Все про тригонометрию для егэ по математике

Тригонометрия для многих старшеклассников представляется сложной темой. Но на самом деле это не так. Тригонометрия проста и логична. Главное – начать с самых основ. Вспомнить, что такое градусы и радианы. Что такое синус и что такое косинус для произвольного угла.

Тригонометрию можно понять! И мы поможем вам это сделать. Ведь понимание намного лучше зубрежки. Читайте статьи этого раздела:

New Задачи из сборников Ященко, 2021 год

Измерение углов: градусы и радианы

Тригонометрический круг: вся тригонометрия на одном рисунке

Тригонометрические формулы

Формулы приведения

Все формулы тригонометрии

Тригонометрические функции

Обратные тригонометрические функции

Простейшие тригонометрические уравнения, 1

Простейшие тригонометрические уравнения, 2

Тригонометрические уравнения. Методы решения

Повторим самое главное в тригонометрии.

— Выучи, что такое синус и что такое косинус произвольного угла.

Из курса геометрии ты помнишь, что синус острого угла в прямоугольном треугольнике – это отношение противолежащего катета к гипотенузе, а косинус – отношение прилежащего катета к гипотенузе. Однако это частные случаи для углов, больших нуля и меньших 90 градусов. А мы говорим о произвольном угле. Определения синуса и косинуса произвольного угла – в этом разделе.

Тригонометрический круг, или тригонометрическая окружность, – твоя универсальная шпаргалка. Значения синусов и косинусов основных углов, знаки синуса и косинуса в четвертях, четность и нечетность синуса и косинуса и многое другое – на тригонометрическом круге.

Формулы приведения не надо зубрить наизусть! Надо понять, как они получаются.

— Сколько формул тригонометрии нужно знать, чтобы уверенно решать задачи? Три – это мало. 100 – это много. В нашей таблице 29 формул. Их хватит для решения любой задачи ЕГЭ. И на первом курсе вуза тоже пригодится!

— Как решать тригонометрические уравнения? Не спеши учить формулы. Сначала разберись, почему их решения именно такие. Выучи определения и свойства обратных тригонометрических функций – арксинуса, арккосинуса, арктангенса и арккотангенса.

И тренируйся на реальных задачах ЕГЭ!

Благодарим за то, что пользуйтесь нашими материалами.
Информация на странице «Тригонометрия» подготовлена нашими редакторами специально, чтобы помочь вам в освоении предмета и подготовке к экзаменам.
Чтобы успешно сдать нужные и поступить в высшее учебное заведение или техникум нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими материалами из разделов нашего сайта.

Публикация обновлена:
09.03.2023

Тригонометрическими уравнениями называют уравнения, в которых переменная содержится под знаком тригонометрических функций. К их числу прежде всего относятся простейшие тригонометрические уравнения, т.е. уравнения вида $sin x=a, cos x=a, tg x=a$, где $а$ – действительное число.

Перед решением уравнений разберем некоторые тригонометрические выражения и формулы.

$1$ радиан $={180}/{π}≈57$  градусов

$1$ градус $={π}/{180}$ радиан

Значения тригонометрических функций некоторых углов

$α$ $ 0$ ${π}/{6}$ ${π}/{4}$ ${π}/{3}$ ${π}/{2}$ $π$
$sinα$ $ 0$ $ {1}/{2}$ $ {√2}/{2}$ $ {√3}/{2}$ $ 1$ $ 0$  
$cosα$ $ 1$ $ {√3}/{2}$ $ {√2}/{2}$ $ {1}/{2}$ $ 0$ $ -1$  
$tgα$ $ 0$ $ {√3}/{3}$ $ 1$ $ √3$ $ -$ $ 0$  
$ctgα$ $ -$ $ √3$ $ 1$ $ {√3}/{3}$ $ 0$ $ -$  

Периоды повтора значений тригонометрических функций

Период повторения у синуса и косинуса $2π$, у тангенса и котангенса $π$

Знаки тригонометрических функций по четвертям

Эта информация нам пригодится для использования формул приведения. Формулы приведения необходимы для понижения углов до значения от $0$ до $90$ градусов.

Чтобы правильно раскрыть формулы приведения необходимо помнить, что:

  1. если в формуле содержатся углы $180°$ и $360°$ ($π$ и $2π$), то наименование функции не изменяется; (если же в формуле содержатся углы $90°$ и $270°$ (${π}/{2}$ и ${3π}/{2}$), то наименование функции меняется на противоположную (синус на косинус, тангенс на котангенс и т. д.);
  2. чтобы определить знак в правой части формулы ($+$ или $-$), достаточно, считая угол $α$ острым, определить знак преобразуемого выражения.

Преобразовать $сos(90° + α)$. Прежде всего, мы замечаем, что в формуле содержится угол $90$, поэтому $cos$ измениться на $sin$.

$сos(90° + α)=sinα$

Чтобы определить знак перед $sinα$, предположим, что угол $α$ острый, тогда угол $90° + α$ должен оканчиваться во 2-й четверти, а косинус угла, лежащего во 2-й четверти, отрицателен. Поэтому, перед $sinα$ нужен знак $-$.

$сos(90° + α)= — sinα$ — это конечный результат преобразования

Четность тригонометрических функций

Косинус четная функция: $cos(-t)=cos t$

Синус, тангенс и котангенс нечетные функции: $sin(-t)= — sin t; tg(-t)= — tg t; ctg(-t)= — ctg t$

Тригонометрические тождества

  1. $tgα={sinα}/{cosα}$
  2. $ctgα={cosα}/{sinα}$
  3. $sin^2α+cos^2α=1$ (Основное тригонометрическое тождество)

Из основного тригонометрического тождества можно выразить формулы для нахождения синуса и косинуса

$sinα=±√{1-cos^2α}$

$cosα=±√{1-sin^2α}$

  1. $tgα·ctgα=1$
  2. $1+tg^2α={1}/{cos^2α}$
  3. $1+ctg^2α={1}/{sin^2α}$

Вычислить $sin t$, если $cos t = {5}/{13} ; t ∈({3π}/{2};2π)$

Найдем $sin t$ через основное тригонометрическое тождество. И определим знак, так как $t ∈({3π}/{2};2π)$ -это четвертая четверть, то синус в ней имеет знак минус

$sin⁡t=-√{1-cos^2t}=-√{1-{25}/{169}}=-√{{144}/{169}}=-{12}/{13}$

Формулы двойного угла

  1. $sin2α=2sinα·cosα$
  2. $cos2α=cos^2α-sin^2α=2cos^2α-1=1-2sin^2α$
  3. $tg2α={2tgα}/{1-tg^2α}$

Формулы суммы и разности

$cosα+cosβ=2cos{α+β}/{2}·cos{α-β}/{2}$

$cosα-cosβ=2sin{α+β}/{2}·sin{β-α}/{2}$

$sinα+sinβ=2sin{α+β}/{2}·cos{α-β}/{2}$

$sinα-sinβ=2sin{α-β}/{2}·cos{α+β}/{2}$

Формулы произведения

$cosα·cosβ={cos(α-β)+cos(α+β)}/{2}$

$sinα·sinβ={cos(α-β)-cos(α+β)}/{2}$

$sinα·cosβ={sin(α+β)+sin(α-β)}/{2}$

Формулы сложения

$cos(α+β)=cosα·cosβ-sinα·sinβ$

$cos(α-β)=cosα·cosβ+sinα·sinβ$

$sin(α+β)=sinα·cosβ+cosα·sinβ$

$sin(α-β)=sinα·cosβ-cosα·sinβ$

Вычислить $sin12cos18+cos12sin18$

Данное выражение является синусом суммы

$sin12cos18+cos12sin18= sin⁡(12+18)=sin30=0.5$

Задача (Вписать в ответ число)

Вычислить $sin{5π}/{12} cos {π}/{12}+cos {π}/{12} sin {5π}/{12}$

Решение:

Данное выражение является синусом суммы

$sin {5π}/{12} cos {π}/{12}+cos {π}/{12} sin {5π}/{12}=sin⁡({π}/{12}+{5π}/{12})=sin {6π}/{12}=sin {π}/{2}=1$

Ответ: $1$

Обратные тригонометрические функции и простейшие тригонометрические уравнения

Арккосинус

Если, $|а|≤1$, то $arccos а$ – это такое число из отрезка $[0;π]$, косинус которого равен $а$.

Если, $|а|≤1$, то $arccos а = t ⇔ {table cos (t)=a; ≤t≤π;$

$arcos(-a) = π-arccos⁡a$, где $0≤а≤1$

Уравнение вида $cos t=a$, eсли, $|а|≤1$, имеет решение

$t=±arccos ⁡ a+2πk; k∈Z$

Частные случаи

$cos t =1, t = 2πk;k∈Z$

$cos t = 0, t = {π}/{2}+πk;k∈Z$

$cos t = -1, t=π+2πk;k∈Z$

Найдите наименьший положительный корень уравнения $сos{2πx}/{3}=-{√3}/{2}$

$сos{2πx}/{3}=-{√3}/{2}$

${2πx}/{3}=±arccos⁡(-{√3}/{2})+2πk;kϵZ$

${2πx}/{3}=±(π-arccos{√3}/{2})+2πk;kϵZ$

${2πx}/{3}=±(π-{π}/{6})+2πk;kϵZ$

${2πx}/{3}=±{5π}/{6} +2πk;kϵZ$

Далее избавимся от всех величин, мешающих иксу. Для этого разделим обе части уравнения на ${2π}/{3}$

$x=±{5π·3}/{6·2π} +{2π·3}/{2π}k$

$x=±1,25+3k$

Чтобы найти наименьший положительный корень, подставим вместо $k$ целые значения

$k=0$

$x_1= -1,25$

$x_2=1,25$

$к=1$

$х_1=3-1,25=1,75$

$х_2=3+1,25=4,25$

Нам подходит $1,25$ – это и есть результат

Ответ: $1,25$

Арксинус

Если, $|а|≤1$, то $arcsin a$ – это такое число, из отрезка $[-{π}/{2};{π}/{2}]$, синус которого равен $а$.

Если, $|а|≤1$, то $arcsin a = t ⇔ {table sint=a; -{π}/{2}≤t≤{π}/{2};$

$arcsin(-a)= — arcsin a$, где $0≤а≤1$

Если, $|а|≤1$, то уравнение $sin t =a$ можно решить и записать двумя способами:

$1. t_1 = arcsin a+2πk;k∈Z$

$t_2 = (π- arcsin a)+ 2πk;k∈Z$

$2. t=(-1)^n arcsin ⁡ a+πn; n∈Z$

$3.$ Частные случаи

$sin t = 0, t=πk;k∈Z$

$sin t = 1, t={π}/{2}+2πk;k∈Z$

$sin t = -1,t=-{π}/{2}+2πk;k∈Z$

Арктангенс

$arctg a$ — это такое число, из отрезка $[-{π}/{2};{π}/{2}]$, тангенс которого равен $а$.

$arctg a = t ⇔ {table tgt=a; -{π}/{2}≤t≤{π}/{2};$

$arctg(-a)= — arctg a$

Уравнение $tg t = a$ имеет решение $t= arctg a+πk;k∈Z$

Смотрите бесплатные видео-уроки по теме “Тригонометрия” на канале Ёжику Понятно.

Ёжику Понятно

Видео-уроки на канале Ёжику Понятно. Подпишись!

Содержание страницы:

  • Тригонометрия в прямоугольном треугольнике
  • Тригонометрический круг
  • Основное тригонометрическое тождество
  • Таблица значений тригонометрических функций
  • Градусы и радианы
  • Формулы приведения
  • Теорема синусов
  • Расширенная теорема синусов
  • Теорема косинусов
  • Тригонометрические уравнения (10-11 класс)
  • Примеры решений заданий из ОГЭ

Тригонометрия в прямоугольном треугольнике

Рассмотрим прямоугольный треугольник. Для каждого из острых углов найдем прилежащий к нему катет и противолежащий.

Тригонометрические функции в прямоугольном треугольнике Тригонометрические функции в прямоугольном треугольнике

Синус угла – отношение противолежащего катета к гипотенузе.

sin α = Противолежащий катет гипотенуза

Косинус угла – отношение прилежащего катета к гипотенузе.

cos α = Прилежащий катет гипотенуза

Тангенс угла – отношение противолежащего катета к прилежащему (или отношение синуса к косинусу).

tg α = Противолежащий катет Прилежащий катет

Котангенс угла – отношение прилежащего катета к противолежащему (или отношение косинуса к синусу).

ctg α = Прилежащий катет Противолежащий катет

Рассмотрим прямоугольный треугольник ABC, угол C равен 90°:

Прямоугольный треугольник

sin ∠ A = C B A B

cos ∠ A = A C A B

tg ∠ A = sin ∠ A cos ∠ A = C B A C

ctg ∠ A = cos ∠ A sin ∠ A = A C C B

sin ∠ B = A C A B

cos ∠ B = B C A B

tg ∠ B = sin ∠ B cos ∠ B = A C C B

ctg ∠ B = cos ∠ B sin ∠ B = C B A C

Тригонометрия: Тригонометрический круг

Тригонометрия на окружности – это довольно интересная абстракция в математике. Если понять основной концепт так называемого “тригонометрического круга”, то вся тригонометрия будет вам подвластна. В описании к видео есть динамическая модель тригонометрического круга.

Тригонометрический круг – это окружность единичного радиуса с центром в начале координат. 

Такая окружность пересекает ось х в точках ( − 1 ; 0 ) и ( 1 ; 0 ) , ось y в точках ( 0 ; − 1 ) и ( 0 ; 1 )

На данной окружности будет три шкалы отсчета – ось x, ось y и сама окружность, на которой мы будем откладывать углы.

Углы на тригонометрической окружности откладываются от точки с координатами ( 1 ; 0 ) , – то есть от положительного направления оси x, против часовой стрелки. Пусть эта точка будет называться S (от слова start). Отметим на окружности точку A. Рассмотрим ∠ S O A , обозначим его за α . Это центральный угол, его градусная мера равна дуге, на которую он опирается, то есть ∠ S O A = α = ∪ S A .

Тригонометрический круг

Давайте найдем синус и косинус этого угла. До этого синус и косинус мы искали в прямоугольном треугольнике, сейчас будем делать то же самое. Для этого опустим перпендикуляры из точки A на ось x (точка B) и на ось игрек (точка C).

Синус и косинус на тригонометрическом круге

Отрезок OB является проекцией отрезка OA на ось x, отрезок OC является проекцией отрезка OA на ось y.

Рассмотрим прямоугольный треугольник AOB:

cos α = O B O A = O B 1 = O B

sin α = A B O A = A B 1 = A B

Поскольку O C A B – прямоугольник, A B = C O .

Итак, косинус угла – координата точки A по оси x (ось абсцисс), синус угла – координата точки A по оси y (ось ординат).

Давайте рассмотрим еще один случай, когда угол α – тупой, то есть больше 90 ° :

Тригонометрический круг, тупой угол

Опускаем из точки A перпендикуляры к осям x и y. Точка B в этом случае будет иметь отрицательную координату по оси x. Косинус тупого угла отрицательный.

Можно дальше крутить точку A по окружности, расположить ее в III или даже в IV четверти, но мы пока не будем этим заниматься, поскольку в курсе 9 класса рассматриваются углы от 0 ° до 180 ° . Поэтому мы будем использовать только ту часть окружности, которая лежит над осью x.  (Если вас интересует тригонометрия на полной окружности, смотрите видео на канале). Отметим на этой окружности углы 0 ° , 30 ° , 45 ° , 60 ° , 90 ° , 120 ° , 135 ° , 150 ° , 180 ° . Из каждой точки на окружности, соответствующей углу, опустим перпендикуляры на ось x и на ось y.

Тригонометрический круг, значения углов

Координата по оси x – косинус угла, координата по оси y – синус угла.

Пример:

cos 150 ° = − 3 2

sin 150 ° = 1 2

Ещё одно замечание.

Синус тупого угла – положительная величина, а косинус – отрицательная.

Тангенс – это отношение синуса к косинусу. При делении положительной величины на отрицательную результат отрицательный. Тангенс тупого угла отрицательный.

Котангенс – отношение косинуса к синусу. При делении отрицательной величины на положительную результат отрицательный. Котангенс тупого угла отрицательный.

Основное тригонометрическое тождество

sin 2 α + cos 2 α = 1

Данное тождество – теорема Пифагора в прямоугольном треугольнике O A B :

Основное тригонометрическое тождество, тригонометрический круг

A B 2 + O B 2 = O A 2

sin 2 α + cos 2 α = R 2

sin 2 α + cos 2 α = 1

Тригонометрия: Таблица значений тригонометрических функций

30° 45° 60° 90°
sinα 0 12 22 32 1
cosα 1 32 22 12 0
tgα 0 33 1 3 нет
ctgα нет 3 1 33 0

Тригонометрия: градусы и радианы

Как перевести градусы в радианы, а радианы в градусы? Как и когда возникла градусная мера угла? Что такое радианы и радианная мера угла? Ищите ответы в этом видео!

Тригонометрия: Формулы приведения

Тригонометрия на окружности имеет некоторые закономерности. Если внимательно рассмотреть данный рисунок,

Тригонометрический круг, формулы приведения

можно заметить, что:

sin 180 ° = sin ( 180 ° − 0 ° ) = sin 0 °

sin 150 ° = sin ( 180 ° − 30 ° ) = sin 30 °

sin 135 ° = sin ( 180 ° − 45 ° ) = sin 45 °

sin 120 ° = sin ( 180 ° − 60 ° ) = sin 60 °

cos 180 ° = cos ( 180 ° − 0 ° ) = − cos 0 °

cos 150 ° = cos ( 180 ° − 30 ° ) = − cos 30 °

cos 135 ° = cos ( 180 ° − 45 ° ) = − cos 45 °

cos 120 ° = cos ( 180 ° − 60 ° ) = − cos 60 °

Рассмотрим тупой угол β:

Смежные углы

Для произвольного тупого угла β = 180 ° − α всегда будут справедливы следующие равенства:

sin ( 180 ° − α ) = sin α

cos ( 180 ° − α ) = − cos α

tg ( 180 ° − α ) = − tg α

ctg ( 180 ° − α ) = − ctg α

Тригонометрия: Теорема синусов

В произвольном треугольнике стороны пропорциональны синусам противолежащих углов.

Треугольник ABC

a sin ∠ A = b sin ∠ B = c sin ∠ C

Тригонометрия: Расширенная теорема синусов

Отношение стороны к синусу противолежащего угла равно двум радиусам описанной вокруг данного треугольника окружности.

Треугольник ABC, описанная окружность радиуса R

a sin ∠ A = b sin ∠ B = c sin ∠ C = 2 R

Тригонометрия: Теорема косинусов

Квадрат стороны треугольника равен сумме квадратов двух других сторон минус удвоенное произведение этих сторон на косинус угла между ними.

Треугольник ABC

a 2 = b 2 + c 2 − 2 b c ⋅ cos ∠ A

b 2 = a 2 + c 2 − 2 a c ⋅ cos ∠ B

c 2 = a 2 + b 2 − 2 a b ⋅ cos ∠ C

Примеры решений заданий из ОГЭ

Модуль геометрия: задания, связанные с тригонометрией.

Скачать домашнее задание к уроку 1.

Тригонометрия: Тригонометрические уравнения

Это тема 10-11 классов.

Из серии видео ниже вы узнаете, как решать простейшие тригонометрические уравнения, что такое обратные тригонометрические функции, зачем они нужны и как их использовать. Если вы поймёте эти базовые темы, то вскоре сможете без проблем решать любые тригонометрические уравнения любого уровня сложности!

Чуть больше 30% выпускников справляется с тригонометрией на ЕГЭ по математике. И неудивительно: для решения заданий из базы и профиля надо знать очень много формул, которые сложно освоить за 1-2 года. На самом деле, это миф! Чтобы решить задания по тригонометрии, нужно знать всего 5 формул — и просто уметь ими пользоваться.

тригонометрия егэ

Тригонометрия на ЕГЭ: 5 формул для базы и профиля

Тригонометрия на ЕГЭ: основные проблемы темы

Чаще всего тригонометрию начинают изучать в 10 классе — но в некоторых школах оставляют до 11. В первом случае у учеников есть 2 года, чтобы освоить новую тему. А во втором, к сожалению, всего год. И это проблема. Дело в том, что в тригонометрии очень много формул, которые нужно знать, чтобы успешно решать задания. Если за 2 года их можно успеть выучить, то за год это будет сделать проблематично.

Ситуация осложняется ещё двумя факторами. Во-первых, в самой математике много формул, признаков, теорем и т.д. Во-вторых, кроме математики есть и другие экзамены, для которых нужно выучить большой объём информации.

Именно поэтому я всегда советую своим ученикам не учить формулы для тригонометрии на ЕГЭ, а выводить! Но об этом мы поговорим чуть позже, а сейчас давайте обсудим, почему тригонометрия так важна и где в ЕГЭ ее можно встретить.

Задания по тригонометрии в базе и профиле на ЕГЭ

Так как ЕГЭ по математике делится на базовый и профильный, а тригонометрия встречается в обоих, то давайте рассмотрим оба уровня экзамена.

Тригонометрия в базе

Что касается Базового уровня, то в нём всего 3 задания, в которых можно столкнуться с тригонометрией:

В № 7 в виде простейшего выражения

Как правило, для успешного решения таких заданий достаточно воспользоваться формулами из справочного материала.

тригонометрия в егэ база

Пример задания № 7 по тригонометрии, демоверсия ЕГЭ

В № 8 в виде формулы прикладной задачи

Стоит отметить, что в базовом ЕГЭ в прикладных задачах тригонометрия попадается редко, но нужно быть готовыми.

тригонометрия в егэ база

Пример задания № 8 по тригонометрии, демоверсия ЕГЭ

В № 15 как тригонометрия в геометрии

В справочном материале есть вся необходимая информация для успешного решения данного задания, а именно определение всех тригофункций в прямоугольном треугольнике.

тригонометрия в егэ база

Пример задания № 15 по тригонометрии, демоверсия ЕГЭ

Тригонометрия в профиле

Базовый уровень мы рассмотрели, теперь перейдём к профильному. Здесь уже больше вариантов, в которых можно встретиться с тригонометрией. Давайте посмотрим на Части 1 и 2.

В № 3 как тригонометрия в геометрии (Часть 1)

То же самое задание, как в базовом ЕГЭ, вот только в справочном материале уже нет необходимой информации.

тригонометрия егэ профиль задания

Пример задания № 3 по тригонометрии, демоверсия ЕГЭ

В № 4 в виде выражения (Часть 1)

То же самое задание, как в базовом ЕГЭ.

тригонометрия егэ профиль задания

Пример задания № 4 по тригонометрии, демоверсия ЕГЭ

В № 7 в виде формулы прикладной задачи (Часть 1)

То же самое задание, как в базовом ЕГЭ. Для успешного решения подойдут базовые навыки работы с тригонометрией.

тригонометрия егэ профиль задания

Пример задания № 7 по тригонометрии, демоверсия ЕГЭ

В № 11 как часть функции (Часть 1)

Функцию нужно проанализировать для поиска наибольшего/наименьшего значения или точек максимума/минимума.

тригонометрия егэ профиль задания

Пример задания № 11 по тригонометрии, демоверсия ЕГЭ

Если с Частью 1 профиля всё более-менее очевидно, то во второй части бывают сюрпризы, о которых ученики даже не подозревают. Да-да, тригонометрия на ЕГЭ умеет прятаться и в Части 2. Давайте посмотрим на эти задания.

В № 12 (Часть 2)

Тут сюрпризов нет. Это уравнение второй части, в котором ученики как раз ожидают увидеть тригонометрию, хотя она там бывает не всегда!

тригонометрия егэ профиль задания

Пример задания № 12 по тригонометрии, демоверсия ЕГЭ

В № 13 — стереометрия (Часть 2)

Да, тригонометрия может встретиться здесь в виде теоремы синусов или теоремы косинусов, а ещё в виде формул в методе координат (для любителей решать этим методом).

В № 16 — планиметрия (Часть 2)

Здесь всё аналогично стереометрии: есть геометрические формулы, в которых прячется тригонометрия. Ведь, как я и сказала выше, в геометрии она тоже бывает!

5 формул тригонометрии: теория для ЕГЭ

А теперь предлагаю перейти к самому интересному — а именно к формулам. К сожалению, их действительно много. А ещё они похожи, и если их просто учить (или бездумно зубрить), то велик риск перепутать «+» с «–» или забыть какую-нибудь единичку.

Именно поэтому я рекомендую не учить формулы, а выводить. Это очень удобно тем более, что в профильном ЕГЭ по математике весь справочный материал состоит из 5-ти формул тригонометрии, из которых очень легко выводятся все остальные.

Но прежде чем я расскажу вам, как выводятся тригонометрические формулы, пообещайте, что обязательно отработаете все правила выведения! Для этого нужно будет регулярно выводить формулы по указанным ниже схемам.

Вот формулы, которые будут у вас в справочном материале:

тригонометрия теория для егэ

Тригонометрия: теория для ЕГЭ — 5 основных формул

Формула № 1 и как она пригодится в поиске котангенса и тангенса

Первая формула — основное тригонометрическое тождество (ОТТ):

тригонометрия теория для егэ

Тригонометрия: теория для ЕГЭ — формула № 1

Обычно ученики знают ее очень хорошо. Она связывает синус и косинус и помогает найти одну функцию через другую.

С этой формулой косвенно связана другая (ее нет в справочном материале), которая тоже легко дается школьникам:

тригонометрия теория для егэ

Тригонометрия: теория для ЕГЭ

Эту формулу очень легко запомнить, если знать, как можно расписать тангенс и котангенс через синус и косинус:

тригонометрия теория для егэ

Тригонометрия: теория для ЕГЭ

Эти 2 формулы связывают по отдельности синус с косинусом и тангенс с котангенсом. Но иногда требуется, чтобы были связаны все 4 функции, и здесь на помощь приходят следствия из ОТТ (как раз та самая формула № 1).

Чтобы вывести следствия нужно всего лишь разделить ОТТ на sin2 и cos2:

тригонометрия теория для егэ

Тригонометрия: теория для ЕГЭ — что выводится из формулы № 1

Теперь можно легко найти:

  • котангенс, зная синус,
  • или тангенс, зная косинус.

Формула № 2 и что из нее можно вывести

С тождествами разобрались, давайте перейдём к формулам двойного угла. Что касается синуса двойного угла (вторая формула в справочном материале):

тригонометрия теория для егэ

Тригонометрия: теория для ЕГЭ — формула № 2

Здесь всё просто, берёте и применяете формулу, если видите, что она нужна для задания.

Формула № 3 и что из нее можно вывести

А вот с косинусом двойного угла (третья формула в справочном материале) всё интереснее. Безусловно, косинус двойного угла:

тригонометрия теория для егэ

Тригонометрия: теория для ЕГЭ — формула № 3

в чистом виде встречается, и тогда вы делаете всё тоже самое, что с синусом. Но на самом деле есть ещё 2 формулы, которые очень просто вывести, используя ОТТ (формулу № 1). Для начала нужно выразить квадрат синуса и квадрат косинуса из ОТТ (Шаг 1):

тригонометрия теория для егэ

Тригонометрия: теория для ЕГЭ — как еще найти косинус двойного угла (Шаг 1)

А потом нужно подставить эти значения в формулу (6, или третья формула справочного материала) (Шаг 2):

тригонометрия теория для егэ

Тригонометрия: теория для ЕГЭ — как еще найти косинус двойного угла (Шаг 2)

Вот мы вывели ещё 2 формулы! А сейчас я покажу вам как практически ничего не делая получить ещё 2. Мы будем выводить формулы понижения степени из формул двойного угла. Смотрите, нужно всего лишь выразить одно из другого:

тригонометрия теория для егэ

Тригонометрия: теория для ЕГЭ — что выводится из формулы № 3

Формулы № 4 и 5 и что из них можно вывести

Давайте посмотрим на справочный материал, у нас там ещё целых 2 формулы, из которых мы получим конечно же ещё 2! Сейчас вообще ничего удивительного не будет. Вот формулы, которые уже даны:

тригонометрия теория для егэ

Тригонометрия: теория для ЕГЭ — формулы № 4 и 5

Как вы заметили, они для суммы углов, а чтобы получить формулы для разности углов, нам нужно всего лишь поменять знаки в формуле на противоположные (разумеется, я говорю про «+» и «–»):

тригонометрия теория для егэ

Тригонометрия: теория для ЕГЭ — что выводится из формул № 4 и 5

Вот так при помощи нехитрых преобразований из 5-ти формул справочного материала мы получили целых 14!

Все скриншоты взяты из открытого банка заданий ФИПИ или из демоверсий ЕГЭ по математике 2022.

Что еще пригодится вам для тригонометрии на ЕГЭ

Скажу по секрету, что это далеко не все формулы тригонометрии, которые существуют. Есть и другие:

  • некоторые можно вывести из вышеуказанных,
  • некоторые можно обобщить и вместо огромного количества формул использовать короткое правило.

Но мне кажется, что пока этого и так много!

Советую сначала хорошо отработать формулы, которые я перечислила в этой статье, и только потом браться за другие. Так вы не загрузите свою память и будете быстрее решать сложные задания по тригонометрии из ЕГЭ. Это, кстати, касается любой темы на экзамене по математике: а в ЕГЭ их очень много. Поэтому чтобы получить высокий балл, надо правильно и системно отработать их все.

Именно так я и строю подготовку к ЕГЭ по математике вместе со своими учениками: строгая система подготовки — ключ к успеху на экзамене. Сначала мы разбираем простые темы и задания и учимся решать их самыми удобными способами — почти на автомате. А после я добавляю более хитрые и сложные задания. В итоге ребята и имеют хорошую базу знаний по математике, и умеют решать самые разные типы задач. Так что если вы хотите по-настоящему знать математику, а не зазубривать формулы, приходите на мои уроки!

А чтобы отрабатывать выведение было не так скучно, держите моего котика, который любезно согласился позировать в позе котангенса:

тригонометрия егэ

Тригонометрия ЕГЭ: КОТангенс

Хотя, положа руку на сердце, я скажу тебе, что знание последней не так уж и обязательно (хотя желательно!), поскольку она легко выражается через тангенс.

Да и сам тангенс, по сути – тоже лишь тригонометрическое выражение, зависящее от синуса и косинуса.

Таким образом, у нас есть две основные тригонометрические функции – синус и косинус и две «второстепенные» – тангенс и котангенс.

Я не буду сейчас определять, что такое синус и косинус, ты и так это уже знаешь из предыдущих разделов. Я лишь скажу пару слов про важность этих понятий.

Итак, пара слов: первые зачатки тригонометрии возникли более 3 тысяч лет назад. Я думаю, что тебе очевидно, что тогда люди не занимались «формулами ради формул».

Так что тригонометрические функции имеют полезные практические свойства. Я не буду их перечислять. Если тебе интересно, ты всегда можешь найти море информации в интернете.

Если все, что я сказал выше, звучало для тебя древним эльфийским языком, то посмотри статью о тригонометрической окружности.

А сейчас я приведу тебе некоторые основные соотношения между тригонометрическими величинами, которые оказываются полезными при решении задач.

Уже получилось 7 формул! К сожалению, это еще далеко не предел. Совсем не предел.

Тем не менее последние 4 формулы есть ни что иное, как простое следствие первой. В самом деле, ты заметил, почему это так?

Формула 4 получается делением обеих частей формулы 1 на ( displaystyle co{{s}^{2}}alpha ) и применением формулы 2.

Формула 5 получается аналогично: разделим обе части формулы 1 на ( displaystyle si{{n}^{2}}alpha ) и вместо выражения ( displaystyle frac{co{{s}^{2}}alpha }{si{{n}^{2}}alpha }) запишем ( displaystyle ct{{g}^{2}}alpha ), исходя из определения 3.

Формулы 1 – 5 мы трактуем вполне однозначно. Чего нельзя сказать про формулы 6 и 7. В чем «фишка» формул 6 и 7?

Их особенность заключается в знаке ( displaystyle pm ), который стоит перед корнем.

Как это понимать? А понимать надо так: в некоторых случаях мы ставим плюс, а в некоторых – минус.

Теперь у тебя должен возникнуть вопрос: в каких-таких «некоторых случаях»? Туманность этой формулировки снимается следующим правилом:

Если в формуле
( displaystyle sin alpha =pm sqrt{1-co{{s}^{2}}alpha })
угол ( displaystyle alpha ) таков, что ( displaystyle text{sin} text{ }!!alpha!!text{ }<0), то ставим знак «минус», иначе – «плюс».

Если в формуле
( displaystyle cos alpha =pm sqrt{1-si{{n}^{2}}alpha })
угол ( displaystyle alpha ) таков, что ( displaystyle text{cos} text{ }!!alpha!!text{ }<0), то ставим знак «минус», иначе – «плюс».

Есть опять некий «запутанный» момент в правиле, не так ли? В чем осталось разобраться?

Осталось понять, как связан угол со знаком тригонометрической функции. Ответом на этот вопрос (если ты, конечно, забыл) служат следующие картинки:

Они подскажут тебе, какой нужно выбирать знак для той или иной функции, так что ты не допустишь досадной ошибки.

К тому же это избавит тебя от мучительных размышлений по поводу того «а зачем в этом примере нужен этот угол?!».

Решения:

1. Так как ( displaystyle cosalpha =pm sqrt{1-si{{n}^{2}}alpha }), то подставим сюда значение( displaystyle sinalpha =-frac{2sqrt{2}}{3}), тогда ( displaystyle cosalpha =pm sqrt{1-{{left( -frac{2sqrt{2}}{3} right)}^{2}}}=pm sqrt{1-frac{4cdot 2}{9}}=pm sqrt{1-frac{8}{9}}=)

( displaystyle=pm sqrt{frac{1}{9}}=pm frac{1}{3}.)

Теперь дело за малым: разобраться со знаком. Что нам для этого нужно? Знать, в какой четверти находится наш угол.

По условию задачи: ( displaystyle alpha in left( frac{3pi }{2};2pi right)). Смотри на картинку. Какая это четверть? Четвертая.

Каков знак косинуса в четвертой четверти? На картинке стоит знак «плюс», значит косинус в четвертой четверти положительный.

Тогда нам остается выбрать знак «плюс» перед ( displaystyle frac{1}{3}). ( displaystyle text{cos} text{ }!!alpha!!text{ }=frac{1}{3}), тогда ( displaystyle 3cosalpha =3cdot frac{1}{3}=1).

Ответ: ( displaystyle 1).

Ну вот видишь, ничего сложного. Абсолютно ничего. Нужно лишь запомнить знаки синуса, косинуса и тангенса (котангенса) по четвертям. Ну а как это делать автоматически описано в статье, посвященной тригонометрической окружности.

Давай разберем оставшиеся примеры.

2. Так как ( displaystyle sin alpha =pm sqrt{1-co{{s}^{2}}alpha }), то все, что нам нужно – это подставить ( displaystyle cosalpha =frac{2sqrt{6}}{5}) в нашу формулу. Что мы с тобой и сделаем:

( displaystyle sinalpha =pm sqrt{1-{{left( frac{2sqrt{6}}{5} right)}^{2}}}=pm sqrt{1-left( frac{4cdot 6}{25} right)}=pm sqrt{frac{1}{25}}=pm frac{1}{5}).

Опять нужно определиться со знаком. Смотрим на рисунок. Четверть – снова четвертая. Знак синуса четвертой четверти – отрицательный. Ставим знак «минус». ( displaystyle sinalpha =-frac{1}{5}), тогда ( displaystyle 5sinalpha =-5cdot frac{1}{5}=-1).

Ответ: ( displaystyle -1).

3. Ничего нового. Скорее для закрепления. Снова подставляем в формулу ( displaystyle cos alpha =pm sqrt{1-si{{n}^{2}}alpha }) значение ( displaystyle sinalpha =frac{2sqrt{6}}{5}):

( displaystyle cosalpha =pm sqrt{1-{{left( frac{2sqrt{6}}{5} right)}^{2}}}=pm sqrt{1-left( frac{4cdot 6}{25} right)}=pm sqrt{frac{1}{25}}=pm frac{1}{5}).

Смотрим на знак косинуса при ( displaystyle alpha in left( frac{pi }{2};pi right)). Какая это четверть? Вторая. Косинус второй четверти отрицательный. Тогда выбираем знак «минус».

Ответ: ( displaystyle -0,2).

4. Здесь перед нами стоит задачка чуть сложнее. Однако, не стоит огорчаться. Давай вспомним, что такое тангенс. Это ведь отношение синуса к косинусу. Синус нам уже дан.

Давай вначале найдем косинус. Как это сделать, ты уже знаешь. ( displaystyle cosalpha =pm sqrt{1-{{left( -frac{5}{sqrt{26}} right)}^{2}}}=pm sqrt{1-frac{25}{26}}=pm sqrt{frac{1}{26}}=pm frac{1}{sqrt{26}}).

Так как ( displaystyle alpha in left( pi ;frac{3pi }{2} right)) (это угол в третьей четверти, а косинус в третьей четверти имеет знак «минус»), то ( displaystyle cosalpha =-frac{1}{sqrt{26}}).

Теперь все, что нам осталось, это воспользоваться определением тангенса:

( displaystyle tgalpha =frac{sinalpha }{cosalpha }=frac{-frac{5}{sqrt{26}}}{-frac{1}{sqrt{26}}}=5.)

Ответ: ( displaystyle 5).

Уф, выдохнули! Ну вот мы с тобой решили некоторые (довольно типичные и распространенные) примеры. Ты спросишь: «И что, это все?». Я отвечу, что, увы нет. Это далеко не все.

Далее нам потребуются более сложные формулы тригонометрии.

Разбор 3 примеров

1. Доказать тождество: ( displaystyle frac{3-4cos2alpha +cos4alpha }{3+4cos2alpha +cos4alpha }=t{{g}^{4}}alpha )

С виду тождество угрожающе! Но разберёмся по порядку. Формулы понижения степени, конечно, если их прочитать задом наперёд повышают степень!

И вообще, приглядись внимательно: первые две формулы есть ничто иное, как косинус двойного угла, записанный в несколько странной форме!

Вот и распишем по правилам:

( displaystyle begin{array}{l}frac{3-4cos2alpha +cos4alpha }{3+4cos2alpha +cos4alpha }=frac{3-4cos2alpha +left( 2{cos^{2}}2alpha -1 right)}{3+4cos2alpha +left( 2{cos^{2}}2alpha -1 right)}=\=frac{2-4cos2alpha +2{cos^{2}}2alpha }{2+4cos2alpha +2{cos^{2}}2alpha }=frac{1-2cos2alpha +{cos^{2}}2alpha }{1+2cos2alpha +{cos^{2}}2alpha }end{array})

Тебе ничего по форме не напоминают числитель и знаменатель дроби? Приглядись внимательно, здесь «зарыта» хорошо известная тебе формула. Увидел её? Это же квадрат разности и квадрат суммы! (Подробнее об этом читай в статье о  формулах сокращенного умножения)

( displaystyle frac{1-2cos2alpha +{cos^{2}}2alpha }{1+2cos2alpha +{cos^{2}}2alpha }=frac{{{left( 1-cos2alpha right)}^{2}}}{{{left( 1+cos2alpha right)}^{2}}}={{left( frac{1-cos2alpha }{1+cos2alpha } right)}^{2}})

А выражение в скобках есть ничто иное, как ( displaystyle t{{g}^{2}}alpha ), окончательно получим:

( displaystyle {{left( frac{1-cos2alpha }{1+cos2alpha } right)}^{2}}={{left( t{{g}^{2}}alpha right)}^{2}}=t{{g}^{4}}alpha )

Тождество доказано!

Следующий пример очень схож с предыдущим, постарайся решить его самостоятельно.

2. Доказать тождество: ( displaystyle frac{1+sin2alpha +cos2alpha }{1+sin2alpha -cos2alpha }=ctgalpha )

Решение (хотя может и отличаться от твоего):

Опять «повысим степень» у косинуса: ( displaystyle cos2alpha =2{cos^{2}}alpha -1)

( displaystyle frac{1+sin2alpha +cos2alpha }{1+sin2alpha -cos2alpha }=frac{1+sin2alpha +2{cos^{2}}alpha -1}{1+sin2alpha -2{cos^{2}}alpha +1}=frac{sin2alpha +2{cos^{2}}alpha }{2+sin2alpha -2{cos^{2}}alpha })

Надо сокращать дальше! Что делать? Ясно, что надо избавляться от двойных углов у синуса. Действуем по формуле синуса двойного угла и сокращаем двойки:

( displaystyle frac{sin2alpha +2{cos^{2}}alpha }{2+sin2alpha -2{cos^{2}}alpha }=frac{2sin{alpha} cos{alpha} +2{cos^{2}}alpha }{2+2sin{alpha} cos{alpha}-2{cos^{2}}alpha }=frac{sinalpha cosalpha +{cos^{2}}alpha }{1+sinalpha cos{alpha}-{cos^{2}}alpha })

Числитель раскладывается на множители. Знаменатель –пока нет. До тех пор, пока мы не применим основное тригонометрическое тождество:

( displaystyle 1-{cos^{2}}alpha ={sin^{2}}alpha )

( displaystyle frac{sinalpha cosalpha +{cos^{2}}alpha }{1+sinalpha cosalpha -{cos^{2}}alpha }=frac{sinalpha cosalpha +{cos^{2}}alpha }{{sin^{2}}alpha +sinalpha cosalpha }=frac{cosalpha left( sinalpha +cosalpha right)}{sinalpha left( sinalpha +cosalpha right)}=ctgalpha )

Вот ещё один пример, но не такой простой.

3. Доказать, что если ( displaystyle 0<alpha <frac{pi }{2}), то ( displaystyle sqrt{1+sinalpha }-sqrt{1-sinalpha }=2sinfrac{alpha }{2})

Зачем нам дан угол? Наверное, чтобы оценить выражения: синус ( displaystyle alpha )будет положительным, ( displaystyle sinfrac{alpha }{2}>0,~1+sinalpha >1,~0<1-sinalpha <1)

Тогда и левая, и правая части тождества больше нуля. Это даёт мне право без задней мысли возвести их в квадрат:

( displaystyle {{left( sqrt{1+sinalpha }-sqrt{1-sinalpha } right)}^{2}}=4{sin^{2}}frac{alpha }{2}) – вот такое тождество нам нужно теперь доказать.

Раскроем скобки в левой части по формуле квадрата разности!

( displaystyle begin{array}{l}{{left( sqrt{1+sin alpha }-sqrt{1-sin alpha } right)}^{2}}=1+sin alpha -2sqrt{1+sin alpha }cdot sqrt{1-sin alpha }+1-\-sin alpha =2-2sqrt{1+sin alpha }cdot sqrt{1-sin alpha }=2left( 1-sqrt{1+sin alpha }cdot sqrt{1-sin alpha } right)=\2left( 1-sqrt{1+{{sin }^{2}}alpha } right)=2left( 1-sqrt{{cos^{2}}}alpha right)end{array})

Я не сомневаюсь в твоей грамотности и поэтому даже не упоминаю про использованные мною формулы в выкладках. 

Теперь надо бы убрать корень из косинуса. Но мы знаем, что просто так это делать нельзя, ибо ( displaystyle sqrt{{{a}^{2}}}=left| a right|). 

В то же время вспоминаем про четверть: наш угол лежит в первой четверти, тогда косинус имеет знак «плюс» и мы просто убираем корень: 

( displaystyle 2left( 1-sqrt{{cos^{2}}}alpha right)=2left( 1-cosalpha right))

Тогда нам надо доказать, что

( displaystyle 2left( 1-cosalpha right)=4{sin^{2}}frac{alpha }{2})

( displaystyle left( 1-cosalpha right)=2{sin^{2}}frac{alpha }{2})

Справа применим формулу понижения степени:

( displaystyle {sin^{2}}frac{alpha }{2}=frac{1-cosalpha }{2}), тогда ( displaystyle 2{sin^{2}}frac{alpha }{2}=1-cosalpha )

Тождество доказано!

Конечно, можно привести ещё массу примеров, где применяются формулы понижения степени, ты их и сам без труда отыщешь.

Теперь вторая (и заключительная в этом обзоре) группа формул – формулы преобразования произведения в сумму и суммы в произведение.

Решение 5 примеров

1. Доказать тождество: ( displaystyle frac{sinalpha +sin3alpha }{cosalpha +cos3alpha }=tg2alpha )

Давай не будем долго думать, а, как говорится, пойдём в лобовую атаку: в числителе и знаменателе перейдём от суммы к произведению:

( displaystyle begin{array}{l}~frac{sinalpha+sin3alpha}{cosalpha+cos3alpha}=frac{2sinfrac{alpha+3alpha}{2}cosfrac{alpha-3alpha}{2}}{2cosfrac{alpha+3alpha}{2}cosfrac{alpha-3alpha}{2}}=frac{2cdot sin2alphacdot cosleft( -alpha right)}{2cdot cos2alphacdot cosleft( -alpha right)}=\=frac{sin2alpha}{cos2alpha}=tg2alphaend{array})

И минуты не прошло, а пример уже решён!

Теперь попробуй сам.

2. Доказать тождество: ( displaystyle frac{sin2alpha +sin4alpha }{cos2alpha -cos4alpha }=ctgalpha )

Решение – опять лобовая атака:

( displaystyle begin{array}{l}frac{sin2alpha+sin4alpha}{cos2alpha-cos4alpha}=frac{2sinfrac{2alpha+4alpha}{2}cosfrac{2alpha-4alpha}{2}}{-2sinfrac{2alpha+4alpha}{2}sinfrac{2alpha-4alpha}{2}}=frac{2sin3alphacdot cosleft( -alpha right)}{-2sin3alphacdot sinleft( -alpha right)}=frac{cosleft( -alpha right)}{-sinleft( -alpha right)}end{array})

Так как синус – функция нечётная, а косинус – чётная, то:

( displaystyle frac{cosleft( -alpha right)}{-sinleft( -alpha right)}=frac{cosalpha }{-left( -sinalpha right)}=frac{cosalpha }{sinalpha }=ctgalpha )

Этот пример чуть похитрее, будь внимателен!

3. Доказать тождество: ( displaystyle frac{sin2alpha +sin5alpha -sin3alpha }{cosalpha +1-2{sin^{2}}2alpha }=2sinalpha )

Я не хочу трогать синус двойного угла. Уж больно он удобно раскладывается на множители, чего не скажешь о синусе тройного и тем более пятикратного угла.

Поэтому я сверну в произведение последние 2 слагаемых в числителе:

( displaystyle begin{array}{l}frac{sin2alpha +sin5alpha -sin3alpha }{cosalpha +1-2{sin^{2}}2alpha }=frac{sin2alpha +2sinfrac{5alpha -3alpha }{2}cosfrac{5alpha +3alpha }{2}}{cosalpha +1-2{sin^{2}}2alpha }=\=frac{2sinalpha cosalpha +2sinalpha cos4alpha }{cosalpha +1-2{sin^{2}}2alpha }=frac{2sinalpha left( cosalpha +cos4alpha right)}{cosalpha +1-2{sin^{2}}2alpha }end{array})

Конечно, теперь можно было бы и свернуть числитель ещё раз, но я пойду иным путём. В знаменателе у меня тоже спрятана формула, вот она: 

( displaystyle 1-2{sin^{2}}2alpha ). 

Что это за формула? Это косинус двойного угла!

( displaystyle 1-2{sin^{2}}2alpha =cosleft( 2cdot 2alpha right)=cos4alpha )

( displaystyle frac{2sinalpha left( cosalpha +cos4alpha right)}{cosalpha +1-2{sin^{2}}2alpha }=frac{2sinalpha left( cosalpha +cos4alpha right)}{cosalpha +cos4alpha }=2sinalpha )

Тождество доказано!

Теперь попробуй решить вот этот пример для закрепления пройденного материала.

4. Доказать тождество: ( displaystyle {cos^{4}}alpha -{sin^{4}}alpha +sin2alpha =sqrt{2}cosleft( 2alpha -frac{pi }{4} right))

Проверяем!

( displaystyle begin{array}{l}{cos^{4}}alpha -{sin^{4}}alpha +sin2alpha =left( {cos^{2}}alpha -{sin^{2}}alpha right)left( {cos^{2}}alpha +{sin^{2}}alpha right)+sin2alpha =\=cos2alpha +sin2alpha end{array})

C другой стороны:

( displaystyle begin{array}{l}sqrt{2}cos left( 2alpha-frac{pi }{4} right)=sqrt{2}left( cos{2alpha}cos{frac{pi }{4}}+sin{2alpha}sin{frac{pi }{4}} right)=\=sqrt{2}left( frac{sqrt{2}}{2}cos2alpha+frac{sqrt{2}}{2}sin2alpha right)=sqrt{2}cdot frac{sqrt{2}}{2}left( cos2alpha+sin2alpha right)=\=cos2alpha+sin2alphaend{array})

Тождество доказано!

На этом примере я буду закругляться потихоньку.

Сразу оговорюсь: не переживай и не волнуйся, если у тебя что-то сразу не выходит. Тригонометрия – сложная и очень обширная тема. Здесь все зависит не только от знания формул, но и от мастерства и смекалки. На их выработку тебе понадобится время и усердие.

Более того, скажу тебе вот что: изначально я хотел вставить другой пример в качестве заключительного. Однако на его решение мне понадобилось около 20 минут, причём я использовал ещё более сложную методику его решения. Так что не только ты сталкиваешься с трудностями при решении примеров, трудности бывают у всех! 

Все-таки я приведу здесь этот трудный пример, вдруг да и получится у тебя решить его, может, я что-то упустил. Вот он:

5. Упростить: ( displaystyle frac{1+sinalpha -cos2alpha -sin3alpha }{2{sin^{2}}alpha +sinalpha -1})

А вот какой у меня получился в итоге ответ: ( displaystyle 2sinalpha.)

Дерзай!

В следующей части статьи я рассмотрю его решение, но прибегну к ещё более изощрённой технике нежели та, что рассматривалась здесь! Удачи!

Формулы понижения 3-й степени

  • ( displaystyle si{{n}^{3}}alpha =frac{3sinalpha -sin3alpha }{4})
  • ( displaystyle co{{s}^{3}}a=frac{3cosa+cos3a}{4})

Из данных формул можно вывести формулы тройного угла.

Формулы тройного угла

  • ( displaystyle sin3alpha =3sinalpha -4si{{n}^{3}}alpha )
  • ( displaystyle cos3a=4co{{s}^{3}}a-3cosa)
  • ( displaystyle tg3alpha =frac{3tgalpha -t{{g}^{3}}alpha }{1-3t{{g}^{2}}alpha })
  • ( displaystyle ctg3alpha =frac{3ctgalpha -ct{{g}^{3}}alpha }{1-3ct{{g}^{2}}alpha })

Ты мне можешь задать резонный вопрос: как часто эти формулы используются? Я отвечу: постарайся избегать прибегать к ним. Они нужны на тот случай, когда ничего другого уже не можешь придумать.

В частности, они могут быть полезными при решении сложных уравнений, которые встречаются во вступительных экзаменах на математические специальности. 

Однако уравнениям у нас будет посвящена отдельная статья, так что здесь я рассмотрю случаи, когда данные формулы позволяют упрощать тригонометрические выражения.

Пример 1

Упростить: ( displaystyle A=frac{1}{3}co{{s}^{3}}alpha cdot sin3alpha +frac{1}{3}si{{n}^{3}}alpha cdot cos3alpha )

Решение:

Подставим вместо ( displaystyle sin3alpha ) и ( displaystyle cos3alpha ) их представления согласно формулам тройного угла, тогда:

( displaystyle begin{array}{l}A=frac{1}{3}co{{s}^{3}}alpha left( 3sinalpha -4si{{n}^{3}}alpha right)+frac{1}{3}si{{n}^{3}}alpha left( 4co{{s}^{3}}alpha -3cosalpha right)=\=co{{s}^{3}}alpha cdot sinalpha -frac{4}{3}co{{s}^{3}}alpha cdot si{{n}^{3}}alpha +frac{4}{3}co{{s}^{3}}alpha cdot si{{n}^{3}}alpha -si{{n}^{3}}alpha cdot cosalpha =\=co{{s}^{3}}alpha cdot sinalpha -si{{n}^{3}}alpha cdot cosalpha end{array})

Теперь вынесем в оставшемся выражении общий множитель за скобки:

( displaystyle co{{s}^{3}}alpha cdot sinalpha -si{{n}^{3}}alpha cdot cosalpha =sinalpha cdot cosalpha left( co{{s}^{2}}alpha -si{{n}^{2}}alpha right))

По формулам двойного угла: ( displaystyle sinalpha cdot cosalpha =frac{1}{2}sin2alpha ), ( displaystyle co{{s}^{2}}alpha -si{{n}^{2}}alpha =cos2alpha ):

( displaystyle sinalpha cdot cosalpha left( co{{s}^{2}}alpha -si{{n}^{2}}alpha right)=frac{1}{2}sin2alpha cdot cos2alpha )

Ну а здесь снова спрятан синус двойного угла:

( displaystyle frac{1}{2}sin2alpha cdot cos2alpha =frac{1}{4}sin4alpha )

Ответ: ( displaystyle A=frac{1}{4}sin4alpha )

Следующий пример попробуй решить самостоятельно. Не уверен, что в нем обязательно использовать формулу тройного угла, но можно сделать и с ее помощью.

Пример 2

Упростить: ( displaystyle frac{1+sinalpha -cos^2{alpha}-cos2alpha -sin3alpha }{2si{{n}^{2}}alpha +sinalpha -1})

Решение:

Моя цель – свести числитель дроби к выражению, зависящему только от синусов одиночного угла. Для этого я преобразую

( displaystyle cos^2 {alpha} =1-si{{n}^{2}}alpha )

( displaystyle cos2alpha =1-2si{{n}^{2}}alpha )

( displaystyle sin3alpha =3sinalpha -4si{{n}^{3}}alpha )

Имеем:

( displaystyle begin{array}{l}frac{1+sinalpha -cos2alpha -sin3alpha }{2si{{n}^{2}}alpha +sinalpha -1}=frac{1+sinalpha -left( 1-si{{n}^{2}}alpha right) -left( 1-2si{{n}^{2}}alpha right)-left( 3sinalpha -4si{{n}^{3}}alpha right)}{2si{{n}^{2}}alpha +sinalpha -1}=\=frac{4si{{n}^{3}}alpha +3si{{n}^{2}}alpha -2sinalpha -1}{2si{{n}^{2}}alpha +sinalpha -1}end{array})

Казалось бы, стало еще хуже. Но это так кажется. Давай для удобства вычислений заменим ( displaystyle sinalpha =t), тогда мне надо упростить дробь

( displaystyle frac{4{{t}^{3}}+3{{t}^{2}}-2t-1}{2{{t}^{2}}+t-1})

Нижнее выражение разложим на множители:

( displaystyle 2{{t}^{2}}+t-1=left( t+1 right)left( 2t-1 right))

С верхним фокус сложнее. Мы не умеем с тобой решать кубические уравнения. Но мы хорошо играем в «угадайку».

Угадай-ка один корень уравнения ( displaystyle 4{{t}^{3}}+3{{t}^{2}}-2t-1=0). Угадал? Я угадал ( displaystyle -1).

Тогда по теореме Безу (которую ты, быть может, знаешь, а если не знаешь, то без проблем отыщешь сам) выражение ( displaystyle 4{{t}^{3}}+3{{t}^{2}}-2t-1) делится без остатка на ( displaystyle t+1)

Разделим столбиком ( displaystyle 4{{t}^{3}}+3{{t}^{2}}-2t-1) на ( displaystyle t+1). Я получу:

( displaystyle 4{{t}^{3}}+3{{t}^{2}}-2t-1=left( t+1 right)left( 4{{t}^{2}}-t-1 right))

В свою очередь ( displaystyle 4{{t}^{2}}-t-1=4left( t-frac{1}{2} right)left( t+frac{1}{4} right))

Окончательно получим:

( displaystyle begin{array}{l}frac{4{{t}^{3}}+3{{t}^{2}}-2t-1}{2{{t}^{2}}+t-1}=frac{4left( t+1 right)left( t-frac{1}{2} right)left( t+frac{1}{4} right)}{left( t+1 right)left( 2t-1 right)}=frac{left( t+1 right)left( 2t-1 right)left( 2t+0,5 right)}{left( t+1 right)left( 2t-1 right)}=\=2t+0,5end{array})

Тогда исходное выражение можно упростить до: ( displaystyle 2sinx+0,5)

В завершение я приведу тебе пример одного уравнения, которое было предложено на психологический (???!!!) факультет одного из ВУЗов в 1990 году. Такие задачи называются задачи-гробы (никакая смекалка без знания конкретной формулы не позволит их решить):

Решить уравнение: ( displaystyle sqrt{3}co{{s}^{3}}x-3co{{s}^{2}}x-3sqrt{3}cosx+1=0)

Не сделав вот такую странную замену: ( displaystyle cosx=tgalpha ) решить его очень сложно. А с такой заменой у нас получится вот что:

( displaystyle sqrt{3}t{{g}^{3}}alpha -3t{{g}^{2}}alpha -3sqrt{3}tgalpha +1=0)

( displaystyle sqrt{3}t{{g}^{3}}alpha -3sqrt{3}tgalpha =3t{{g}^{2}}alpha -1)

( displaystyle sqrt{3}(t{{g}^{3}}alpha -3tgalpha )=3t{{g}^{2}}alpha -1)

( displaystyle -sqrt{3}left( 3tgalpha -t{{g}^{3}}alpha right)=-left( 1-3t{{g}^{2}}alpha right))

( displaystyle frac{left( 3tgalpha -t{{g}^{3}}alpha right)}{left( 1-3t{{g}^{2}}alpha right)}=frac{1}{sqrt{3}})

А вот ради чего весь этот сыр-бор: ( displaystyle frac{left( 3tgalpha -t{{g}^{3}}alpha right)}{left( 1-3t{{g}^{2}}alpha right)}=tg3alpha )

( displaystyle tg3alpha =frac{1}{sqrt{3}})

Это уравнение уже несказанно легче решается. Скоро мы вместе в этом убедимся. Но тут проблема в обратной замене… Тем не менее, эта задача почти нерешаема без знания формулы тангенса тройного угла. Вот так вот.

Бонусы: Вебинары из нашего курса подготовки к ЕГЭ по математике

ЕГЭ 9. Тригонометрическая окружность, табличные значения

На этом уроке мы узнаем, что такое тригонометрическая окружность и насколько она важна для тригонометрии. М

ы увидим, что она – основной инструмент в тригонометрии: с её помощью можно вывести любую формулу и найти любые значения.

Мы поймем, как “работает” окружность – а значит, поймём тригонометрию в целом.

ЕГЭ 13б. Тригонометрическая окружность

Тригонометрическая окружность – это очень простой и эффективный инструмент для решения любой тригонометрической задачи. На этом уроке вы узнаете как пользоваться тригонометрической окружностью для решения пункта “б” из задачи №13 профильного ЕГЭ.

Пункт “б” задачи №13 ЕГЭ 2020 В 2020 году на ЕГЭ в пункте “б” необходимо было указать корни тригонометрического уравнения принадлежащие отрезку.

Вообще-то решать пункт “б” можно двумя способами: – отметить корни уравнения на единичной окружности (способ разобранный в этом видео); – через двойное неравенство.

И вы должны знать, что второй способ чуть дольше, чем первый, но зато вы сможете проще описать все ваши рассуждения и вам будет сложнее ошибиться.

И еще один плюс второго способа – его проще оформить, так, чтобы к вам не придрались на ЕГЭ.

Мы считаем второй способ (через двойное неравенство) более предпочтительным на ЕГЭ по математике, но теме не менее для глубокого понимания темы (что может выручить на ЕГЭ) необходимо разобраться и с первым способом

(blacktriangleright) Рассмотрим прямоугольную систему координат и в ней окружность с единичным радиусом и центром в начале координат.

Угол в (1^circ) — это такой центральный угол, который опирается на дугу, длина которой равна (dfrac1{360}) длины всей окружности.

(blacktriangleright) Будем рассматривать на окружности такие углы, у которых вершина находится в центре окружности, а одна сторона всегда совпадает с положительным направлением оси (Ox) (на рисунке выделено красным).
На рисунке таким образом отмечены углы (45^circ, 180^circ,
240^circ)
:


Заметим, что угол (0^circ) — это угол, обе стороны которого совпадают с положительным направлением оси (Ox).

Точку, в которой вторая сторона такого угла (alpha) пересекает окружность, будет называть (P_{alpha}).
Положение точки (P_{0}) будем называть начальным положением.

Таким образом, можно сказать, что мы совершаем поворот по окружности из начального положения (P_0) до положения (P_{alpha}) на угол (alpha).

(blacktriangleright) Поворот по окружности против часовой стрелки — это поворот на положительный угол. Поворот по часовой стрелке — это поворот на отрицательный угол.

Например, на рисунке отмечены углы (-45^circ, -90^circ,
-160^circ)
:

(blacktriangleright) Рассмотрим точку (P_{30^circ}) на окружности. Для того, чтобы совершить поворот по окружности из начального положения до точки (P_{30^circ}), необходимо совершить поворот на угол (30^circ) (оранжевый). Если мы совершим полный оборот (то есть на (360^circ)) и еще поворот на (30^circ), то мы снова попадем в эту точку, хотя уже был совершен поворот на угол (390^circ=360^circ+30^circ) (голубой). Также попасть в эту точку мы можем, совершив поворот на (-330^circ) (зеленый), на (750^circ=360^circ+360^circ+30^circ) и т.д.


Таким образом, каждой точке на окружности соответствует бесконечное множество углов, причем отличаются эти углы друг от друга на целое число полных оборотов ((ncdot360^circ, ninmathbb{Z})).
Например, угол (30^circ) на (360^circ) больше, чем угол (-330^circ), и на (2cdot 360^circ) меньше, чем угол (750^circ).

Все углы, находящиеся в точке (P_{30^circ}) можно записать в виде: (alpha=30^circ+ncdot 360^circ, ninmathbb{Z}).

(blacktriangleright) Угол в (1) радиан — это такой центральный угол, который опирается на дугу, длина которой равна радиусу окружности:

Т.к. длина всей окружности радиусом (R) равна (2pi R), а в градусной мере — (360^circ), то имеем (360^circ=2pi cdot
1textbf{ рад})
, откуда [180^circ=pi textbf{ рад}] Это основная формула, с помощью которой можно переводить градусы в радианы и наоборот.

Пример 1. Найти радианную меру угла (60^circ).

Т.к. (180^circ = pi Rightarrow 1^circ = dfrac{pi}{180}
Rightarrow 60^circ=dfrac{pi}3)

Пример 2. Найти градусную меру угла (dfrac34 pi).

Т.к. (pi=180^circ Rightarrow dfrac34 pi=dfrac34 cdot
180^circ=135^circ)
.

Обычно пишут, например, не (dfrac{pi}4 text{ рад}), а просто (dfrac{pi}4) (т.е. единицу измерения “рад” опускают). Обратим внимание, что обозначение градуса при записи угла не опускают. Таким образом, под записью “угол равен (1)” понимают, что “угол равен (1) радиану”, а не “угол равен (1) градусу”.

Т.к. (pi thickapprox 3,14 Rightarrow 180^circ thickapprox 3,14
textbf{ рад} Rightarrow 1 textbf{ рад} thickapprox 57^circ)
.
Такую приблизительную подстановку делать в задачах нельзя, но знание того, чему приближенно равен (1) радиан в градусах часто помогает при решении некоторых задач. Например, таким образом проще найти на окружности угол в (5) радиан: он примерно равен (285^circ).

(blacktriangleright) Из курса планиметрии (геометрии на плоскости) мы знаем, что для углов (0<alpha< 90^circ) определены синус, косинус, тангенс и котангенс следующим образом:
если дан прямоугольный треугольник со сторонами (a, b, c) и углом (alpha), то:

Т.к. на единичной окружности определены любые углы (alphain(-infty;+infty)), то нужно определить синус, косинус, тангенс и котангенс для любого угла.
Рассмотрим единичную окружность и на ней угол (alpha) и соответствующую ему точку (P_{alpha}):

Опустим перпендикуляр (P_{alpha}K) из точки (P_{alpha}) на ось (Ox). Мы получим прямоугольный треугольник (triangle OP_{alpha}K), из которого имеем: [sinalpha=dfrac{P_{alpha}K}{P_{alpha}O} qquad cos alpha=dfrac{OK}{P_{alpha}O}] Заметим, что отрезок (OK) есть не что иное, как абсцисса (x_{alpha}) точки (P_{alpha}), а отрезок (P_{alpha}K) — ордината (y_{alpha}). Заметим также, что т.к. мы брали единичную окружность, то (P_{alpha}O=1) — ее радиус.
Таким образом, [sinalpha=y_{alpha}, qquad cos alpha=x_{alpha}]

Таким образом, если точка (P_{alpha}) имела координаты ((x_{alpha},;y_{alpha})), то через соответствующий ей угол ее координаты можно переписать как ((cosalpha,;sinalpha)).

Определение: 1. Синусом угла (alpha) называется ордината точки (P_{alpha}), соответствующей этому углу, на единичной окружности.

2. Косинусом угла (alpha) называется абсцисса точки (P_{alpha}), соответствующей этому углу, на единичной окружности.

Поэтому ось (Oy) называют осью синусов, ось (Ox) — осью косинусов.

(blacktriangleright) Окружность можно разбить на (4) четверти, как показано на рисунке.

Т.к. в (I) четверти и абсциссы, и ординаты всех точек положительны, то косинусы и синусы всех углов из этой четверти также положительны.
Т.к. во (II) четверти ординаты всех точек положительны, а абсциссы — отрицательны, то косинусы всех углов из этой четверти — отрицательны, синусы — положительны.
Аналогично можно определить знак синуса и косинуса для оставшихся четвертей.

Пример 3. Так как, например, точки (P_{frac{pi}{6}}) и (P_{-frac{11pi}6}) совпадают, то их координаты равны, т.е. (sindfrac{pi}6=sin left(-dfrac{11pi}6right), cos
dfrac{pi}6=cos
left(-dfrac{11pi}6right))
.

Пример 4. Рассмотрим точки (P_{alpha}) и (P_{pi-alpha}). Пусть для удобства (0<alpha<dfrac{pi}2).


Проведем перпендикуляры на ось (Ox): (OK) и (OK_1). Треугольники (OKP_{alpha}) и (OK_1P_{pi-alpha}) равны по гипотенузе и углу ((angle P_{alpha}OK=angle P_{pi-alpha}OK_1=alpha)).
 
Следовательно, (OK=OK_1, KP_{alpha}=K_1P_{pi-alpha}).
 
Т.к. координаты точки (P_{alpha}=(OK;KP_{alpha})=(cosalpha,;sinalpha)), а точки (P_{pi-alpha}=(-OK_1;K_1P_{pi-alpha})=(cos(pi-alpha),;sin(pi-alpha))), следовательно, [cos(pi-alpha)=-cosalpha, qquad sin(pi-alpha)=sinalpha]

Таким образом доказываются и другие формулы, называемые формулами приведения: [{large{begin{array}{l|r}
hline sin(pi-alpha)=sinalpha &
cos(pi-alpha)=-cosalpha\[2ex]
sin(pi+alpha)=-sinalpha &
cos(pi+alpha)=-cosalpha\[2ex]
sin(2pipmalpha)=pmsinalpha & cos
(2pipmalpha)=cosalpha\[2ex]
sin left(dfrac{pi}2pmalpharight)=cosalpha &
cosleft(dfrac{pi}2pmalpharight)=pmsinalpha\[2ex]
hline
end{array}}}]

С помощью этих формул можно найти синус или косинус любого угла, сведя это значение к синусу или косинусу угла из (I) четверти.

Таблица синусов, косинусов, тангенсов и котангенсов углов из первой четверти:
[{large{begin{array}{|c|c|c|c|c|c|}
hline &&&&&\[-17pt]
& quad 0 quad (0^ circ)& quad dfrac{pi}6 quad (30^circ)
& quad dfrac{pi}4
quad (45^circ) & quad dfrac{pi}3 quad (60^circ)& quad dfrac{pi}2 quad
(90^circ) \
&&&&&\[-17pt]
hline sin & 0 &frac12&frac{sqrt2}2&frac{sqrt3}2&1\[4pt]
hline cos &1&frac{sqrt3}2&frac{sqrt2}2&frac12&0\[4pt]
hline mathrm{tg} &0 &frac{sqrt3}3&1&sqrt3&infty\[4pt]
hline mathrm{ctg} &infty &sqrt3&1&frac{sqrt3}3&0\[4pt]
hline
end{array}}}]

Заметим, что данные значения были выведены в разделе “Геометрия на плоскости (планиметрия). Часть II” в теме “Начальные сведения о синусе, косинусе, тангенсе и котангенсе”.

Пример 5. Найдите (sin{dfrac{3pi}4}).

Преобразуем угол: (dfrac{3pi}4=dfrac{4pi-pi}{4}=pi-dfrac{pi}4)

Таким образом, (sin{dfrac{3pi}4}=sinleft(pi-dfrac{pi}4right)=sindfrac{pi}4=dfrac{sqrt2}2).

(blacktriangleright) Для упрощения запоминания и использования формул приведения можно следовать следующему правилу.

Случай 1. Если угол можно представить в виде (ncdot pipm
alpha)
, где (ninmathbb{N}), то [sin(ncdot pipm
alpha)=bigodot sinalpha]
где на месте (bigodot) стоит знак синуса угла (ncdot pipm alpha). [cos(ncdot pipm
alpha)=bigodot cosalpha]
где на месте (bigodot) стоит знак косинуса угла (ncdot pipm alpha).

Знак угла можно найти, определив, в какой четверти он находится. Пользуясь таким правилом, предполагаем, что угол (alpha) находится в (I) четверти.

Случай 2. Если угол можно представить в виде (ncdot
pi+dfrac{pi}2pmalpha)
, где (ninmathbb{N}), то [sin(ncdot pi+dfrac{pi}2pm
alpha)=bigodot cosalpha]
где на месте (bigodot) стоит знак синуса угла (ncdot pipm alpha). [cos(ncdot pi+dfrac{pi}2pm
alpha)=bigodot sinalpha]
где на месте (bigodot) стоит знак косинуса угла (ncdot pipm alpha).

Знак определяется таким же образом, как и в случае (1).

Заметим, что в первом случае функция остается неизменной, а во втором случае — меняется (говорят, что функция меняется на кофункцию).

Пример 6. Найти (sin dfrac{13pi}{3}).

Преобразуем угол: (dfrac{13pi}{3}=dfrac{12pi+pi}{3}=4pi+dfrac{pi}3), следовательно, (sin dfrac{13pi}{3}=sin
left(4pi+dfrac{pi}3right)=sindfrac{pi}3=dfrac{sqrt3}2)

Пример 7. Найти (cos dfrac{17pi}{6}).

Преобразуем угол: (dfrac{17pi}{6}=dfrac{18pi-pi}{6}=3pi-dfrac{pi}6), следовательно, (cos dfrac{17pi}{6}=cos
left(3pi-dfrac{pi}6right)=-cosdfrac{pi}6=-dfrac{sqrt3}2)

(blacktriangleright) Область значений синуса и косинуса.
Т.к. координаты (x_{alpha}) и (y_{alpha}) любой точки (P_{alpha}) на единичной окружности находятся в пределах от (-1) до (1), а (cosalpha) и (sinalpha) — абсцисса и ордината соответственно этой точки, то [{large{-1leq cosalphaleq 1 ,qquad -1leqsinalphaleq 1}}]

Из прямоугольного треугольника по теореме Пифагора имеем: (x^2_{alpha}+y^2_{alpha}=1^2)
Т.к. (x_{alpha}=cosalpha, y_{alpha}=sinalpha Rightarrow) [{large{sin^2alpha+cos^2alpha=1}} — textbf{основное тригонометрическое тождество (ОТТ)}]

(blacktriangleright) Тангенс и котангенс.

Т.к. (mathrm{tg},alpha=dfrac{sinalpha}{cosalpha}, cosalphane 0)

(mathrm{ctg},alpha=dfrac{cosalpha}{sinalpha}, sinalphane 0), то:

1) ({large{mathrm{tg},alphacdot mathrm{ctg},alpha=1, cosalphane 0, sinalpha ne 0}})

2) тангенс и котангенс положительны в (I) и (III) четвертях и отрицательны в (II) и (IV) четвертях.

3) область значений тангенса и котангенса — все вещественные числа, т.е. (mathrm{tg},alphainmathbb{R},
mathrm{ctg},alphainmathbb{R})

4) для тангенса и котангенса также определены формулы приведения.

Случай 1. Если угол можно представить в виде (ncdot pipm
alpha)
, где (ninmathbb{N}), то [mathrm{tg},(ncdot pipm
alpha)=bigodot mathrm{tg},alpha]
где на месте (bigodot) стоит знак тангенса угла (ncdot pipm alpha) ((cosalphane 0)). [mathrm{ctg},(ncdot pipm
alpha)=bigodot mathrm{ctg},alpha]
где на месте (bigodot) стоит знак котангенса угла (ncdot pipm alpha) ((sinalphane 0)).

Случай 2. Если угол можно представить в виде (ncdot
pi+dfrac{pi}2pmalpha)
, где (ninmathbb{N}), то [mathrm{tg},(ncdot pi+dfrac{pi}2pm
alpha)=bigodot mathrm{ctg},alpha]
где на месте (bigodot) стоит знак тангенса угла (ncdot pipm alpha) ((sinalphane 0)). [mathrm{ctg},(ncdot pi+dfrac{pi}2pm
alpha)=bigodot mathrm{tg},alpha]
где на месте (bigodot) стоит знак котангенса угла (ncdot pipm alpha) ((cosalphane 0)).

5) ось тангенсов проходит через точку ((1;0)) параллельно оси синусов, причем положительное направление оси тангенсов совпадает с положительным направлением оси синусов;
ось котангенсов — через точку ((0;1)) параллельно оси косинусов, причем положительное направление оси котангенсов совпадает с положительным направлением оси косинусов.

Доказательство этого факта приведем на примере оси тангенсов.

(triangle OP_{alpha}K sim triangle AOB Rightarrow
dfrac{P_{alpha}K}{OK}=dfrac{BA}{OB} Rightarrow
dfrac{sinalpha}{cosalpha}=dfrac{BA}1 Rightarrow
BA=mathrm{tg},alpha)
.

Таким образом, если точку (P_{alpha}) соединить прямой с центром окружности, то эта прямая пересечет линию тангенсов в точке, значение которой равно (mathrm{tg},alpha).

6) из основного тригонометрического тождества вытекают следующие формулы: [1+mathrm{tg},^2alpha=dfrac1{cos^2alpha},cosalphane 0 qquad qquad 1+mathrm{ctg},^2alpha=dfrac1{sin^2alpha}, sinalphane 0] Первую формулу получают делением правой и левой частей ОТТ на (cos^2alpha), вторую — делением на (sin^2alpha).

Обращаем внимание, что тангенс не определен в углах, где косинус равен нулю (это (alpha=dfrac{pi}2+pi n, ninmathbb{Z}));
котангенс не определен в углах, где синус равен нулю (это (alpha=pi+pi n, ninmathbb{Z})).

(blacktriangleright) Четность косинуса и нечетность синуса, тангенса, котангенса.

Напомним, что функция (f(x)) называется четной, если (f(-x)=f(x)).

Функция называется нечетной, если (f(-x)=-f(x)).

По окружности видно, что косинус угла (alpha) равен косинусу угла (-alpha) при любых значениях (alpha):

Таким образом, косинус — четная функция, значит, верна формула [{Large{cos(-x)=cos x}}]

По окружности видно, что синус угла (alpha) противоположен синусу угла (-alpha) при любых значениях (alpha):

Таким образом, синус — нечетная функция, значит, верна формула [{Large{sin(-x)=-sin x}}]

Тангенс и котангенс также нечетные функции: [{Large{mathrm{tg},(-x)=-mathrm{tg},x}}] [{Large{mathrm{ctg},(-x)=-mathrm{ctg},x}}]

Т.к. (mathrm{tg},(-x)=dfrac{sin (-x)}{cos(-x)}=dfrac{-sin
x}{cos x}=-mathrm{tg},x qquad mathrm{ctg},(-x)=dfrac{cos(-x)}{sin(-x)}=-mathrm{ctg},x)
)

Привет! На связи методический отдел федеральной сети курсов ЕГЭ и ОГЭ Lancman School («Ланцман скул»). Сегодня мы расскажем о том, как готовиться к ЕГЭ по профильной математике 2022 года.

Нелюбовь к тригонометрии в 10-11 классах может побить разве что страх перед стереометрией. Обычно опасение вызывают бесконечные столбцы формул и таблицы, которые заставляют учить для работы с тригонометрическими выражениями.

Но в ЕГЭ с тригонометрией всё достаточно просто. В первую очередь потому, что наизусть учить формул нужно даже меньше, чем для логарифмов. Вот популярный сборник формул для алгебры 10-11 класса. В нем мы выделили красным то, что нужно реально учить для экзамена.

ЕГЭ математика тригонометрия 2022

Видно, что номинально объем по тригонометрии в 2 раза превосходит всю остальную алгебру (в этом сборнике нет разве что производной). А вот почему на деле так мало нужно учить наизусть – мы и расскажем ниже.

1. Справочные материалы

Во-первых, несколько формул дадут прямо на самом экзамене (речь про профильный ЕГЭ по математике), вместе с КИМами. Вот они:

ЕГЭ математика тригонометрия 2022

2. Где и какая тригонометрия встречается на ЕГЭ

Формулы из третьего, самого правого столбца в большом сборнике формул либо уже есть среди этой пятерки выше, либо попросту не встречаются при решении ЕГЭшных задач. В крайнем случае что-то можно за несколько секунд вывести из этих пяти формул. Например,

ЕГЭ математика тригонометрия 2022

Давайте тут же разберемся, где вообще можно встретить тригонометрию в профильной математике – чтоб вы понимали, стоит ли вся игра свеч.

А вообще-то стоит. Тригонометрия может попасться в целых 4 из 18 заданий ЕГЭ.

1) Задание 4. Преобразование выражений. Пример:

ЕГЭ математика тригонометрия

2) Задание 7. Практическая работа с формулами. Пример:

ЕГЭ математика тригонометрия 2022

3) Задание 12. Уравнения, письменная часть. Пример:

ЕГЭ математика тригонометрия 2022

4) Задание 17. Выражение с параметром, письменная часть. Пример:

ЕГЭ математика тригонометрия 2022

В Задании 17, пожалуй, совсем редко встречается тригонометрия, но в остальных точно нужно быть к ней готовым. При этом самое большое разнообразие задач бывает в Задании 4.

Получается, нужно сфокусироваться на среднем столбце из большого сборника формул. И тут начинается самое интересное.

3. Большинство формул выводится

В самом деле, посмотрите на обведенные формулы в среднем столбце. Их очень мало, верно? Давайте разбираться по порядку с этим сборником, пойдем по его разделам.

1) Основные тождества

ЕГЭ математика тригонометрия 2022

Из этих тождеств в ЕГЭ используется определение тангенса и котангенса (слева), это и правда надо выучить. А все остальное – либо следует или выводится из этих определений (попробуйте, например, перемножить дроби у тангенса и котангенса), либо уже дано в справочных материалах.

ЕГЭ математика тригонометрия 2022

2) Тригонометрические уравнения

ЕГЭ математика тригонометрия 2022

Вместо заучивания кучи этих формул лучше заняться изучением тригонометрической окружности. Все равно для более уверенного решения №12 – особенно пункта б) – потребуется в ней хорошо ориентироваться. Возможно, на изучение окружности потребуется примерно столько же времени, что и на заучивание соответственных формул. Но, во-первых, в отличие от механически выученного материала – практический навык не пропадет из памяти из-за волнения и стресса на экзамене. Во-вторых, именно работа с окружностью поможет сориентироваться в более сложных и непривычных ситуациях.

ЕГЭ математика тригонометрия 2022

ЕГЭ математика тригонометрия 2022

ЕГЭ математика тригонометрия 2022

3) Значения тригонометрических функций от разных углов

ЕГЭ математика тригонометрия 2022

В таблице предлагается выучить в сумме значений больше в 5 раз, чем предлагаем мы (обведено красным). И это еще не самая обширная таблица.

ЕГЭ математика тригонометрия 2022

ЕГЭ математика тригонометрия 2022

4) Формулы приведения

Как раз в виде формул заучивать эту тему – крайне неблагодарное дело. Приглядитесь: с учетом различных знаков из таблицы ниже придется извлечь и выучить 36 формул, едва отличающихся друг от друга!

ЕГЭ математика тригонометрия 2022

Первый столбец вообще объясняется четностью-нечетностью функций и легко показывается (и вспоминается) через окружность. Другие формулы лучше не заучивать, а запомнить простой алгоритм в 2 шага. Сейчас мы им поделимся.

ЕГЭ математика тригонометрия 2022

ЕГЭ математика тригонометрия 2022

Шаг 2. Если исходная функция при исходном угле положительна, то знак перед выражением после «отбрасывания» не меняется. Если отрицательная – меняется на противоположный (или, можно сказать, происходит домножение на –1). В какой четверти какая функция положительна/отрицательна лучше не заучивать (см. рисунок ниже), а ориентироваться на оси.

ЕГЭ математика тригонометрия 2022

Да, почему ось Y – ось sin, а ось X – ось cos весьма легко понять, не заучивая этот факт. Вспомните определение, например, косинуса из геометрии: «прилежащий катет делить на гипотенузу». А теперь подставьте вместо прилежащего катета координату по оси X для треугольника, скажем, в 30° и вспомните, что в тригонометрической окружности r=1.

ЕГЭ математика тригонометрия 2022

Вот и разобрались со всеми формулами. Ведь третий столбец в большом списке учить вообще не надо, как мы писали выше.

Конечно, ответ в этой статье получился сложнее, чем просто «учите вот этот и этот параграф наизусть», потому что изучать всегда сложнее, чем заучивать. Да еще и самостоятельно. Поэтому желаем вам найти преподавателя, который прислушается к вашим запросам и учтет индивидуальные особенности вашего стиля обучения. И – если у вас возникнут проблемы с запоминанием – сможет показать, как разобраться с любой сложной темой, не заучивая механически большие объемы материала наизусть.

Хочешь БЕСПЛАТНО разобрать с опытным преподавателем все детали новых усложнённых вариантов ЕГЭ по профильной математике 2022 года — приходи на пробное занятие в Lancman School. Мы 13 лет готовим к ЕГЭ на высокие баллы и знаем об экзаменах и поступлении в хорошие вузы буквально всё. Решишь продолжить готовиться к ЕГЭ вместе с нами весь год — дадим скидку после бесплатного пробного занятия. Любой вопрос смело пиши сюда.

Если ты живешь не в Москве, но хочешь заниматься с лучшими столичными репетиторами и сдать ЕГЭ на 80+ баллов, то регистрируйся на наши онлайн-курсы. В этом году мы включили в договор пункт, гарантирующий поступление на бюджет в любой вуз страны. Если ученик будет соблюдать все обговоренные условия, он обязательно поступит. В противном случае мы вернём деньги. Первое пробное занятие БЕСПЛАТНО.

Обложка поста: pixabay.com

Like this post? Please share to your friends:
  • Все про таблицу менделеева егэ по химии
  • Все про сочинение егэ по русскому 2022
  • Все про смуту для егэ
  • Все про рюриковичей для егэ
  • Все про рюрика для егэ