Все типы 14 задания в егэ по математике профиль

Задание 14 Профильного ЕГЭ по математике можно считать границей между «неплохо сдал ЕГЭ» и «поступил в вуз с профильной математикой». Здесь не обойтись без отличного знания алгебры. Потому что встретиться вам может любое неравенство: показательное, логарифмическое, комбинированное (например, логарифмы и тригонометрия). И еще бывают неравенства с модулем и иррациональные неравенства. Некоторые из них мы разберем в этой статье.

Хотите получить на Профильном ЕГЭ не менее 70 баллов? Учитесь решать неравенства!

Темы для повторения:

New 

Решаем задачи из сборника И. В. Ященко, 2021

Квадратичные неравенства

Метод интервалов 

Уравнения и неравенства с модулем 

Иррациональные неравенства

Показательные неравенства

Логарифмические неравенства

Метод замены множителя (рационализации)

Решение неравенств: основные ошибки и полезные лайфхаки

Решаем задачи из сборника И. В. Ященко, 2020. Вариант 8, задача 15

Решаем задачи из сборника И. В. Ященко, 2020. Вариант 32, задача 15

Решаем задачи из сборника И. В. Ященко, 2020. Вариант 36, задача 15

Логарифмические неравенства повышенной сложности

Разберем неравенства разных типов из вариантов ЕГЭ по математике.

Дробно-рациональные неравенства 

1. Решите неравенство:

frac{{ 2}}{{ 0,5x}sqrt{{ 5}}{ -}{ 1}}{ +}frac{{ 0,5x}sqrt{{ 5}}{ -}{ 2}}{{ 0,5x}sqrt{{ 5}}{ -}{ 3}} geq { 2.}

Сделаем замену { 0,5x}sqrt{{ 5}}{ -}{ 2=t}.

Тогда { 0,5x}sqrt{{ 5}}{ -}{ 1=t+1}, а { 0,5x}sqrt{{ 5}}{ -}{ 3=t-1}.

Получим:

frac{{ 2}}{{ t+1}}{ +}frac{{ t}}{{ t-1}} geq { 2};

frac{{ 2}{ t}{ -}{ 2+}{{ t}}^{{ 2}}{ +}{ t}}{{{ t}}^{{ 2}}{ -}{ 1}}{ -}{ 2} geq{ 0};

frac{{{ t}}^{{ 2}}{ +3}{ t}{ -}{ 2-2}{{ t}}^{{ 2}}{ +2}}{{{ t}}^{{ 2}}{ -}{ 1}} geq { 0};

frac{{ 3}{ t}{ -}{{ t}}^{{ 2}}}{{{ t}}^{{ 2}}{ -}{ 1}} geq { 0};

frac{{ t}left({ t}{ -}{ 3}right)}{left({ t}{ -}{ 1}right)left({ t}{ +1}right)}le { 0}.

Решим неравенство относительно t методом интервалов:

Получим:

left[ begin{array}{c}{ -}{ 1 textless t}le { 0} \{ 1 textless t}le { 3} end{array}right..

Вернемся к переменной x: left[ begin{array}{c} -1 textless 0,5xsqrt{5}-2leq0 \ 1 textless 0,5xsqrt{5}-2leq 3 end{array} right. .

left[ begin{array}{c} {{2}over{sqrt{5}}} textless xleq {{4}over{sqrt{5}}}\ {{6}over{sqrt{5}}} textless xleq {{10}over{sqrt{5}}} end{array} right. .

Ответ: xin left(frac{{ 2}}{sqrt{{ 5}}};frac{{ 4}}{sqrt{{ 5}}}right]cup left(frac{{ 6}}{sqrt{{ 5}}};{ 2}sqrt{{ 5}}right].

Показательные неравенства

2. Решите неравенство 2^x+17cdot 2^{3-x}le 25.

2^x+17cdot frac{8}{2^x}le 25.

Сделаем замену 2^x=t,t textgreater 0. Получим:

t+17cdot frac{8}{t}-25le 0. Умножим неравенство на t textgreater 0.

t^2-25t+136le 0.

Дискриминант квадратного уравнения t^2-25t+136=0.

D={left(-25right)}^2-4cdot 136=625-544=81. Значит, корни этого уравнения: left[ begin{array}{c}t_1=17 \t_2=8 end{array}.right.

Разложим квадратный трехчлен t^2-25t+136 на множители.

t^2-25t+136le 0 Longleftrightarrow left(t-17right)left(t-8right)le 0.

8le tle 17. Вернемся к переменной x.

8le 2^xle 17.

Внимание. Сначала решаем неравенство относительно переменной t. Только после этого возвращаемся к переменной x. Запомнили?

2^3le 2^xle 2^{{{log }_2 17}};

3le xle {{log }_2 17};

Ответ: xin left[3;{{log }_2 17}right].

Следующая задача — с секретом. Да, такие тоже встречаются в вариантах ЕГЭ.

3. Решите неравенство 2^{2x-x^2-1}+frac{1}{2^{2x-x^2}-1}le 2.

Сделаем замену 2^{2x-x^2}=t,t textgreater 0. Получим:

frac{t}{2}+frac{1}{t-1}-2le 0;

frac{t^2-t+2-4t+4}{2left(t-1right)}le 0;

frac{t^2-5t+6}{t-1}le 0;

frac{left(t-2right)left(t-3right)}{t-1}le 0.

left[ begin{array}{c}t textless 1 \2le tle 3 end{array} .right.

Вернемся к переменной x:left[ begin{array}{c}2^{2x-x^2} textless 1 \{2le 2}^{2x-x^2}le 3 end{array}.right.

Первое неравенство решим легко: 2x-x^2 textless 0. С неравенством {2le 2}^{2x-x^2} тоже все просто. Но что делать с неравенством 2^{2x-x^2}le 3? Ведь 3 = 2^{{{log }_2 3}}. Представляете, как трудно будет выразить х?

Оценим t=2^{2x-x^2}. Для этого рассмотрим функцию tleft(xright)=2^{2x-x^2}.

Сначала оценим показатель степени. Пусть zleft(xright)=2x-x^2. Это парабола с ветвями вниз, и наибольшее значение этой функции достигается в вершине параболы, при х = 1. При этом y(1) = 1.

Мы получили, что zleft(xright)le 1.

Тогда 2^{zleft(xright)}le 2, и это значит, что tleft(xright)le 2. Значение tleft(xright)=3 не достигается ни при каких х.

Но если {2le 2}^{2x-x^2} и 2^{2x-x^2}le 2, то 2^{2x-x^2}=2.

Мы получили:

left[ begin{array}{c} 2x-x^2 textless 0\ 2x-x^2=1end{array} right. Leftrightarrow left[ begin{array}{c} x(x-2) textgreater 0\ x^2-2x+1=0end{array} right. Leftrightarrow left[ begin{array}{c} x textless 0\ x textgreater 2\(x-1)^2=0end{array} right. Leftrightarrow

Leftrightarrow left[ begin{array}{c} x textless 0\ x textgreater 2\ x=1end{array}. right.

Ответ: xin left(-infty ;0right)cup left{1right}cup left(2;+infty right){ }.

Логарифмические неравенства

4. Решите неравенство 2{{log}_{frac{1}{2}} left(1-xright) textless {{log}_{frac{1}{2}} left(3x+1right)}}.

Запишем решение как цепочку равносильных переходов. Лучше всего оформлять решение неравенства именно так.

2log_{{1}over{2}}(1-x) textless log_{{1}over{2}}(3x+1)Leftrightarrow left{begin{matrix} 1-x textgreater 0\3x+1 textgreater 0 \(1-x)^2 textgreater 3x+1 end{matrix}right.Leftrightarrow left{begin{matrix} x textless 1\x textgreater -{{1}over{3}} \ 1+x^2-2x textgreater 3x+1 end{matrix}right.Leftrightarrow

Leftrightarrow left{begin{matrix} x textless 1\x textgreater {-{{1}over{3}}} \ x^2-5x textgreater 0 end{matrix}right.Leftrightarrow left{begin{matrix} x textless 1\ x textgreater {-{{1}over{3}}} \ x(x-5) textgreater 0 end{matrix} .right.

Ответ: xin left(-frac{1}{3};0right).

Следующее неравенство — комбинированное. И логарифмы, и тригонометрия!

5. Решите неравенство 2{{{log}_2}^2 {{cos}^2 x+7{{log}_2 {cos x} geq 1}}}.

2{{{log }_2}^2 {{cos }^{{ 2}} x+7{{log }_2 {cos x} geq 1}}}.

ОДЗ: {cos x} textgreater 0.

Замена {{log }_2 {cos x}=t} Rightarrow {{log }_2 {{cos }^{{ 2}} x}}=2{{log }_2 {cos x=2t}}.

2cdot {left(2tright)}^2+7t-1 geq 0;

8t^2+7t-1 geq 0;

D=7^2-4cdot 8cdot left(-1right)=49+32=81;

t_1=frac{-7-9}{16}=-1;

t_2=frac{-7+9}{16}=frac{1}{8}.

(t+1)(t-{{1}over{8}})geq 0Leftrightarrow left[ begin{array}{c} t leq -1 \ t geq {{1}over{8}} end{array} right. Leftrightarrow left[ begin{array}{c} log_2,cosx leq-1 \ log_2,cosx geq {{1}over{8}} end{array} right.
Leftrightarrow left{begin{matrix} left[ begin{array}{c} cosxleq{{1}over{2}} \ cosxgeqsqrt[8]{2} end{array} right. \ cosx textgreater 0 end{matrix}right.Leftrightarrow 0 textless cosxleq{{1}over{2}}.

Ответ: xin left(-frac{pi }{2}+2pi k;left.-frac{pi }{3}+2pi kright]right.cup left[frac{pi }{3}+2pi k;left.frac{pi }{2}+2pi kright), kright.in Z.

А вот и метод замены множителя (рационализации). Смотрите, как он применяется. А на ЕГЭ не забудьте доказать формулы, по которым мы заменяем логарифмический множитель на алгебраический.

6. Решите неравенство: {{log }_{{ 3-x}} frac{{ x+4}}{{left({ x-3}right)}^{{ 2}}}} geq { -2}.

log_{3-x}frac{x+4}{(x-3)^2}geq-2Leftrightarrow left{begin{matrix} 3-x textgreater 0\3-xneq1 \ {x+4over (x-3)^2} textgreater 0 \ log_{3-x} {{x+4}over(x-3)^2}+2geq 0 end{matrix} .right.

Мы объединили в систему и область допустимых значений, и само неравенство. Применим формулу логарифма частного, учитывая, что {left({ a-b}right)}^{{ 2}}{ =}{left({ b-a}right)}^{{ 2}}{ }. Используем также условия { 3-x textgreater 0}; , { x+4 textgreater 0.}

left{begin{matrix} x textless 3\xneq2 \ x+4 textgreater 0 \ log_{3-x}(x+4)-log_{3-x}(3-x)^2+2geq0 end{matrix}right. Leftrightarrow

Leftrightarrow left{begin{matrix} x textless 3\xneq2 \ x textgreater -4 \ log_{3-x}(x+4)geq0 end{matrix}.right.

Обратите внимание, как мы применили формулу для логарифма степени. Строго говоря, {{log }_{{ a}} {left({ b}left({ x}right)right)}^{{ 2}}{ =2}{{log }_{{ a}} left|{ b}left({ x}right)right|}}.

Поскольку { 3-}{ x}{ textgreater 0,}{{ log}}_{{ 3-x}}{left({ 3-x}right)}^{{ 2}}{ =2}{{log }_{{ 3-x}} left|{ 3-x}right|{ =}}{ 2}{{log }_{{ 3-x}} left({ 3-x}right){ =2.}}

Согласно методу замены множителя, выражение {{ log}}_{{ 3-x}}left({ x+4}right) заменим на left({ 3-x-1}right)left({ x+4-1}right).

Получим систему:

left{ begin{array}{c}{ x}ne { 2} \{ -}{ 4}{ textless x textless 3} \left({ 2-x}right)left({ x+3}right) geq { 0} end{array}.right.

Решить ее легко.

Ответ: { x}in left[{ -}{ 3};{ 2}right).

Разберем какое-нибудь нестандартное неравенство. Такое, что не решается обычными способами.

7. Решите неравенство:

{{log }_2 left(x-5right)+{{log }_3 xleq 4}}.

ОДЗ: left{ begin{array}{c}x-5 textgreater 0 \x textgreater 0 end{array}Longleftrightarrow x textgreater 5.right.

Привести обе части к одному основанию не получается. Ищем другой способ.

Заметим, что при x = 9 оба слагаемых равны 2 и их сумма равна 4.

{{log }_2 left(9-5right)={{log }_2 4=2}};

{{log }_3 9=2};

{{log }_2 left(9-5right)+{{log }_3 9=4}}.

Функции y_1=log_2 left(x-5right) и y_2 =log _3 x — монотонно возрастающие, следовательно, их сумма также является монотонно возрастающей функцией и каждое свое значение принимает только один раз.

Поскольку при x=9 значение монотонно возрастающей функции {{{ y=}log }_2 left(x-5right)+{{log }_3 x}} равно 4, при x textless 9 значения этой функции меньше 4. Конечно, при этом x textgreater 5, то есть x принадлежит ОДЗ.

Ответ: (5; 9].

Благодарим за то, что пользуйтесь нашими публикациями.
Информация на странице «Задание 14. Неравенства u0026#8212; профильный ЕГЭ по математике» подготовлена нашими редакторами специально, чтобы помочь вам в освоении предмета и подготовке к экзаменам.
Чтобы успешно сдать необходимые и поступить в высшее учебное заведение или техникум нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими материалами из разделов нашего сайта.

Публикация обновлена:
09.03.2023

Тип 14 № 508319

Решите неравенство 25 в степени левая круглая скобка x правая круглая скобка плюс 5 в степени левая круглая скобка x плюс 1 правая круглая скобка плюс 5 в степени левая круглая скобка 1 минус x правая круглая скобка плюс дробь: числитель: 1, знаменатель: 25 в степени левая круглая скобка x правая круглая скобка конец дроби меньше или равно 12.

Аналоги к заданию № 508319: 517423 511507 Все

Источник: Пробный экзамен Санкт-Петербург 2015. Вариант 1., Пробный экзамен по математике Санкт-Петербург 2015. Вариант 1.

Классификатор алгебры: Неравенства рациональные относительно показательной функции

Методы алгебры: Замена — сумма или разность

Кодификатор ФИПИ/Решу ЕГЭ: 2.2.9 Метод интервалов

Skip to content

Всё варианты 14 задания математика ЕГЭ Профиль 2022

Всё варианты 14 задания математика ЕГЭ Профиль 2022admin2022-08-03T21:23:02+03:00

Скачать задания в формате pdf.

Задания 14 ЕГЭ по математике профильного уровня 2022 год (неравенства)

1) (28.03.2022 досрочная волна) Решите неравенство:   (frac{{{{log }_4}left( {64x} right) — 2}}{{log _4^2x — {{log }_4}{x^3}}} geqslant  — 1.)

ОТВЕТ: (left( {0,;,1} right) cup left{ 4 right} cup left( {64;,infty } right).)


2) (28.03.2022 досрочная волна) Решите неравенство:   (frac{6}{{{{log }_3}x — 3}} + frac{5}{{log _3^2x — {{log }_3}left( {27{x^6}} right) + 12}} + 1 geqslant 0.)

ОТВЕТ: (left( {0;frac{1}{9}} right] cup left[ {9;27} right) cup left( {27;infty } right).)


3) (02.06.2022 основная волна) Решите неравенство:    ({log _2}x + 2,,{log _x}2 geqslant frac{3}{{log _2^3x}}.)

ОТВЕТ: (left[ {frac{1}{2};1} right) cup left[ {,2;,infty } right).)


4) (02.06.2022 основная волна) Решите неравенство:     (frac{6}{{{5^x} — 125}} leqslant frac{1}{{{5^x} — 25}}.)

ОТВЕТ:  (left( { — infty ;,1} right] cup left( {,2;,3} right).)


5) (02.06.2022 основная волна) Решите неравенство:     (frac{2}{{{3^x} + 27}} geqslant frac{1}{{{3^x} — 27}}.)

ОТВЕТ: (left( { — infty ;,3} right) cup left[ {,4;,infty } right).)


6) (02.06.2022 основная волна) Решите неравенство:     ({3^x} — frac{{702}}{{{3^x} — 1}} geqslant 0.)

ОТВЕТ:  (left( { — infty ;,0} right) cup left[ {,3;,infty } right).)


7) (02.06.2022 основная волна) Решите неравенство:     ({5^x} + frac{{125}}{{{5^x} — 126}} geqslant 0.)

ОТВЕТ: (left[ {,0;,3} right] cup left( {,{{log }_5}126,;,infty } right).)


8) (27.06.2022 резервная волна) Решите неравенство:     (frac{{{2^{x + 1}} — 17 cdot {2^{2 — x}}}}{{{2^x} — {2^{6 — x}}}} geqslant 1.)

ОТВЕТ: (left( { — infty ;,1} right] cup left( {,3,;,infty } right).)


9) (27.06.2022 резервная волна) Решите неравенство:     (frac{{{3^{x + 3}} — {3^{ — x}}}}{{{3^{1 — x}} — {9^{ — x}}}} geqslant {3^x}.)

ОТВЕТ:  (left( { — infty ;, — 2} right] cup left( {, — 1,;,infty } right).)

Прототипы задания №14 ЕГЭ по математике профильного уровня — неравенства. Практический материал для подготовки к экзамену в 11 классе.

Для успешного выполнения задания №14 необходимо уметь решать уравнения и неравенства.

Практика

time4math.ru Скачать задания
math100.ru Рациональные неравенства

Неравенства с модулями

Показательные неравенства

Логарифмические неравенства

Логарифмические неравенства с переменным основанием

Коды проверяемых элементов содержания (по кодификатору) — 2.1, 2.2

Уровень сложности задания — повышенный.

Примерное время выполнения задания выпускником, изучавшим математику на профильном уровне (в мин.) — 15

Связанные страницы:

Задание 11 ЕГЭ по математике профильный уровень — наибольшее и наименьшее значение функций

Решение 17 задания ЕГЭ по профильной математике

Задание 5 ЕГЭ по математике профильный уровень — стереометрия

Задание 4 ЕГЭ по математике (профиль) — вычисления и преобразования

Задание 11 ЕГЭ 2022 по математике: «Наибольшее и наименьшее значения функции»

14 задача ЕГЭ – это всегда неравенство. На реальных ЕГЭ бывают 3 вида неравенств: показательные, логарифмические и смешанные.

Что нужно знать?

  1. Метод интервалов
  2. Как решаются дробно-рациональные неравенства
  3. Как делается замена и обратная замена в неравенствах
  4. Как решаются показательные неравенства
  5. Свойства логарифмов
  6. Как решаются логарифмические неравенства
  7. Метод рационализации

Задачи, которые были на экзамене за последние 7 лет с решениями на полный балл

2022:

неравенство с основной волны 2022 года

Решение

бланк с ЕГЭ 2022 года

2021:

неравенство с основной волны 2021 года

Решение

решение с реального ЕГЭ 2021 года

2020:

неравенство с реального 2020 года

Решение

решение неравенства 2020 года

2019:

неравенство с основной волны 2019 года

Решение

решение неравенства с 2019 года

2018:

неравенство 2018 года

Решение

решение неравенства 2018 года

2017:

неравенство с ЕГЭ 2017 года

Решение

решение неравенства с 2017 года

2016:

неравенство с 2016 года

Решение

решение неравенства 2016 года

2015:

неравенство 2015 года

Решение

решение неравенства с 2015 года

Процент выполнения

А вот данные сколько процентов пишущих экзамен решили задачу на неравенство в разные годы:

процент решения задач относительно других

Сколько процентов из тех, кто решал экзамен в 2021 году*, набрал в задаче хотя бы 1 балл:

процент выполнения относительно других задач


* так как в 2022 году ЕГЭ был сильно скорректирован, то некоторые задачи изменили свой номер, какие-то исчезли совсем, а другие добавились. В таблице приведены данные 2021 года, приведенные к формату экзамена 2022 (поэтому, например, в задачах 9 и 10 стоят прочерки – это новые задачи)

Типичные ошибки

1. Ошибки по невнимательности

Если вы будете готовиться к 14 задаче ЕГЭ, то практически наверняка одной из главных проблем станут ошибки по невнимательности. Из всех задач профильного ЕГЭ эта задача, пожалуй, самая опасная в плане мелких ошибок. Как научиться не допускать их написано в этой статье.

Примеры таких ошибок по невнимательности выделены желтым

ошибка по невнимательности

ошибка по невнимательности - перенос через равно и сложение

2. Неправильно использовать метод интервалов

Метод интервалов – это база для 14 задачи ЕГЭ. Поэтому если вы хотите научиться решать неравенства на ЕГЭ – первым делом освойте метод интервалов, чтоб ошибок не было. Вот как «косячат» в нем школьники на реальном экзамене.

ошибка в применении метода интервалов

ошибка в методе интервалов

ошибка в методе интервалов


3. Умножить/делить на выражение с переменной

Почему в общем случае неравенство нельзя умножать или делить на выражение с переменной? Все дело в том, что если мы неравенство умножаем (делим) на положительное число, то должны оставить знак сравнения тем же, а если на отрицательное – перевернуть его.

(2x>4)        (-2x>4)
(x>2)           (x<-2)

Но чаще всего мы не знаем положительно или отрицательно выражение, на которое собрались умножать (делить), потому что при разных значениях переменной знак выражения может меняться. То есть, возникает неясность — переворачивать знак сравнения или оставить тем же? Поэтому в неравенствах так не делают. В уравнении можно, в неравенстве нет.

Уравнение
(можно и нужно умножать на икс)
Неравенство
(нужно приводить к общему знаменателю)
(frac{1}{x}=1)    |(·x) (frac{1}{x}>1)
(1=x)         (frac{1}{x}-1>0)
(x=1)         (frac{1-x}{x}>0) (|·(-1))
(frac{x-1}{x}<0)
(x∈(0;1))

Хотя бывают исключения, когда знак выражения с иксом определен. Например, на (2^x) умножить или разделить неравенство можно, потому что (2^x) положительно всегда, независимо от значения (x).

(frac{2^x-1}{2^x} ≥0)       (|cdot2^x)
(2^x-1≥0)                 

Также бывает, что выражение положительно не всегда, но мы знаем, что в данном конкретном неравенстве это так, поскольку, например, таковы требования ОДЗ.

(log_2⁡x+log_2⁡frac{1}{x^2}≥0)
(log_2⁡x frac{1}{x^2} ≥log_2⁡1)
(frac{1}{x}≥ 1)    (|cdot x)
(1≥x)
(x≤1)
Огр. (begin{cases} x>0 \ frac{1}{x^2} >0 end{cases})

Несколько примеров с ошибками:

умножение на переменную

умножение на знаменатель

ещё одна ошибка в умножении на знаменатель

4. Неправильно привести к общему знаменателю

Чаще всего такую ошибку допускают те ученики, которые ленятся написать лишнюю строчку, делают два, а то и три действия за один ход: сразу и домножаем, и раскрываем скобки, и тут же в уме приводим подобные слагаемые. Вот, например, в примере внизу пропущен шаг домножения дробей на недостающие множители и раскрытие скобок. Подозреваю, что из-за этого и возникла ошибка.

слишком много действий

Сравните с этим бланком, где выпускник все сделал постепенно, по шагам и закономерно получил верный ответ.

правильное приведение к общему знаменателю

5. Не сделать обратную замену

Это вообще классика – сделать замену и забыть вернуться к исходной переменной. Вот пример.

типичная ошибка - забыть про замену


6. Неправильно снять квадрат

Такая ошибка редко совершается на самом ЕГЭ, потому что так обычно ошибаются те, кто только начал проходить неравенства. Но зато в начале пути ее делают практически все, поэтому я внесла её в список.

не правильно снять квадрат

не правильно снять квадрат

  • Главная


  • Теория ЕГЭ


  • Математика — теория ЕГЭ



  • Задание 14 ЕГЭ 2021 по математике, теория

08.10.2018

Необходимая теория для успешного освоения и решения заданий №14 по математике профильного уровня на ЕГЭ в 2021 году.

Представлена вся теория и алгоритм решения различных заданий такого типа.

  • Тренировочные кимы ЕГЭ по математике
  • Практика — примеры для решения каждого типа заданий

Обсудить решение конкретных заданий вы можете в комментариях ниже.

Смотреть в PDF:

Или прямо сейчас: cкачать в pdf файле.

Сохранить ссылку:

Комментарии (0)
Добавить комментарий

Добавить комментарий

Комментарии без регистрации. Несодержательные сообщения удаляются.

Имя (обязательное)

E-Mail

Подписаться на уведомления о новых комментариях

Отправить

Как подготовиться к решению заданий ЕГЭ № 14 по стереометрии | 1С:Репетитор

Как показывают результаты профильного экзамена по математике, задачи по геометрии — в числе самых сложных для выпускников. Тем не менее, решить их, хотя бы частично, а значит заработать дополнительные баллы к общему результату возможно. Для этого необходимо, конечно, знать достаточно много о «поведении» геометрических фигур и уметь применять эти знания для решения задач. Здесь мы постараемся дать некоторые рекомендации, как подготовиться к решению задачи по стереометрии.

Эта задача обычно состоит из двух частей:

  • доказательной, в которой вас попросят доказать некоторое утверждение для заданной конфигурации геометрических тел;
  • вычислительной, в которой нужно найти некоторую величину, опираясь на то утверждение, которое вы доказали в первой части задачи.

    За решение данной задачи на экзамене по математике в 2018 году можно получить максимум два первичных балла. Допускается решить только «доказательную» или только «вычислительную» часть задачи и заработать в этом случае один первичный балл.

    Многие школьники на экзамене даже не приступают к решению задачи №14, хотя она значительно проще, например, задачи № 16 — по планиметрии.

    В задачу № 14 традиционно включается лишь несколько вопросов из всех возможных для стереометрических задач:   

  • нахождение расстояний в пространстве;   
  • нахождение углов в пространстве;   
  • построение сечения многогранников плоскостью;   
  • нахождение площади этого сечения или объемов многогранников, на которые эта плоскость поделила исходный многогранник.
    В соответствии с этими вопросами строится и подготовка к решению задачи.

    Сначала, разумеется, нужно выучить все необходимые аксиомы и теоремы, которые понадобятся для доказательной части задачи. Помимо того, что знание аксиом и теорем поможет вам на экзамене непосредственно при решении задачи, их повторение позволит систематизировать и обобщить ваши знания по стереометрии вообще, то есть создать из этих знаний некую целостную картину.

    Итак, что же нужно выучить?
      

  • Способы задания плоскости в пространстве, взаимное расположение прямых и плоскостей в пространстве.   
  • Определения, признаки и свойства параллельных прямых и плоскостей в пространстве.   
  • Определения, признаки и свойства перпендикулярных прямых и плоскостей в пространстве.

    После того как вы повторили теорию, можно приступать к рассмотрению методов решения задач. В курсе «1C:Репетитор» представлены все необходимые материалы для подготовки: видеолекции с теорией, тренажеры с пошаговым решением задач, тесты для самопроверки, интерактивные модели, позволяющие ученикам 10-х и 11-х классов наглядно рассмотреть методы решения задач по стереометрии, в том числе на примерах задач ЕГЭ 2017 года.

    Мы рекомендуем решать задачи в такой последовательности:

    1. Углы в пространстве (между скрещивающимися прямыми, между прямой и плоскостью, между плоскостями);
    2. Расстояния в пространстве (между двумя точками, между точкой и прямой, между точкой и плоскостью, между скрещивающимися прямыми);
    3. Решение многогранников, то есть нахождение углов между ребрами и гранями, расстояний между ребрами, площадей поверхностей, объемов по заданным в условии задачи элементам;
    4. Сечения многогранников — методы построения сечений (например, метод следов) и нахождения площадей сечений и объемов получившихся после построения сечения многогранников (например, использование свойств перпендикулярной проекции и метод объемов).

    Для всех указанных типов задач существуют различные методы решения:

  • классический (основанный на определениях и признаках);
  • метод проекций;
  • метод замены точки;
  • метод объемов.
  • Эти методы нужно знать и уметь применять, так как есть задачи, которые довольно сложно решаются одним методом и гораздо проще — другим.

    При решении стереометрических задач более эффективным по сравнению с классическим методом нередко оказывается векторно-координатный. Классический метод решения задач требует отличного знания аксиом и теорем стереометрии, умения применять их на практике, строить чертежи пространственных тел и сводить стереометрическую задачу к цепочке планиметрических. Классический метод, как правило, быстрее приводит к искомому результату, чем векторно-координатный, но требует определенной гибкости мышления. Векторно-координатный метод представляет собой набор готовых формул и алгоритмов, но при этом требует более длительных расчетов; тем не менее, для некоторых задач, например, для нахождения углов в пространстве, он предпочтительнее классического.

    Многим абитуриентам не позволяет справиться со стереометрической задачей неразвитое пространственное воображение. В этом случае мы рекомендуем использовать для самоподготовки интерактивные тренажеры с динамическими моделями пространственных тел. Такие тренажеры есть на портале «1С:Репетитор» (для перехода к их использованию необходимо зарегистрироваться): работая с ними, вы не только сможете «выстроить» решение задачи «по шагам», но и на объемной модели увидеть все этапы построения чертежа в различных ракурсах.

    С помощью таких же динамических чертежей мы рекомендуем учиться строить сечения многогранников. Кроме того, что модель автоматически проверит правильность вашего построения, вы сами сможете, рассматривая сечение с разных сторон, убедиться, верно или неверно оно построено, и если неправильно, то в чем именно ошибка. Построение сечения на бумаге, с помощью карандаша и линейки, конечно, таких возможностей не дает. Посмотрите пример построения сечения пирамиды плоскостью с использованием такой модели (Нажмите на картинку, что бы перейти к тренажеру):

    Последний вопрос, на который надо обратить внимание, — это нахождение площадей сечений или объемов, получившихся после построения сечения многогранников. Здесь также существуют подходы и теоремы, которые позволяют в общем случае существенно сократить трудозатраты на поиск решения и получение ответа. В курсе «1С:Репетитор» мы знакомим вас с этими приемами.

    Если вы следовали нашим советам, разобрались со всеми вопросами, которые здесь затронуты, и решили достаточное количество задач, то велика вероятность, что вы практически готовы к решению задачи по стереометрии на профильном ЕГЭ по математике в 2018 году. Дальше необходимо только поддерживать себя «в форме» до самого экзамена, то есть решать, решать и решать задачи, совершенствуя свое умение применять изученные приемы и методы в разных ситуациях. Удачи!

    Регулярно тренируйтесь в решении задач

    Чтобы начать заниматься на портале «1С:Репетитор», достаточно зарегистрироваться.
    Вы можете:

    • Начать заниматься бесплатно.
    • Получить доступ ко всей теории и тренажерам задачи №14. Это стоит всего 990 рублей.
    • Купить доступ к этой задаче в составе экспресс-курса «Геометрия» и научиться решать задачи №14 и №16 на максимальный балл.

    Все курсы состоят из методически правильной последовательности теории и практики, необходимой для успешного решения задач. Включают теорию в форме текстов, слайдов и видео, задачи с решениями, интерактивные тренажеры, модели, и тесты.

    Остались вопросы? Позвоните нам по телефону 8 800 551-50-78 или напишите в онлайн-чат.

    Здесь ключевые фразы, чтобы поисковые роботы лучше находили наши советы:
    Как решать задание 14 на экзамене ЕГЭ, задачи по геометрии, решение задач, по стереометрии, методы решения задач, тренажеры, видео, КИМ ЕГЭ 2017, подготовка к ЕГЭ, профиль математика, математика профильного уровня, решение задачи по наклонной треугольной призме, грани, взаимно перпендикулярно, общее ребро, плоскости, точки, ребро равно, боковая поверхность, решение задач на сечение многогранника, перпендикулярное сечение, вычислить объем фигуры, в основании прямой треугольной призмы лежит, признаки равенства и подобия треугольников, примеры решения задач ЕГЭ по геометрии, вычисление сечения, задачи по математике профильного уровня, применение методов сечения, решение задач на площадь, задачи ЕГЭ 2017 по стереометрии, подготовка к ЕГЭ, выпускникам 11 класса, в 2018 году, поступающим в технический вуз.

    Понравилась статья? Поделить с друзьями:
  • Все термины по праву для егэ по обществознанию
  • Все термины по политике обществознание егэ
  • Все термины по обществознанию егэ шпора
  • Все термины по обществознанию егэ 2020
  • Все термины по обществознанию для сдачи егэ