Все объемные фигуры для егэ

Формулы объёма и площади поверхности. Многогранники.

Изучение стереометрии начинается со знания формул. Для решения задач ЕГЭ по стереометрии нужны всего две вещи:

  1. Формулы объёма — например, объём куба, объём призмы, объем пирамиды — и формулы площади поверхности.
  2. Элементарная логика.

Все формулы объёма и формулы площади поверхности многогранников есть в нашей таблице.


Куб
V=a^3 S = 6a^2
d=asqrt{3}, d- диагональ

Параллелепипед
V=S_text{OCH}h, h - высота

Прямоугольный параллелепипед
V=abc S = 2ab+2bc+2ac
d=sqrt{a^2+b^2+c^2}

Призма
V=S_text{OCH}h S = 2S_text{OCH}+

Пирамида
V=frac{1}{3}S_text{OCH}h S = S_text{OCH}+

Проще всего найти объём куба — это куб его стороны. Вот, оказывается, откуда берётся выражение «возвести в куб».

Объём параллелепипеда тоже легко найти. Надо просто перемножить длину, ширину и высоту.

Объём призмы — это произведение площади её основания на высоту. Если в основании треугольник — находите площадь треугольника. Если квадрат — ищите площадь квадрата. Напомним, что высота — это перпендикуляр к основаниям призмы.

Объём пирамиды — это треть произведения площади основания на высоту. Высота пирамиды — это перпендикуляр, проведенный из её вершины к основанию.

Некоторые задачи по стереометрии решаются вообще без формул! Например, эта.

Задача 1.Объём куба равен 12. Найдите объём четырёхугольной пирамиды, основанием которой является грань куба, а вершиной — центр куба.

Решение:

Пирамида в кубе
Обойдёмся без формул! Просто посчитайте, сколько нужно таких четырёхугольных пирамидок, чтобы сложить из них этот куб :-)

Очевидно, их 6, поскольку у куба 6 граней.

Стереометрия — это просто! Для начала выучите формулы объёма и площади поверхности многогранников и тел вращения. А дальше — читайте о приемах решения задач по стереометрии.

Разберем задачи, где требуется найти площадь поверхности многогранника.

Мы рассмотрим призмы и пирамиды. Начнем с призмы.

Площадь полной поверхности призмы можно найти как сумму площадей всех ее граней. А это площади верхнего и нижнего оснований плюс площадь боковой поверхности.

Площадь боковой поверхности призмы – это сумма площадей боковых граней, которые являются прямоугольниками. Она равна периметру основания, умноженному на высоту призмы.

Задача 2. Найдите площадь поверхности многогранника, изображенного на рисунке (все двугранные углы прямые).

Пирамида в кубе

Решение.

Многогранник на рисунке – это прямая призма с высотой 12.

P_text{OCH}=8+6+6+2+2+4=28.

Пирамида в кубе

Чтобы найти площадь основания, разделим его на два прямоугольника и найдем площадь каждого:

S_1=6cdot 6=36 (больший квадрат), S_2=2cdot 4=8 (маленький прямоугольник), S_text{OCH}=36+8=44

Подставим все данные в формулу: и найдем площадь поверхности многогранника:

S=28cdot12+2cdot44=336+88=424.

Ответ: 424.

Задача 3. Найдите площадь поверхности многогранника, изображённого на рисунке (все двугранные углы прямые).

Пирамида в кубе

Решение.

Пирамида в кубе

Перевернем многогранник так, чтобы получилась прямая призма с высотой 1.
Площадь поверхности этой призмы находится по формуле:

P_text{OCH}=4+5+2+1+2+4=18.

Пирамида в кубе

Найдем площадь основания. Для этого разделим его на два прямоугольника и посчитаем площадь каждого:

S_1=4cdot4=16;~S_2=2cdot1=2 (большой прямоугольник), S_text{OCH}=16+2=18 (маленький прямоугольник).

Найдем площадь полной поверхности: =18cdot1+2cdot18=54

Ответ: 54

Задача 4.Найдите площадь поверхности многогранника, изображенного на рисунке (все двугранные углы прямые).

Пирамида в кубе

Решение.

Покажем еще один способ решения задачи.

Посмотрим, как получился такой многогранник. Можно сказать, что к «кирпичику», то есть прямоугольному параллелепипеду со сторонами 4, 1 и 3, сверху приклеен «кубик», все стороны которого равны 1.

И значит, площадь поверхности данного многогранника равна сумме площадей поверхностей прямоугольного параллелепипеда со сторонами 4,1,3 и
куба со стороной 1, без удвоенной площади квадрата со стороной 1:

S=((4+1+4+1)cdot 3+2cdot 4 cdot 1)+6cdot 1-2cdot 1=42.

Почему мы вычитаем удвоенную площадь квадрата? Представьте себе, что нам надо покрасить это объемное тело. Мы красим все грани параллелепипеда, кроме квадрата на верхней его грани, где на него поставлен кубик. И у куба мы покрасим все грани, кроме этого квадрата.

Ответ: 42

Задача 5. . Основание прямой призмы – треугольник со сторонами 5 см и 3 см и углом 120° между ними. Наибольшая из площадей боковых граней равна 35 см². Найдите площадь боковой поверхности призмы.

Пирамида в кубе

Решение.

Пусть АВ = 5 см, ВС = 3 см, тогда angle{ABC}=120^{circ}

Из Delta ABC по теореме косинусов найдем ребро АС:

AC^2=AB^2+BC^2-2cdot ABcdot BC cdot cos120^{circ}

AC^2=25+9-2cdot5cdot3cdotleft(-frac{1}{2}right)=47, ~AC = 7

Отрезок АС – большая сторона Delta ABC, следовательно, ACC_1A_1 - большая боковая грань призмы.

Поэтому ACcdot CC_1=35, или 7cdot h=35, откуда h=5.

(5+3+7)cdot5=75.

Ответ: 75

Теперь две задачи на площадь боковой поверхности пирамиды.

Задача 6. Основанием пирамиды DАВС является треугольник АВС, у которого АВ = АС = 13, ВС = 10; ребро АD перпендикулярно к плоскости основания и равно 9. Найдите площадь боковой поверхности пирамиды.

Пирамида в кубе

Решение.

Площадь боковой поверхности пирамиды – это сумма площадей всех ее боковых граней.

Проведем AKperp BC, тогда BC perp DK (по теореме о 3-х перпендикулярах), то есть DК – высота треугольника DВС.

Delta ABC – равнобедренный (по условию АВ = АС), то высота АК, проведенная к основанию ВС, является и медианой, то есть ВК = КС = 5.

Из прямоугольного Delta ABK получим:

AK=sqrt{AB^2-BK^2}=sqrt{13^2-5^2}=sqrt{169-25}=sqrt{144}=12.

Из прямоугольного Delta DAK имеем:

DK=sqrt{DA^2+AK^2}=sqrt{9^2+12^2}=sqrt{81+144}=sqrt{225}=15.

Delta ADB=Delta ADC (по двум катетам), тогда S_{ADB}=S_{ADC}, следовательно

=2S_{ADB}+S_{BDC},=2cdotfrac{1}{2}cdot13cdot9+frac{1}{2}cdot10cdot15=117+75=192.

Ответ: 192

Задача 8. Стороны основания правильной четырехугольной пирамиды равны 24, боковые ребра равны 37. Найдите площадь поверхности пирамиды.

Пирамида в кубе

Решение:

Так как четырехугольная пирамида правильная, то в основании лежит квадрат, а все боковые грани — равные равнобедренные треугольники.

Площадь поверхности пирамиды равна

=pcdot h+a^2, где р – полупериметр основания, h — апофема (высота боковой грани правильной пирамиды), a – сторона основания.

Значит, полупериметр основания p = 24 cdot 2 = 48.

Апофему найдем по теореме Пифагора:

h=sqrt{37^2-12^2}=sqrt{(37-12)(37+12)}=sqrt{25cdot49}=5cdot7=35

S = 48cdot 35+24^2=1680+576=2256.

Ответ: 2256

Как решать задачи на нахождение объема многогранника сложной формы?

Покажем два способа.

Первый способ

1.Составной многогранник достроить до полного параллелепипеда или куба.
2.Найти объем параллелепипеда.
3.Найти объем лишней части фигуры.
4.Вычесть из объема параллелепипеда объем лишней части.

Второй способ.

1.Разделить составной многогранник на несколько параллелепипедов.
2.Найти объем каждого параллелепипеда.
3.Сложить объемы.

Задача 9. Найдите объем многогранника, изображенного на рисунке (все двугранные углы прямые).

Пирамида в кубе

Решение.

Пирамида в кубе

1) Достроим составной многогранник до параллелепипеда.

2) Найдем объем параллелепипеда – для этого перемножим его длину, ширину и высоту: V=9cdot 4cdot10=360

3) Найдем объем лишней части, то есть маленького параллелепипеда.

Его длина равна 9 – 4 = 5, ширина 4, высота 7, тогда его объем V_1=5cdot4cdot7=140.

4) Вычтем из объема параллелепипеда объем лишней части и получим объем заданной фигуры: V=360-140=220.

Ответ: 220.

Задача 10. Основанием прямой треугольной призмы служит прямоугольный треугольник с катетами 6 и 7, боковое ребро равно 6. Найдите объем призмы.

Пирамида в кубе

Объем призмы равен V=S_{OCH}cdot h, а так как призма прямая, то ее боковое ребро является и высотой, то есть h=6.

Основанием призмы является прямоугольный треугольник c катетами 6 и 7, тогда площадь основания

S_{OCH}=frac{1}{2}cdot ab=frac{1}{2}cdot6cdot7=21.

V=21cdot6=126.

Ответ: 126

Задача 11. В сосуд, имеющий форму правильной треугольной призмы, налили воду. Уровень воды достигает 324 см. На какой высоте будет находиться уровень воды, если ее перелить в другой сосуд, у которого сторона в 9 раз больше, чем у первого? Ответ выразите в сантиметрах.

Пирамида в кубе

Решение.

Объем призмы равен V = S_{OCH}cdot h

Воду перелили в другой такой же сосуд. Это значит, что другой сосуд также имеет форму правильной треугольной призмы, но все стороны основания второго сосуда в 9 раз больше, чем у первого.

Основанием второго сосуда также является правильный треугольник. Он подобен правильному треугольнику в основании первого сосуда. Отношение площадей подобных фигур равно квадрату коэффициента подобия.

Если все стороны треугольника увеличить в 9 раз, его площадь увеличится в 9^2 = 81 раз. Мы получили, что площадь основания второго сосуда в 81 раз больше, чем у первого.

Объем воды не изменился, V=S_1cdot h_1=S_2 cdot h_2. Так как S_2=81S_1, высота воды h_2 должна быть в 81 раз меньше, чем h_1. Она равна 324:81 = 4 (см).

Ответ: 4

Задача 12. Объем параллелепипеда ABCDA_1B_1C_1D_1. Найдите объем треугольной пирамиды ABDA_1.

Пирамида в кубе

Решение.
Опустим из вершины A_1 высоту A_1H Н на основание ABCD.

=S_{ABCD}cdot A_1H

=frac{1}{3}S_{ABD}cdot A_1H

Пирамида в кубе

Диагональ основания делит его на два равных треугольника, следовательно, S_{ABD}=frac{1}{2}S_{ABCD}.

Имеем:

ABDA_1=frac{1}{3}S_{ABD}cdot A_1H=frac{1}{3}cdotfrac{1}{2}S_{ABCD}cdot A_1H=frac{1}{6}V_{ABCDA_1B_1C_1D_1}=frac{1}{6}cdot21=3,5.

Ответ: 3,5

Задача 13. Найдите объем правильной треугольной пирамиды, стороны основания которой равны 8, а высота равна 6sqrt{3}.

Пирамида в кубе

Решение.
По формуле объема пирамиды, .

В основании пирамиды лежит правильный треугольник. Его площадь равна S_{OCH}=frac{a^2sqrt{3}}{4}.

S_{OCH}=frac{8^2sqrt{3}}{4}=frac{64sqrt{3}}{4}=16sqrt{3}.

Объем пирамиды V=frac{1}{3}cdot16sqrt{3}cdot6sqrt{3}=16cdot6=96.

Ответ: 96

Задача 14. Через середины сторон двух соседних ребер основания правильной четырехугольной призмы проведена плоскость, параллельная боковому ребру. Найдите объем меньшей из частей, на которые эта плоскость делит призму, если объем призмы равен 32.

Пирамида в кубе

Решение.

По условию, призма правильная, значит, в ее основании лежит квадрат, а высота равна боковому ребру.

Пусть AD=x, тогда S_{OCH}=x^2.

Так как точки М и К – середины АD и DС соответственно, то DM=DK=frac{x}{2}.

S_{MDK}=frac{1}{2}MDcdot DK=frac{1}{2}cdotfrac{x}{2}cdotfrac{x}{2}=frac{1}{8}x^2.

Площадь треугольника MDK, лежащего в основании новой призмы, составляет frac{1}{8} часть площади квадрата в основании исходной призмы.
Высоты обеих призм одинаковые. Согласно формуле объема призмы: V=S_{OCH}cdot h, и значит, объем маленькой призмы в 8 раз меньше объема большой призмы. Он равен 32:8=4.

Ответ: 4

Докажем полезную теорему.

Теорема: Площадь боковой поверхности наклонной призмы равна произведению периметра перпендикулярного сечения на боковое ребро.

Доказательство:

Пирамида в кубе

Плоскость перпендикулярного сечения призмы перпендикулярна к боковым ребрам, поэтому стороны перпендикулярного сечения призмы являются высотами параллелограммов.

S=a_1l+a_2l+dots+a_nl,

S=(a_1+a_2+dots+a_n)l,

S=P_{perp}cdot l.

Больше задач на формулы объема и площади поверхности здесь.

Спасибо за то, что пользуйтесь нашими материалами.
Информация на странице «Формулы объёма и площади поверхности. Многогранники.» подготовлена нашими авторами специально, чтобы помочь вам в освоении предмета и подготовке к экзаменам.
Чтобы успешно сдать нужные и поступить в ВУЗ или колледж нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими статьями из разделов нашего сайта.

Публикация обновлена:
09.03.2023

Подготовка к ЕГЭ по математике не может обойтись без изучения геометрии. Задачи на расчет площади и объема фигур, нахождение углов и длин сторон встречаются и в первой, и во второй части. В базовой математике ЕГЭ формулы на объем и площадь представлены в справочных материалах. Тем, кто сдает профильную, придется выучить их. Рассмотрим основную теорию.

Площадь — величина, которая есть у плоских фигур. Ее можно посчитать для квадрата, прямоугольника, параллелограмма, треугольника, ромба, трапеции, круга. Объем присущ трехмерным объектам, таким как куб, шар, параллелепипед, призма, пирамида, конус. Объемные тела условно делят на многогранники (состоят из нескольких многоугольников) и поверхности вращения (есть условная линия, вдоль которой вращается плоская фигура). На вычисление объема это не влияет.

В таблицах представлены основные формулы объемов и площадей фигур для ЕГЭ. Мы советуем сохранить их себе, чтобы пользоваться при подготовке к ЕГЭ и быстро повторить теорию перед экзаменом. 

многогранники

площадь

тела вращения

трапеция и круг егэ

прямоугольный треугольник егэ

Объем правильной треугольной пирамиды

Пусть сторона основания равна ( displaystyle a), а боковое ребро равно ( displaystyle b). Нужно найти ( displaystyle {{S}_{осн}}) и ( displaystyle H).

( displaystyle {{S}_{осн}}) – это площадь правильного треугольника ( displaystyle ABC).

Вспомним, как искать эту площадь. Используем формулу площади:

( displaystyle S=frac{1}{2}abcdot sin gamma ).

У нас «( displaystyle a)» – это ( displaystyle a), а «( displaystyle b)» – это тоже ( displaystyle a), а ( displaystyle sin gamma =sin 60{}^circ =frac{sqrt{3}}{2}).

Значит, ( displaystyle {{S}_{ABC}}=frac{1}{2}{{a}^{2}}frac{sqrt{3}}{2}=frac{{{a}^{2}}sqrt{3}}{4}).

Теперь найдем ( displaystyle H).

По теореме Пифагора для ( displaystyle Delta SOC)

( displaystyle {{H}^{2}}={{b}^{2}}-O{{C}^{2}}).

Чему же равно ( displaystyle OC)? Это радиус описанной окружности в ( displaystyle Delta ABC), потому что пирамидаправильная и, значит, ( displaystyle O) – центр ( displaystyle Delta ABC).

Найдем ( displaystyle OC) (Подробнее смотри в теме «Правильный треугольник»).

( displaystyle OC=frac{2}{3}CK), так как ( displaystyle O) – точка пересечения и медиан тоже.

( displaystyle C{{K}^{2}}=A{{C}^{2}}-A{{K}^{2}}) (теорема Пифагора для ( displaystyle Delta ACK))

( displaystyle C{{K}^{2}}-{{a}^{2}}-frac{{{a}^{2}}}{4}=frac{3{{a}^{2}}}{4}); ( displaystyle CK=frac{asqrt{3}}{2})

Значит, ( displaystyle OC=frac{2}{3}cdot frac{asqrt{3}}{2}=frac{asqrt{3}}{3})

Подставим ( displaystyle OC) в формулу для ( displaystyle H).

( displaystyle {{H}^{2}}={{b}^{2}}-O{{C}^{2}}={{b}^{2}}-{{left( frac{asqrt{3}}{3} right)}^{2}}={{b}^{2}}-frac{{{a}^{2}}}{3})

И подставим все в формулу объема:

( displaystyle V=frac{1}{3}{{S}_{ABC}}cdot H=frac{1}{3}cdot frac{{{a}^{2}}sqrt{3}}{4}cdot sqrt{{{b}^{2}}-frac{{{a}^{2}}}{3}})

( displaystyle V=frac{{{a}^{2}}sqrt{3}}{12}sqrt{{{b}^{2}}-frac{{{a}^{2}}}{3}}).

Внимание: если у тебя правильный тетраэдр (т.е. ( displaystyle b=a)), то формула получается такой:

( displaystyle V=frac{{{a}^{3}}}{6sqrt{2}}).

Площадь поверхности – это суммарная площадь всех поверхностей, которые составляют объемную фигуру.

Призма

1. Призма — это многогранник, у которого две грани (основания) — равные (n)-угольники, лежащие в параллельных плоскостях, остальные (n) граней (боковые) — параллелограммы. Призмы подразделяются на треугольные, четырехугольные, пятиугольные и т. д. в зависимости от количества сторон основания.
Высотой призмы называется перпендикуляр, опущенный из точки верхнего основания на плоскость нижнего.

2. Призма, у которой боковое ребро перпендикулярно основанию, называется прямой. Ее боковые грани — прямоугольники, и высота равна боковому ребру.
Прямая призма, в основании которой лежит правильный многоугольник, называется правильной. Ее боковые грани, равные прямоугольники.

Наклонная, правильная и прямая призма; диагональное сечение

3. Площадь боковой поверхности призмы равна сумме площадей ее боковых граней: (S_{бок}= S_1+ S_2+…+ S_n).
Площадь поверхности призмы равна сумме площади боковой поверхности и двух площадей оснований: (S_{полн} = S_{бок}+ 2S_{осн}).

4. Объем произвольной призмы равен произведению площади основания на высоту: (V_{призмы}=S_{осн}cdot h).

Параллелепипед

5. Параллелепипедом называется призма, в основании которой лежит параллелограмм. Противоположные боковые грани параллелепипеда равны.
Прямой параллелепипед — это параллелепипед, у которого боковое ребро перпендикулярно основанию.
Прямоугольный параллелепипед — это прямой параллелепипед, у которого в основании лежит прямоугольник.
Диагональ прямоугольного параллелепипеда выражается через его измерения (ширину, длину и высоту) формулой (d^2=a^2+b^2+c^2).
Куб — параллелепипед, у которого все грани квадраты. Диагональ куба с ребром (a): (d=asqrt{3}).

наклонный, прямоугольный, прямой параллелепипед

куб, прямоугольный параллелепипед и их объемы

Пирамида

6. Пирамидой называется многогранник, у которого одна грань (основание) — (n)—угольник, а остальные (n) граней (боковые) — треугольники с общей вершиной. Пирамиды подразделяются на треугольные, четырехугольные, пятиугольные и т. д. в зависимости от количества сторон основания.
Тетраэдер – другое название треугольной пирамиды.
Высотой пирамиды называется перпендикуляр, опущенный из вершины пирамиды на основание.

7. Пирамида называется правильной, если ее боковые ребра равны, а в основании лежит правильный многоугольник.
Основание высоты правильной пирамиды совпадает с центром ее основания, углы наклона боковых ребер к основанию равны, двугранные углы при основании равны, все боковые грани — равные равнобедренные треугольники.
Апофема – высота боковой грани правильной пирамиды, проведенная из её вершины к ребру основания.

8. Площадь боковой поверхности пирамиды равна сумме площадей ее боковых граней: (S_{бок}= S_1+ S_2+…+ S_n).
Площадь полной поверхности пирамиды равна сумме площади боковой поверхности и площади основания: (S_{полн} = S_{бок}+ S_{осн}).

правильная пирамида и её площадь боковой поверхности

9. Объем произвольной пирамиды равен произведению одной трети площади основания на высоту: (V=frac{1}{3} S_{осн}cdot h).

формула объема пирамиды

Сфера и шар

10. Сфера — это множество всех точек пространства, равноудаленных от данной точки, называемой центром сферы.
Радиусом сферы называется отрезок, соединяющий центр сферы с точкой на сфере, или длина этого отрезка.
Хордой сферы называется отрезок, соединяющий две точки на сфере.
Диаметр сферы — это хорда, которая проходит через центр сферы. Диаметр сферы равен двум радиусам сферы.

11. Площадь сферы находится по формуле: (S_{сф}=4πR^2).

12. Шаром называется часть пространства, ограниченная сферой, вместе с самой сферой и ее центром. Данная сфера называется поверхностью шара.
Сечение шара с радиусом (R) плоскостью, проходящей через центр шара, называется большим кругом шара. Радиус, хорда, диаметр шара те же, что и его сферы.

13. Объем шара находится по формуле (V_{шара}=frac{4}{3} πR^2).

объем шара и площадь поверхности сферы

Цилиндр

14. Цилиндром называется тело, полученное при вращении прямоугольника вокруг прямой, проходящей через одну из его сторон.
Прямая вращения называется осью цилиндра.
Сечение цилиндра плоскостью, проходящей через ось цилиндра, называется осевым сечением.Осевое сечение цилиндра — прямоугольник со сторонами (2r) и (l), где (r) — радиус основания цилиндра, (l) — его образующая.
Образующая цилиндра — отрезок (обозначается (l) или (L)), перпендикулярный основаниям цилиндра и соединяющий точку окружности верхнего основания с точкой окружности нижнего основания.
Высотой цилиндра называется расстояние между плоскостями оснований (обозначается (h) или (H)).

15. Площадь боковой поверхности цилиндра: (S_{бок}=2πrh);      (S_{полн} = S_{бок}+ 2S_{осн}=2πrh+2πr^2).

16. Объем цилиндра (V_{цил}=S_{осн} h=πr^2 h).

всё что нужно знать про цилиндр

Конус

17. Конусом называется тело, полученное при вращении прямоугольного треугольника вокруг прямой, проходящей через один из его катетов.
Прямая вращения называется осью конуса.
Сечение конуса, проходящее через ось, называется осевым сечением. Осевое сечение конуса — равнобедренный треугольник со стороной основания (2r) боковой стороной (l), где (r) — радиус основания конуса, (l) — его образующая.
Вершина осевого сечения является вершиной конуса.
Образующая конуса (обозначается (l) или (L)) — отрезок, соединяющий вершину конуса и точку окружности основания.
Высотой конуса называется расстояние от вершины конуса до плоскости основания (обозначается (h) или (H)). Высота конуса равна высоте осевого сечения, опущенной на основание.

18. Площадь боковой поверхности конуса: (S_{бок кон}=πrl),      (S_{кон}=S_{бок}+S_{осн}=πrl+2πr^2).

19. Объем конуса: (V_{кон}=frac{1}{3}S_{осн}h=frac{1}{3}πr^2 h).

всё что нужно знать про конус

Среди огромного множества объемных фигур можно выделить три большие группы:

ПРИЗМЫ:

n-угольная призма — многогранник, две грани которого равные n-угольники, лежащие в параллельных плоскостях, а остальные n граней − параллелограммы.

Примеры:

Треугольная призма

Четырехугольная призма

Шестиугольная призма

Элементы призмы:

Два n − угольника являются основаниями призмы (ABCD), параллелограммы − боковыми гранями (AB B₁A₁).

Стороны граней называются ребрами призмы (например, AD), а концы ребер − вершинами призмы (например, D).

Высота призмы — отрезок перпендикуляра, заключенный между основаниями призмы (СO). Для наклонной призмы высота может находится за пределами призмы или лежать внутри нее.

Диагональ призмы — отрезок, соединяющий две вершины оснований, не лежащие в одной грани (например, B₁D)

Виды призм:

Прямая призма

призма, боковые ребра которой перпендикулярны плоскостям оснований.

Наклонная призма

призма, боковые ребра которой являются наклонными к плоскостям оснований.

$ABCA_1B_1C_1$– прямая треугольная призма

$ABCA_1B_1C_1$– наклонная треугольная призма

Правильная призма — прямая призма, основанием которой является правильный многоугольник.

Свойства призмы:

  • Верхнее и нижнее основания призмы – это равные многоугольники.
  • Боковые грани призмы имеют вид параллелограмма.
  • Боковые ребра призмы параллельные и равны.
  • Объем призмы равен произведению площади основания призмы, на высоту.

$V_{text{призмы}} = S_{text{осн}}cdot h$

Для прямой призмы высотой будет является любое из боковых ребер.

$ABCDA_1B_1C_1D_1$ — произвольная призма.

$V_{ABCDA_1B_1C_1D_1} = S_{ABCD}cdot B_1O$

$ABCDA_1B_1C_1D_1$ — прямая призма.

$V_{ABCDA_1B_1C_1D_1} = S_{ABCD}cdot AA_1$

  • Площадь полной поверхности призмы равна сумме площади её боковой поверхности и двойной

площади основания.

$S_{text{полн.поверх}} = S_{text{бок.}} + 2S_{text{осн.}}$

Площадь боковой поверхности прямой призмы:

$S_{text{бок.}} = P cdot h$

где P — периметр перпендикулярного сечения, h — высота. То есть:

$S_{text{полн.поверх}} = P cdot h + 2S_{text{осн.}}$

$ABCDA_1B_1C_1D_1$ — прямая призма.

$S_{ABCDA_1B_1C_1D_1} = P_{ABCD}cdot AA_1 + 2S_{ABCD}$

Особенные призмы:

Параллелепипед — призма, все грани которой − параллелограммы.

Прямой параллелепипед — параллелепипед, боковые ребра которого перпендикулярны плоскостям оснований.

Прямоугольный параллелепипед — прямой параллелепипед, основанием которого является прямоугольник.

Все грани – прямоугольники.

Куб (гексаэдр) — прямоугольный параллелепипед с равными ребрами.

Все грани − квадраты.

Квадрат диагонали прямоугольного параллелепипеда равен сумме квадратов трех его измерений:

d² = a² + b² + c²,

где a, b, c − длины ребер, выходящих из одной вершины, d − диагональ параллелепипеда.

Квадрат диагонали куба равен квадрату его ребра, умноженному на 3:

d² = 3a²,

где a − длина ребра куба.

Площадь поверхности куба можно найти по формуле:

S = 6a²

Объем прямоугольного параллелепипеда находят по формуле

V = abc

Объем куба можно найти по формуле:

V = a³

ПИРАМИДЫ:

n-угольная пирамида – многогранник, одна грань которого – n-угольник, а остальные грани − треугольники с общей вершиной.

Примеры:

Треугольная пирамида

Четырехугольная пирамида

Шестиугольная пирамида

Элементы пирамиды:

n-угольник называется основанием пирамиды (ABCD), а треугольники − боковыми гранями (например, SBC).

Высота пирамиды — отрезок перпендикуляра, проведенного из вершины пирамиды к плоскости основания (SO). Для абсолютно произвольной пирамиды положение точки O заранее неизвестно.

Апофема — высота боковой грани правильной пирамиды, проведенная из её вершины (SH).

Особенные пирамиды:

Правильная пирамида – пирамида, основанием которой является правильный многоугольник, а высота опускается в центр вписанной и описанной окружности многоугольника, лежащего в основании пирамиды. В правильной пирамиде обязательно равны между собой ребра основания, и равны между собой боковые ребра. Но не обязательно боковое ребро равно ребру в основании.

Тетраэдр — треугольная пирамида. Тетраэдр называется правильным, если все его ребра равны.

Усеченная пирамида – многогранник, вершинами которого служат вершины основания пирамиды и вершины её сечения плоскостью, параллельной основанию пирамиды. Основания усеченной пирамиды − подобные многоугольники.

Свойства пирамиды:

  • Если все боковые ребра пирамиды равны или наклонены к плоскости основания под одним и тем же углом, то высота опускается в центр описанной окружности.
  • Если боковые грани пирамиды наклонены к плоскости основания под одним и тем же углом (двугранные углы при основании равны), то высота опускается в центр вписанной окружности.

Если$angle{DPO} = angle{DKO} = angle{DMO};$то $qquad$

О – центр вписанной окружности

Если $DA=DB=DC$,то

О – центр описанной окружности

  • Объем пирамиды равен произведению площади ее основания на высоту, деленному на три:

$V_{text{пир.}} = frac{1}{3}S_{text{осню.}}cdot h$

$ begin{cases} ABCD — text{произвольная пирамида} \ DO perp ABC end{cases} Rightarrow V_{ABCD} = frac{1}{3}S_{ABC} cdot DO $

  • Площадь полной поверхности пирамиды складывается из площади основания и суммы площадей всех боковых граней (при этом для произвольной пирамиды эти грани могут быть разные, поэтому площади у них тоже будут разные).

Площадь боковой поверхности правильной пирамиды можно найти по одной формуле

$S_{text{полн.пир}}= displaystylefrac{1}{2}P_{text{осн.}} cdot h_{text{бок.}}$

где $P_{text{осн.}}$ — периметр основания, $h_{text{бок.}}$ — апофема пирамиды.

Если ABCD — произвольная пирамида, то

$S_{ABCD} = S_{ABC} + S_{DAC} + S_{DBC} + S_{DAB}$

Если ABCD — правильная пирамида, то

$S_{ABCD} = S_{ABC} + frac{1}{2}P_{ABC}cdot DH$

ТЕЛА ВРАЩЕНИЯ:

Цилиндр – фигура, полученная в результате вращения прямоугольника вокруг одной из его сторон.

Элементы цилиндра:

  • — ось вращения и высота

l (AB, CD) – образующая

ABCD − осевое сечение цилиндра, полученного вращением прямоугольника $OO_1CD$ вокруг его стороны $OO_1CD$

Свойства цилиндра:

  • Любое сечение цилиндра, параллельное его оси – прямоугольник.

Любое сечение цилиндра, параллельное его основанию – круг, равный основанию цилиндра.

Сечение цилиндра, наклонное к его оси и основанию – эллипс.

  • Объем цилиндра равен произведению площади его основания на высоту:

$V_{text{цил.}} = S_{text{осн.}}cdot h$

где $S_{text{осн.}} = pi R^2$ – площадь основания цилиндра; h – высота.

  • Полная поверхность цилиндра равна сумме его боковой поверхности и двух оснований.

$S_{text{пов.цил.}} = 2S_{text{осн.}} + S_{text{бок.}}$

Боковая поверхность равна:

$S_{text{бок.}} = 2pi Rl$

где R − радиус основания, h − высота, l − образующая цилиндра.

Конус – фигура, полученная в результате вращения прямоугольного треугольника вокруг одного из катетов.

Элементы конуса:

− ось вращения и высота

l (AC, CB) – образующая

ABC − осевое сечение конуса, полученного вращением треугольника ABC вокруг его стороны

Свойства конуса:

  • Любое сечение конуса, проходящее через его вершину — треугольник.

Любое сечение конуса, параллельное его основанию – круг, подобный основанию конуса.

Сечение конуса, наклонное к его основанию и не проходящее через вершину – эллипс.

  • Объем конуса равен произведению площади его основания на высоту, деленному на три:

$V_{text{кон.}} = displaystylefrac{1}{3}S_{text{осн.}}cdot h$

где $S_{text{осн.}} = pi R^2$– площадь основания конуса; h – высота.

  • Полная поверхность конуса равна сумме его боковой поверхности и основания.

$S_{text{пов.кон}} = S_{text{осн.}} + S_{text{бок.}}$

Боковая поверхность равна:

$S_{text{бок.}} = pi Rl$

где R − радиус основания, l − образующая конуса.

Сфера – фигура, полученная в результате вращения полуокружности вокруг ее диаметра.

Шар – фигура, полученная вращением полукруга вокруг его диаметра.

Свойства шара и сферы:

  • Любое сечение шара – круг (например, круг радиуса r)

Сечение шара плоскостью, проходящей через его центр, называется большим кругом (круг радиуса R).

  • Касательной плоскостью к сфере (шару) называется плоскость, имеющая со сферой единственную общую точку. Эту точку называют точкой касания сферы и плоскости. Касательная плоскость перпендикулярна радиусу сферы в точке касания (по аналогии с перпендикулярностью касательной и радиуса окружности).
  • Объем шара радиуса R находят по формуле:

$V_{text{шара}} = displaystylefrac{4}{3} pi R^3$

  • Площадь сферы радиуса R:

$S_{text{сферы}} = 4pi R^2$

Объемы тел. Основные формулы.

Объем пирамиды.

Формула Рисунок Расшифровка формулы

Sосн — площадь основания, h — высота.

Основание может быть n-угольником, где n=3; 4; 5; … .

h — высота усеченной пирамиды, Sниж — площадь нижнего основания, Sверх — площадь верхнего основания.

Формула применима только для усеченной пирамиды.

Другой способ нахождения объема: из объема полной пирамиды вычесть объем ее отсеченной части.

Объем конуса.

Формула Рисунок Расшифровка формулы
R — радиус основания, H — высота конуса
                                      

R, r — радиусы оснований, Н — высота.

Формула применима только для усеченного конуса.

Другой способ нахождения объема: из объема полного конуса вычесть объем его отсеченной части.

Объем цилиндра.

Формула Рисунок Расшифровка формулы
                            

r — радиус, h — высота

Объем сферы, шара.

Объем параллелепипеда и куба.

Формула Рисунок Расшифровка формулы
                                                          

а, b — стороны основания, с — боковое ребро.

Формула применяется для прямоугольного параллелепипеда.

а, b — стороны основания, h — высота.

Общая формула для нахождения объема параллелепипеда.

а — сторона куба.

Объём — это аддитивная функция от множества (мера), характеризующая вместимость области пространства, которую оно занимает. Изначально возникло и применялось без строгого определения в отношении тел трёхмерного евклидова пространства. Первые точные определения были даны Пеано (1887) и Жорданом (1892). Впоследствии понятие было обобщено Лебегом на более широкий класс множеств.

Для определения объёма существует несколько существенно различных подходов, которые дополняют друг друга и согласованы по конечному результату на «хороших множествах». Обычно под понятием объёма понимается мера Жордана, но иногда мера Лебега. Для римановых многообразий понятие объёма вводится аналогично понятию площади поверхности.

Все формулы объема геометрических тел

Объем куба

Куб

Объем куба равен кубу длины его грани.

Формула объема куба: 

V = a 3

где:

V — объем куба, 
a — длина грани куба.

Объем призмы

Призма

Объем призмы равен произведению площади основания призмы, на высоту.

Формула объема призмы:

Объем призмы

где:

V- объем призмы, 
So — площадь основания призмы, 
h — высота призмы.

Объем параллелепипеда

Параллелепипед

Объем параллелепипеда равен произведению площади основания на высоту.

Формула объема параллелепипеда:

Объем параллелепипеда

где:

V- объем параллелепипеда, 
So — площадь основания, 
h — длина высоты.

Объем пирамиды

Пирамида

Объем пирамиды равен одной трети произведения площади основания S (ABCDE) на высоту h (OS).

Формула объема пирамиды:

Объем пирамиды

где:

V — объем пирамиды, 
So — площадь основания пирамиды, 
h — длина высоты пирамиды.

Объем усеченной пирамиды

Усеченная пирамида

Объем усеченной пирамиды равен одной трети произведения высоты h (OS) на сумму площадей верхнего основания S1(abcde), нижнего основания усеченной пирамиды S2 (ABCDE) и средней пропорциональной между ними.

Формула объема усеченной пирамиды:

Объем усеченной пирамиды

Где:

S1 — площадь верхнего основания усеченной пирамиды,
S2 — площадь нижнего основания усеченной пирамиды,
h — высота усеченной пирамиды.

Объем цилиндра

Цилиндр

Объем цилиндра равен произведению площади его основания на высоту.

Формула объема цилиндра:

V= π Rh

V= Sоh

Где:

V — объем цилиндра, 
So — площадь основания цилиндра, 
R — радиус цилиндра, 
h — высота цилиндра, 
π = 3.141592

Объем правильной треугольной пирамиды

Правильная треугольная пирамида

Объем правильной треугольной пирамиды равен одной трети произведения площади правильного треугольника, являющегося основанием S (ABC) на высоту h (OS).

Формула объема правильной треугольной пирамиды:

Объем правильной треугольной пирамиды

Где:

V — объем пирамиды;
h — высота пирамиды;
a — сторона основания пирамиды.

Объем конуса

Конус

Объем круглого конуса равен трети произведения площади основания S на высоту H.

Формула объема конуса:

Объем конуса

Где:

V — объем конуса;
R — радиус основания;
H — высота конуса;
I — длина образующей;
S — площадь боковой поверхности конуса.

Объем усеченного конуса

Усеченный конус

Объем усеченного конуса равен разности объемов двух полных конусов.

Формула объема усеченного конуса:

Объем усеченного конуса

Где:

V — объем усеченного конуса;
H — высота усеченного конуса;
R и R— радиусы нижнего и верхнего оснований.

Объем тетраэдра

Тетраэдр

Объем тетраэдра рассчитывается по классической формуле объема пирамиды. В нее нужно подставить высоту тетраэдра и площадь правильного (равностороннего) треугольника.

Формула тетраэдра:

Объем тетраэдра

Где:

V — объем тетраэдра;
a — ребро тетраэдра.

Объем шара

Шар

Объем шара равен четырем третьим от его радиуса в кубе перемноженного на число пи.

Формула объема шара:

Объем шара

Где:

V  — объем шара;
R — радиус шара;
S — площадь сферы.

Объем шарового сегмента и сектора

Шаровой сегмент

      

Шаровой сектор

Шаровый сегмент — это часть шара отсеченная плоскостью. В данном примере, плоскостью ABCD.

Формула объема шарового сегмента:

Шаровый сегмент

Где:

R — радиус шара
H — высота сегмента
π ≈ 3,14

Формула объема шарового сектора:

Объем шарового сектора

Где:

h — высота сегмента
R — радиус шара
π ≈ 3,14

Объем прямоугольного параллелепипеда

Параллелепипед

Объем прямоугольного параллелепипеда равен произведению его длины, ширины и высоты.

Формула объема прямоугольного параллелепипеда:

Объем прямоугольного параллелепипеда

Где:

V — объем прямоугольного параллелепипеда, 
a — длина, 
b — ширина, 
h — высота.

Понравилась статья? Поделить с друзьями:
  • Все нужные формулы егэ профиль математика
  • Все нужные формулы для егэ по математике профильный уровень геометрия
  • Все нужные формулы для егэ по математике базовый уровень
  • Все нужные правила по русскому языку для егэ 2022
  • Все нужные определения по обществознанию для егэ