс ((vec p)) — это векторная величина, которая рассчитывается по формуле: (vec p=mtimesvec v)  

где (m) — масса тела, а (vec v) — его скорость.

Импульс иллюстрирует, как механическое движение может передаваться от одного материального тела к другому.

  • Импульс силы ((vec Fdt)) — векторная величина, которая по направлению совпадает с направлением силы и численно равняется произведению силы и времени ее воздействия на тело. 

Виды сил

В динамике выделяют несколько видов сил, которые могут воздействовать на объект:

  1. сила притяжения;
  2. сила упругости;
  3. силы трения.

Закон всемирного тяготения, открытый Ньютоном, гласит, что сила ((F)) гравитационного притяжения между двумя телами массами ((m_1 и m_2)), которые находятся на расстоянии ((r)) друг от друга, пропорциональна обеим массам, обратно пропорциональна расстоянию в квадрате и действует вдоль прямой линии, соединяющей тела.

Сила притяжения определяется по формуле:

(F=Gtimesfrac{m_1times m_2}{r^2})

где (G) — гравитационная постоянная, которая равна (6,67times10^{-11} Н*м²/кг²)

Сила упругости — это сила, возникающая при упругой деформации тела.

Рассчитывается она по формуле:

(F=-ktimes x)

где (x) — величина деформации, (k) — коэффициент упругости, а знак — говорит о том, что направление силы упругости всегда противоположно тому направлению, куда смещается тело.

Силы трения возникают при движении касающихся друг друга объектов или их частей. Они бывают:

  • сухого трения (сила скольжения, сила покоя);
  • вязкого трения (характерно для перемещающихся слоев жидкости или газа).

Сила сухого трения определяется по формуле:

(F=ktimes N)

где (N) — сила нормального давления, а (k) — коэффициент сухого трения.

Сила вязкого трения зависит от скорости движения тела ((v)) и рассчитывается по формуле:

(F=-αtimes V)

(α) — коэффициент вязкого трения.

Разобрав основные динамические характеристики, можем переходить к основам динамики — законам Исаака Ньютона.

Исаак Ньютон

Источник: en.ppt-online.org

Первый закон Ньютона

Законы Ньютона, опубликованные им в 1687 году, лежат в основе механики. Они помогают описать движение тел с небольшими скоростями по сравнению со скоростью света.

Первый закон Ньютона предполагает существование таких систем отсчета, в которых материальные тела находятся в покое или движутся равномерно и по прямой, при условии, что на них нет воздействия каких-либо сил или действие этих сил скомпенсировано. Такие системы принято называть инерциальными. Все остальные законы Ньютона действительны именно для таких систем.

Первый закон Ньютона также часто называют законом инерции.

Инерция — это сохранение материальным объектом скорости и направления своего движения, при условии, что на него нет воздействия других тел и сил.

Второй закон Ньютона

Второй закон Ньютона иллюстрирует зависимость ускорения тела от его массы и силы, воздействующей на него. Причем чем больше сила, которая действует на объект, тем больше ускорение, которое тело приобретает.

Формулируется он в виде следующей формулы:

(vec a=frac{vec F}m)

где (vec F) — это векторная сила, воздействующая на объект;

(vec a) — векторное ускорение тела;

(m) — масса тела.

Читается так: ускорение, с которым движется объект, прямо пропорционально действующей на тело силе и обратно пропорционально массе тела.

Третий закон Ньютона

Третий закон великого английского ученого предполагает, что при воздействии одного тела на другое с определенной силой, второе тело действует на первое с такой же силой. Их часто называют силами действия и противодействия. 

Математически закон выражается так:

(vec F_1=-vec F_2)

где (vec F_1) — это сила действия, а (vec F_2) — сила противодействия.

Формулируется так: объекты действуют друг на друга с силами, противоположными по направлению и равными по модулю.

Закон сохранения импульса

Закон сохранения импульса — это следствие из законов Ньютона: при движении тел в инерциальной системе без внешнего воздействия импульс сохраняется во времени, а при воздействии внешних сил на тело, скорость изменения импульса определяется суммой приложенных сил.

Математически это выражается так:

Закон сохранения импульса

Источник: infourok.ru

Точнее закон сохранения импульса можно сформулировать таким образом: векторная сумма импульсов всех тел, находящихся в системе, — величина постоянная, если внешнее воздействие на систему отсутствует или же их векторная сумма равна нулю.

Закон сохранения момента импульса

Закон сохранения момента импульса звучит так: момент импульса тел в замкнутой системе (в которой отсутствует воздействие внешних сил) относительно любой неподвижной точки не изменяется со временем.

Закон сохранения момента импульса

Источник: ppt-online.org

Основное уравнение динамики вращательного движения

Основное уравнение динамики вращательного движения

Источник: ppt-online.org

Работа и механическая энергия

Энергия — это способность физических объектов совершать определенную работу, поэтому количественно работа и энергия измеряются в одних и тех же единицах — джоулях (Дж).

Механическая работа будет численно равна изменениям механической энергии. Работа в механике бывает постоянной и переменной силы.

Работа постоянной и переменной силы

Сила, воздействующая на тело, когда перемещает его на определенное расстояние, совершает работу. В том случае, когда сила постоянна по величине и направлению, а движение прямолинейно, можно говорить о работе постоянной силы.

Работа постоянной силы

Источник: ppt-online.org

Если траектория движения объекта не прямолинейна, а сила, действующая на тело, не является постоянной, нужно говорить о работе переменной силы. Чтобы ее рассчитать, необходимо весь путь разбить на прямолинейные отрезки. Полная работа будет в таком случае равна сумме работ на всех прямолинейных участках.

Работа переменной силы

Источник: fr.slideserve.com

Энергия

Энергия — это скалярная величина, которая является количественной мерой различных форм движения материи. Энергия, которая является мерой механического движения и механического взаимодействия тел с другими объектами и между собой, называется механической.

Изменение механической энергии системы ((Delta W)) определяется работой ((A)), которую совершают внешние силы, воздействующие на систему:

(Delta W=A)

Механическая энергия бывает двух видов:

  • кинетической;
  • потенциальной.

Кинетическая

Кинетическая энергия — это скалярная функция, которая является количественной мерой движения материальных тел, рассматриваемых в конкретной механической системе. Кинетическая энергия зависит только от массы ((m)) и модуля скорости материальной точки ((v)).

Рассчитывается кинетическая энергия ((E)) по формуле:

(E=frac{mtimes v^2}2)

Измеряется в джоулях.

Потенциальная 

Потенциальная энергия — это физическая величина, которая обозначает энергию взаимодействия тел или их частей между собой. Потенциальная энергия зависит только от расстояния, на котором находятся объекты. Имеет числовое значение, но не имеет вектора направления. 

Потенциальной энергией обладают следующие виды тел: 

  • объекты, находящиеся на какой-либо высоте от поверхности земли;
  • упруго деформированные тела (пружина);
  • сжатые газы.

Потенциальная энергия тела, поднятого над землей ((E)), рассчитывается по формуле:

(E=mtimes gtimes h)

где (m) — масса тела, (h) — высота над землей, (g) — ускорение свободного падения на нашей планете.

Потенциальная энергия упруго деформированного тела ((E)) определяется по формуле:

(E=frac{ktimes x^2}2)

где (x) — удлинение, (k) — жесткость.

Потенциальная энергия измеряется в джоулях.

Закон сохранения механической энергии

Закон сохранения энергии в механике известен всем со школы.

Энергия не исчезает и не возникает снова, она только переходит из одного вида энергии в другой или передается от одного объекта к другому.

Разобраться в такой сложной науке, как физика, довольно трудно. Не у всех есть время и желание вникать в процессы физических явлений. Но без паники! Подтянуть оценки по сложному предмету поможет образовательный сервис Феникс.Хелп. Обращайтесь в любое время!

Понравилась статья? Поделить с друзьями:
  • Все формулы для егэ мат проф
  • Все темы лирики егэ литература 2022
  • Все темы лирики для егэ по литературе
  • Все темы для подготовки к егэ по математике профильный уровень
  • Все темы для итогового сочинения 2023