Все типы логарифмических уравнений в егэ

Логарифмом положительного числа $b$ по основанию $а$, где $a>0, a ≠ 1$, называется показатель степени, в которую надо возвести число $а$, чтобы получить $b$.

$log_{2}8 = 3$, т.к. $2^3 = 8;$

$log_3{1}/{27}=-3$, т.к $3^{-3} = {1}/{27}$.

Особенно можно выделить три формулы:

$log_{a}a=1;$

$log_{a}1=0;$

$log_{a}a^b=b.$

Основное логарифмическое тождество:

$a^{log_{a}b}=b$

Это равенство справедливо при $b> 0, a> 0, a≠ 1$

$4^{log_{4}5}=5$;

$3^{-2log_{3}5}=(3^{log_{3}5})^{-2}=5^{-2}={1}/{25}$

Некоторые свойства логарифмов

Все свойства логарифмов мы будем рассматривать для $a> 0, a≠ 1, b> 0, c> 0, m$ – любое действительное число.

1. Для любого действительного числа $m$ справедливы равенства:

$log_{а}b^m=mlog_{a}b;$

$log_{a^m}b={1}/{m}log_{a}b.$

$log_{3}3^10=10log_{3}3=10;$

$log_{5^3}7={1}/{3}log_{5}7;$

$log_{3^7}4^5={5}/{7}log_{3}4;$

2. Для решения задач иногда полезно следующее свойство: Если числа $а$ и $b$ на числовой оси расположены по одну сторону от единицы, то $log_{a}b>0$, а если по разные, то $log_{a}b<0$.

Десятичным логарифмом числа называют логарифм этого числа по основанию $10$ и пишут $lg⁡b$ вместо $log_{10}b$.

Натуральным логарифмом числа называют логарифм этого числа по основанию $е$, где $е$ – иррациональное число, приближенно равное $2,7$. При этом пишут $ln b$, вместо $log_{e}b$

Логарифмические уравнения

Логарифмическими уравнениями называют уравнения вида

$log_{a}f(x)=log_{a}g(x)$, где $а$ – положительное число, отличное от $1$, и уравнения, сводящиеся к этому виду.

После нахождения корней логарифмического уравнения необходимо проверить условие: подлогарифмическое выражение должно быть больше $0$.

Можно выделить несколько основных видов логарифмических уравнений:

1. Простейшие логарифмические уравнения: $log_{a}x=b$. Решение данного вида уравнений следует из определения логарифма, т.е. $x=a^b$ и $х > 0$

$log_{2}x=3$

Представим обе части уравнения в виде логарифма по основанию 2

$log_{2}x=log_{2}2^3$

Если логарифмы по одинаковому основанию равны, то подлогарифмические выражения тоже равны.

$x = 8$

Ответ: $х = 8$

2. Уравнения вида: $log_{a}f(x)=log_{a}g(x)$. Т.к. основания одинаковые, то приравниваем подлогарифмические выражения:

${table f(x)=g(x); f(x)>0; g(x)>0;$

$log_3(x^2-3x-5)=log_3(7-2x)$

Т.к. основания одинаковые, то приравниваем подлогарифмические выражения

$x^2-3x-5=7-2x$

Перенесем все слагаемые в левую часть уравнения и приводим подобные слагаемые

$x^2-x-12=0$

$x_1=4,x_2= -3$

Проверим найденные корни по условиям: ${table x^2-3x-5>0; 7-2x>0;$

При подстановке во второе неравенство корень $х=4$ не удовлетворяет условию, следовательно, он посторонний корень

Ответ: $х= -3$

3. Уравнения квадратного вида ${log_a^2}x+log_{a}x+c=0$. Такие уравнения решаются способом введения новой переменной и переходом к обычному квадратному уравнению.

4. Уравнения вида $a^x=b$. Решаются логарифмированием обеих частей по основанию $а$.

Решить уравнение $log_5log_2(x+1)=1$

Решение:

Сделаем в обеих частях уравнения логарифмы по основанию $5$

$log_5(log_2(x+1))=log_{5}5$

Т.к. основания одинаковые, то приравниваем подлогарифмические выражения

$log_2(x+1)=5$

Далее представим обе части уравнения в виде логарифма по основанию $2$

$log_2(x+1)=log_{2}2^5$

$x+1=32$

$x=31$

ОДЗ данного уравнения $x+1>0$

Подставим вместо х в неравенство $31$ и проверим, получиться ли верное условие $32>0$, следовательно, $31$ корень уравнения.

Ответ: $31$

Логарифмические уравнения – коротко о главном

Определение логарифмических уравнений

Логарифмическое уравнение – уравнение, в котором неизвестные переменные находятся внутри логарифмов.

Простейшим логарифмическим уравнением является уравнение вида ( displaystyle lo{{g}_{a}}~x~=~b).

Процесс решения любого логарифмического уравнения сводится к приведению логарифмического уравнения к виду ( displaystyle lo{{g}_{a}}left( fleft( x right) right)~=~lo{{g}_{a}}left( gleft( x right) right)), и переходе от уравнения с логарифмами к уравнению без них: ( displaystyle fleft( x right)=gleft( x right)).

ОДЗ (Область допустимых значений) для логарифмического уравнения:

( displaystyle left{ begin{align}& f(x)>0,\ & a>0,text{}\& ane 1.\end{align}right.)

5 основных методов решения логарифмических уравнений:

1 метод. Использование определения логарифма:

( displaystyle lo{{g}_{a}}~f(x)=b Leftrightarrow ~f(x)={{a}^{b}}, a>0, ane 1).

2 метод. Использование свойств логарифма:

  • ( displaystyle lo{{g}_{{{a}^{c}}}}b=frac{1}{c}lo{{g}_{a}}b)
  • ( displaystyle ccdot lo{{g}_{a}}b=lo{{g}_{a}}{{b}^{c}})
  • ( displaystyle lo{{g}_{a}}b+lo{{g}_{a}}c=lo{{g}_{a}}left( bc right))
  • ( displaystyle lo{{g}_{a}}b-lo{{g}_{a}}c=lo{{g}_{a}}left( frac{b}{c} right))
  • ( displaystyle {{log }_{{{a}^{n}}}}b=frac{1}{n}cdot {{log }_{a}}b)
  • ( displaystyle {{log }_{{{a}^{n}}}}{{b}^{m}}=frac{m}{n}cdot {{log }_{a}}b)
  • ( displaystyle lo{{g}_{a}}1=0,~a>0,ane 1)
  • ( displaystyle lo{{g}_{a}}a=1~(a>0,ane 1))

3 метод. Введение новой переменной (замена):

Замена ( displaystyle lo{{g}_{a}}x~=~t)позволяетсвести логарифмическое уравнение к более простому алгебраическому уравнению относительно t.

4 метод. Переход к новому основанию:

( displaystyle {{log }_{a}}b=frac{{{log }_{c}}b}{{{log }_{c}}a}text{ }left( c>0;text{ }ne text{1} right)).

( displaystyle {{log }_{a}}b=frac{1}{{{log }_{b}}a},text{ }left( bne 1 right)).

5 метод. Логарифмирование:

Берется логарифм от правой и левой частей уравнения.

Теорема: Если ( displaystyle a>1), то функция ( displaystyle f(x)=lo{{g}_{a}}x) является монотонно возрастающей, если ( displaystyle 0<a<1), то функция( displaystyle f(x)=lo{{g}_{a}}x) является монотонно убывающей.

( displaystyle left{ begin{array}{l}fleft( x right)=gleft( x right)\fleft( x right)ge A\gleft( x right)le Aend{array} right.Leftrightarrow left{ begin{array}{l}fleft( x right)=A\gleft( x right)=Aend{array} right.).

Метод введения новой переменной

Я начну с рассмотрения первого метода. Как ты уже понял из названия, суть этого метода – ввести такую замену переменной, что твое логарифмическое уравнение чудесным образом преобразится в такое, которое ты уже с легкостью можешь решить.

Все что тебе останется после решения этого самого «упрощенного уравнения» – это сделать «обратную замену» : то есть вернуться от замененного к заменяемому. Давай проиллюстрируем только что сказанное на очень простом примере:

( displaystyle frac{1}{4-lgx}+frac{2}{2+lgx}=1)

В этом примере замена прямо напрашивается сама собой! Ведь ясно, что если мы заменим ( displaystyle lgx) на ( displaystyle t), то наше логарифмическое уравнение превратится в рациональное:

( displaystyle frac{1}{4-t}+frac{2}{2+t}=1)

Его ты без проблем решишь, сведя к квадратному: 

( displaystyle left( 2+t right)+2left( 4-t right)=left( 4-t right)left( 2+t right))

( displaystyle tne 4,tne -2) (дабы знаменатель не обнулился ненароком!)

Упрощая полученное выражение, мы окончательно получим:

( displaystyle {{t}^{2}}-3t+2=0)

( displaystyle {{t}_{1}}=1,{{t}_{2}}=2)

Теперь делаем обратную замену: ( displaystyle t=lgx), тогда из ( displaystyle 1=lgx) следует, что ( displaystyle x=10), а из ( displaystyle 2=lgx) получим ( displaystyle x=100)

Теперь, как и раньше, пришла очередь проверки:

Пусть вначале ( displaystyle x=10), так как ( displaystyle lg 10=1), то ( displaystyle frac{1}{4-1}+frac{2}{2+1}=frac{1}{3}+frac{2}{3}=1), верно!

Теперь ( displaystyle x=100,lg 100=2), тогда ( displaystyle frac{1}{4-2}+frac{2}{2+2}=frac{1}{2}+frac{2}{4}=1), все верно!

Таким образом, числа ( displaystyle 10) и ( displaystyle 100) являются корнями нашего исходного уравнения.

Ответ: ( displaystyle 10,100).

Мне кажется, что основную идею ты уловил. Она не нова и распространяется не только на логарифмические уравнения. 

Другое дело, что иногда довольно сложно сразу «увидеть» замену. Здесь требуется некоторый опыт, который придет к тебе после некоторых усилий с твоей стороны.

А пока что потренируйся в решении следующих примеров:

2. ( displaystyle frac{{{log }_{2}}frac{x}{2}}{{{log }_{2}}x}-frac{{{log }_{2}}{{x}^{2}}}{{{log }_{2}}x-1}=1)

3. ( displaystyle 0.1{{lg }^{4}}x-{{lg }^{2}}x+0,9=0.)

Готов? Давай проверим, что у тебя получилось:

Вначале решим второй пример.

Он как раз демонстрирует тебе, что не всегда замену удается сделать, что говорится, «в лоб». Прежде нам нужно немного преобразовать наше уравнение: применить формулу разности логарифмов в числителе первой дроби, и вынести степень в числителе второй.

Сделав это, ты получишь:

( displaystyle frac{{{log }_{2}}x-1}{{{log }_{2}}x}-frac{2{{log }_{2}}x}{{{log }_{2}}x-1}=1)

Теперь замена стала очевидной, не так ли?

Давай сделаем ее: ( displaystyle t=lo{{g}_{2}}x). Теперь приведем дроби к общему знаменателю и упростим. Тогда мы получим:

( displaystyle frac{{{left( t-1 right)}^{2}}-2{{t}^{2}}}{tleft( t-1 right)}=frac{tleft( t-1 right)}{tleft( t-1 right)})

или

( displaystyle 2{{t}^{2}}+t-1=0)

при ( displaystyle tne 1,tne 0.)

Решив последнее уравнение, ты найдешь его корни: 

( displaystyle {{t}_{1}}=-1,{{t}_{2}}=0.5) откуда ( displaystyle {{x}_{1}}=frac{1}{2},{{x}_{2}}=sqrt{2}).

Самостоятельно сделай проверку и удостоверься в том, что ( displaystyle {{x}_{1}}) и ( displaystyle {{x}_{2}}) в самом деле являются корнями нашего первоначального уравнения.

Теперь давай попробуем решить третье уравнение

4. ( displaystyle 1+{{log }_{x}}frac{4-x}{10}=left( lg {{x}^{2}}-1 right){{log }_{x}}10)

Этот примерчик позаковырестее, однако, я постараюсь решить его вообще не прибегая к замене переменной!

Давай опять, будем делать, что можно: а можно для начала разложить логарифм слева по формуле для логарифма отношения, а также вынести двойку вперед у логарифма в скобках. В итоге у меня получится:

( displaystyle 1+{{log }_{x}}left( 4-x right)-{{log }_{x}}10=left( 2lgx-1 right){{log }_{x}}10)

Что будем делать дальше? Непонятно. А что делать можно? Можно перенести ( displaystyle {{log }_{x}}10) вправо и вынести его как общий множитель. Ура! У нас ушла минус единица!

( displaystyle 1+{{log }_{x}}left( 4-x right)=2lgx{{log }_{x}}10)

Ну а теперь та самая формула, которую мы уже применяли! Так как ( displaystyle {{log }_{x}}10=frac{1}{lgx}), то сократим правую часть! Теперь там вообще просто стоит двойка! Перенесем к ней слева единицу, окончательно получим:

( displaystyle {{log }_{x}}left( 4-x right)=1)

Как решать такие уравнения, ты уже знаешь. Корень находится без труда, и он равен ( displaystyle 2). Напоминаю тебе о проверке!

Ну вот, теперь ты, как я надеюсь, научился решать достаточно сложные задачи, которые « в лоб» не одолеешь! Но логарифмические уравнения бывают еще более коварными! Вот например такие:

( displaystyle log {{~}_{2}}x~+{{log }_{3}}~x~=1.)

Здесь уже, увы, предыдущий способ решения не даст ощутимых результатов. Как ты думаешь, почему? Да, никакой «обратности» логарифмов здесь уже не наблюдается. Этот наиболее общий случай, конечно, тоже поддается решению, но мы уже применяем вот такую формулу:

( displaystyle {{log }_{a}}b=frac{{{log }_{c}}b}{{{log }_{c}}a})

Уж этой формуле все равно, имеется у вас «противоположность» или нет. Ты можешь спросить, а чему выбирать основание ( displaystyle c)? Мой ответ – это не имеет никакого значения. Ответ в итоге не будет зависеть от этого ( displaystyle c). Традиционно используют либо натуральный, либо десятичный логарифм. Хотя это и не принципиально. Я, например, буду применять десятичный:

( displaystyle frac{lgx}{lg 2}+frac{lgx}{lg 3}=1)

( displaystyle lgxleft( lg 2+lg 3 right)=lg 2lg 3)

( displaystyle lgxlg6=lg 2lg 3)

( displaystyle lgx=frac{lg 2lg 3}{lg 6})

Отставлять ответ в таком виде – форменное безобразие! Давайте я вначале запишу по определению, что

( displaystyle x={{10}^{frac{lg 2lg 3}{lg 6}}}={{left( {{10}^{lg 2}} right)}^{frac{lg3}{lg 6}}})

Теперь пришло время воспользоваться: внутри скобок – основным логарифмическим тождеством, а снаружи (в степени) – превратить отношение в один логарифм: ( displaystyle {{10}^{lg 2}}=2,frac{lg 3}{lg 6}={{log }_{6}}3), тогда окончательно получим вот такой «странный» ответ: ( displaystyle x={{2}^{{{log }_{6}}3}}).

Дальнейшие упрощения, увы, нам уже недоступны.

Давай сделаем проверку вместе:

( displaystyle {{log }_{2}}{{2}^{{{log }_{6}}3}}+{{log }_{3}}{{2}^{{{log }_{6}}3}}=1)

( displaystyle {{log }_{6}}3cdot {{log }_{2}}2+{{log }_{6}}3cdot {{log }_{3}}2=1)

( displaystyle {{log }_{6}}3left( 1+{{log }_{3}}2 right)=1)

( displaystyle {{log }_{6}}3cdot {{log }_{3}}6=1)

( displaystyle 1=1)

Верно! Кстати, еще раз вспомни, из чего следует предпоследнее равенство в цепочке!

( displaystyle {{log }_{3x+7}}~left( 9+12x+4{{x}^{2}} right)+{{log }_{2x+3}}left( 6{{x}^{2}}~+23x+21 right)=4.)

В принципе, решение этого примера тоже можно свести к переходу к логарифму по новому основанию, только тебя должно уже пугать то, что получится в итоге. Давай попробуем поступить разумнее: как можно лучше преобразуем левую часть.

( displaystyle 9+12x+4{{x}^{2}}={{left( 2x+3 right)}^{2}})

( displaystyle 6{{x}^{2}}~+23x+21=left( 3x+7 right)left( 2x+3 right))

Кстати, а как по-твоему я получил последнее разложение? Верно, я применил теорему о разложении квадратного трехчлена на множители, а именно:

Если ( displaystyle {{x}_{1}}), ( displaystyle {{x}_{2}})– корни уравнения ( displaystyle a{{x}^{2}}+bx+c=0), то:

( displaystyle a{{x}^{2}}+bx+c=aleft( x-{{x}_{1}} right)left( x-{{x}_{2}} right))

Ну вот, теперь я перепишу мое исходное уравнение вот в таком виде:

( displaystyle {{log }_{3x+7}}~{{left( 2x+3 right)}^{2}}+{{log }_{2x+3}}~left( 3x+7 right)left( 2x+3 right)=4)

( displaystyle 2{{log }_{3x+7}}~left( 2x+3 right)+{{log }_{2x+3}}~left( 3x+7 right)=3)

А вот решить такую задачу нам уже вполне по силам!

Так как ( displaystyle {{log }_{2x+3}}~left( 3x+7 right)=1/{{log }_{3x+7}}~left( 2x+3 right)), то введем замену ( displaystyle t={{log }_{3x+7}}~left( 2x+3 right)).

Тогда мое исходное уравнение примет вот такой простой вид: ( displaystyle frac{2}{t}+t-3=0)

Его корни равны: ( displaystyle {{t}_{1}}=2,{{t}_{2}}=1), тогда

( displaystyle {{log }_{3x+7}}~left( 2x+3 right)=1), откуда ( displaystyle 3x+7=2x+3,{{x}_{1}}=-4)

( displaystyle {{log }_{3x+7}}~left( 2x+3 right)=2), откуда ( displaystyle {{left( 3x+7 right)}^{2}}=left( 2x+3 right)) – данное уравнение корней не имеет.

Тебе осталось сделать проверку!

Следующее уравнение попробуй решить самостоятельно. Не торопись и будь внимателен, тогда удача будет на твоей стороне!

( displaystyle {{log }_{5}}left( 5+3x right)={{log }_{5}}3cdot {{log }_{3}}left( 2x+10 right))

Готов? Давай посмотрим, что у нас получилось.

На самом деле, пример решается в два действия:

1. Преобразуем ( displaystyle {{log }_{5}}3=frac{1}{{{log }_{3}}5})

2. Теперь справа у меня стоит выражение ( displaystyle frac{{{log }_{3}}left( 2x+10 right)}{{{log }_{3}}5}), которое равно ( displaystyle {{log }_{5}}left( 2x+10 right))

Таким образом, исходное уравнение свелось к простейшему:

( displaystyle {{log }_{5}}~left( 5+3x right)={{log }_{5}}left( 2x+10 right))

( displaystyle x=5).

Проверка говорит о том, что данное число в самом деле является корнем уравнения.

Опишем непосредственно сам мини-максный метод

Я думаю, что ты понимаешь, от каких слов произошло такое название? Верно, от слов минимум и максимум. Кратко метод можно представить в виде:

( displaystyle left{ begin{array}{l}fleft( x right)=gleft( x right)\fleft( x right)ge A\gleft( x right)le Aend{array} right.Leftrightarrow left{ begin{array}{l}fleft( x right)=A\gleft( x right)=Aend{array} right.)

Наша самая главная цель – это найти вот эту самую константу ( displaystyle A), чтобы далее свести уравнение к двум более простым. Для этого могут быть полезны свойства монотонности логарифмической функции, сформулированные выше.

Теперь давай рассмотрим конкретные примеры:

  • ( displaystyle {{log }_{frac{1}{3}}}left( 1+{{left( {{x}^{2}}-3x+2 right)}^{2}} right)=sqrt{{{x}^{2}}-6x+8})
  • ( displaystyle {{left( 4{{x}^{2}}-7{x} -2 right)}^{2}}+log _{5}^{5}left( 2{{x}^{2}}-11x+15 right)=0)
  • ( displaystyle {{log }_{3}}left( {{x}^{2}}+6x+18 right)=2{{sin }^{2}}frac{pi x}{6})

1. Вначале рассмотрим левую часть. Там стоит логарифм с основанием меньше ( displaystyle 0<a<1). 

По теореме, сформулированной выше, какой оказывается функция ( displaystyle y={{log }_{a}}t)? Она убывает. При этом, ( displaystyle t=1+{{left( {{x}^{2}}-3x+2 right)}^{2}}ge 1), а значит, ( displaystyle {{log }_{a}}tle 0). 

С другой стороны, по определению корня:

( displaystyle sqrt{{{x}^{2}}-6x+8}ge 0). 

Таким образом, константа ( displaystyle A) найдена и равна ( displaystyle 0). Тогда исходное уравнение равносильно системе:

( displaystyle left{ begin{array}{l}sqrt{{{x}^{2}}-6x+8}=0\{{log }_{frac{1}{3}}}left( 1+{{left( {{x}^{2}}-3x+2 right)}^{2}} right)=0end{array} right.)

Первое уравнение имеет корни ( displaystyle {{x}_{1}}=4,{{x}_{2}}=2), а второе: ( displaystyle {{x}_{1}}=1,{{x}_{2}}=2). 

Таким образом, общий корень равен ( displaystyle 2), и данный корень будет корнем исходного уравнения. На всякий случай сделай проверку, чтобы убедиться в этом.

Ответ: ( displaystyle 2)

2. ( displaystyle {{left( 4{{x}^{2}}-7{x} -2 right)}^{2}}+log _{5}^{2}left( 2{{x}^{2}}-11x+15 right)=0)

Давай сразу задумаемся, что здесь написано? Я имею в виду общую структуру. Здесь сказано, что сумма двух квадратов равна нулю. Когда это возможно? Только тогда, когда оба этих числа по отдельности равны нулю. Тогда перейдем к следующей системе:

( displaystyle left{ begin{array}{l}{{left( 4{{x}^{2}}-7{x} -2 right)}^{2}}=0\log _{5}^{2}left( 2{{x}^{2}}-11x+15 right)=0end{array} right.Leftrightarrow left{ begin{array}{l}left[ begin{array}{l}{{x}_{1}}=2;\{{x}_{2}}=-0,25end{array} right.\left[ begin{array}{l}{{x}_{1}}=3;\{{x}_{2}}=2,5end{array} right.end{array} right.)

Общих корней у первого и второго уравнений нет, тогда и исходное уравнение корней не имеет.

Ответ: нет решений.

3. ( displaystyle {{log }_{3}}left( {{x}^{2}}+6x+18 right)=2{{sin }^{2}}frac{pi x}{6})

Давай вначале рассмотрим правую часть – она попроще. По определению синуса:

( displaystyle -1le sintle 1), откуда ( displaystyle 0le {{sin }^{2}}tle 1), и тогда ( displaystyle 0le 2{{sin }^{2}}tle 2.) Поэтому ( displaystyle 0le 2{{sin }^{2}}frac{pi x}{6}le 2.)

Теперь вернемся к левой части: рассмотрим выражение, стоящее под знаком логарифма:

( displaystyle {{x}^{2}}+6x+18)

Попытка найти корни у уравнения ( displaystyle {{x}^{2}}+6x+18=0) не приведет к положительному результату. Но тем не менее, мне надо как-то это выражение оценить. Ты, конечно, знаешь такой метод, как выделение полного квадрата. Его я здесь и применю.

( displaystyle {{x}^{2}}+6x+18={{x}^{2}}+2cdot 3cdot x+9+9={{left( x+3 right)}^{2}}+9ge 9)

Тогда ( displaystyle {{log }_{3}}left( {{x}^{2}}+6x+18 right)={{log }_{3}}left( {{left( x+3 right)}^{2}}+9 right))

Так как ( displaystyle y={{log }_{3}}t) – функция возрастающая, то из ( displaystyle {{left( x+3 right)}^{2}}+9ge 9) cледует, что ( displaystyle {{log }_{3}}left( {{left( x+3 right)}^{2}}+9 right)ge {{log }_{3}}9=2).

Таким образом, ( displaystyle {{log }_{3}}left( {{left( x+3 right)}^{2}}+9 right)ge 2)

Тогда наше исходное уравнение равносильно следующей системе:

( displaystyle left{ begin{array}{l}{{log }_{3}}left( {{x}^{2}}+6x+18 right)=2\2{{sin }^{2}}frac{pi x}{6}=2end{array} right.)

Я не знаю, знаком ты или нет с решением тригонометрических уравнений, поэтому я сделаю так: решу первое уравнение (оно имеет максимум два корня), а потом результат подставлю во второе:

( displaystyle {{log }_{3}}left( {{x}^{2}}+6x+18 right)=2)

( displaystyle {{x}_{1}}=-3) (можешь сделать проверку и убедиться, что это число является корнем первого уравнения системы)

Теперь я подставлю его во второе уравнение:

( displaystyle 2{{sin }^{2}}frac{pi x}{6}=2)

( displaystyle 2{{sin }^{2}}frac{pi left( -3 right)}{6}=2)

( displaystyle {{sin }^{2}}frac{-pi }{2}=1)

( displaystyle 1=1.)

Ответ: ( displaystyle x=-3)

Ну как, теперь тебе стала ясна техника применения мини-максного метода? Тогда постарайся решить следующий пример самостоятельно.

( displaystyle 1+left| {{log }_{4}}left( 9{{x}^{2}}-39x+43 right) right|=left| cos cos left( {x} -2 right)cos left( x right) right|)

Готов? Давай проверим:

Левая часть – сумма двух неотрицательных величин (единицы и модуля) а потому, левая часть не меньше единицы, причем она равна единице только тогда, когда

( displaystyle left| {{log }_{4}}left( 9{{x}^{2}}-39x+43 right) right|=0)

В то же время правая часть – это модуль (значит, больше нуля) произведения двух косинусов (значит не более единицы), тогда:

( displaystyle left| {{log }_{4}}left( 9{{x}^{2}}-39x+43 right) right|=0)

Тогда исходное уравнение равносильно системе:

( displaystyle left{ begin{array}{l}1+|{{log }_{4}}left( 9{{x}^{2}}-39x+43 right)|=1\left| cos cos left( {x} -2 right)cos left( x right) right|=1end{array} right.)

Я опять предлагаю решить первое уравнение и результат подставить во второе:

( displaystyle 1+|{{log }_{4}}left( 9{{x}^{2}}-39x+43 right)|=1)

( displaystyle |{{log }_{4}}left( 9{{x}^{2}}-39x+43 right)|=0)

( displaystyle {{log }_{4}}left( 9{{x}^{2}}-39x+43 right)=0).

Данное уравнение корней не имеет.

Тогда исходное уравнение также не имеет корней.

Ответ: решений нет.

Skip to content

ЕГЭ Профиль №13. Логарифмические уравнения

ЕГЭ Профиль №13. Логарифмические уравненияadmin2018-08-29T21:30:04+03:00

Используйте LaTeX для набора формулы

Как решать логарифмические уравнения

Уравнения, содержащие в том или ином виде логарифмы от некоторого выражения, зависящего от (х), называются логарифмическими.

Давайте сразу же рассмотрим пример, так будет легче всего разобраться.

Пример 1
$$ log_{2}(x)=log_{2}(5)$$

Мы видим слева и справа логарифмы с одинаковыми основаниями, равными (2). Вполне логично предположить, что логарифмы будут равны, если будут равны выражения, стоящие под логарифмом (их называют аргументами) — то есть (х=5). Мы только что решили логарифмическое уравнение!

На самом деле, абсолютно такая же логика применима при решении почти всех логарифмических уравнений — если у нас сравниваются два логарифма с одинаковыми основаниями, то мы можем избавиться от логарифмов, приравнять их аргументы и решить получившееся уравнение.

Пример 2
$$ log_{3}(2x+5)=log_{3}(11) $$

Опять имеем два логарифма с одинаковым основанием (3). Избавляемся от логарифмов, приравнивая аргументы:

$$ 2x+5=11,$$
$$ 2x=6,$$
$$ x=3.$$

Кажется, что все очень просто. Но есть несколько непростых нюансов, которые необходимо обсудить. Давайте посмотрим еще один пример:

Пример 3
$$ log_{2}(1+3x)=log_{2}(2x-3) $$

Смотрим на основания — они одинаковые, значит убираем логарифмы и решаем уравнение:

$$1+3x=2x-3,$$
$$3x-2x=-3-1,$$
$$x=-4.$$

Мы решили уравнение, но я хочу позанудствовать и проверить, действительно ли получившийся корень является корнем исходного уравнения. Для этого подставим его в логарифмическое уравнение:

$$ log_{2}(1+3*(-4))=log_{2}(2*(-4)-3),$$
$$log_{2}(-11)=log_{2}(-11).$$

Мы получили слева и справа два одинаковых логарифма, вот только эти логарифмы НЕ СУЩЕСТВУЮТ, потому что нельзя взять логарифм от отрицательного числа.

Действительно, давайте вспомним определение логарифма (log_{a}b) — это в какую степень нужно возвести (a), чтобы получить (b). При этом определение справедливо не для всех (a) и (b), а только для (a>0), (b>0), (a neq 1). Подробнее про логарифм и его свойства можно почитать здесь.

Значит, с нашим решением что-то не так — мы нашли корень, подставили его в уравнение, но получили логарифм от отрицательного числа, который не существует!

Тут самое время вспомнить про область допустимых значений (ОДЗ). В логарифмах нужно всегда внимательно следить за тем, чтобы не нарушались ограничения, которые вытекают из определения логарифма. Рассмотрим логарифм от некоторой функции:

$$log_{a}f(x)$$

Область допустимых значений (ОДЗ) для него будет задаваться системой неравенств:

$$ begin{cases}
f(x)>0, \
a>0, \
a neq 1.
end{cases}$$

И при решении любых логарифмических уравнений или неравенств всегда первым делом записываем ОДЗ для каждого логарифма в уравнении.
В нашем примере 3, ОДЗ будет выглядеть вот так:

$$ begin{cases}
1+3x>0, \
2x-3>0. \
end{cases}$$

Решаем получившуюся систему

$$ begin{cases}
x>-frac{1}{3}, \
x>frac{3}{2}. \
end{cases}$$

Находим (х), удовлетворяющие одновременно обоим неравенствам, и получаем в итоге ОДЗ:
$$x>frac{3}{2}.$$

Вспоминаем, что решая это уравнение мы получили корень (x=-4), который нашему ОДЗ не удовлетворяет. Поэтому в примере 3 корней нет.

И так, всегда пишем ОДЗ!

Следующая трудность при решении логарифмических уравнений возникает, когда у нас сравниваются логарифмы с разными основаниями:

Пример 4
$$ log_{2}(x)=log_{4}(9).$$

Запишем ОДЗ: (x>0).

У логарифма слева основание (2), а у логарифма справа основание (4). Чтобы воспользоваться способом решения, аналогичным первым трем примерам, необходимо привести логарифмы к одинаковому основанию.

$$ log_{2}(x)=log_{2}(3).$$

Ого, как я такое получил?
Просто воспользовался формулой возведения в степень основания и аргумента логарифма — если возвести в одинаковую степень, то логарифм от этого не поменяется:

$$ log_{a}(b)=log_{a^n}(b^n).$$

В нашем примере возведем основание и аргумент в степень (frac{1}{2}):

$$ log_{4}(9)=log_{4^{frac{1}{2}}}(9^{frac{1}{2}})=log_{2}(3).$$

$$ log_{2}(x)=log_{2}(3).$$

Ну теперь основании у логарифмов одинаковые и можно с чистым сердцем приравнять аргументы, как мы делали до этого.
$$x=3.$$

Кстати, решить уравнение (log_{2}(x)=log_{4}(9))
можно было и по-другому — привести к основанию (4) логарифм, стоящий слева в уравнении:

Опять воспользуемся свойством логарифма:
$$ log_{a}(b)=log_{a^n}(b^n);$$
$$log_{2}(x)=log_{2^2}(x^2)=log_{4}(x^2);$$
Подставим в исходное уравнение наши преобразования:
$$ log_{4}(x^2)=log_{4}(9);$$
Ура, у нас слева и справа логарифмы с одинаковым основанием — вычеркиваем логарифмы:
$$x^2=9;$$
Решаем аккуратно простейшее квадратное уравнение. Не забываем, что у него будет 2 корня!
$$x=pm3;$$

Опа, у нас получилось два корня. А когда мы решали первым способом был один корень! Что за дела?

Вспоминаем, что в самом начале к уравнению мы записывали ОДЗ (х>0). Тогда корень (x=-3) не удовлетворяет ОДЗ. Обратите внимание, что без учета ОДЗ в этом случае, мы бы получили неправильный ответ.

Ответ: (x=3.)

Подробнее про свойства логарифмов можно посмотреть тут. Логарифмические уравнения с разными основаниями встречаются в ЕГЭ регулярно, поэтому важно уметь применять все свойства логарифмов.

Рассмотрим еще один пример.

Пример 5
$$log_{5}(x)=2$$

Как видим, в примере есть только логарифм в левой части равенства, а справа стоит просто число 2. Давайте постараемся привести к такому же виду, как и в прошлых примерах. То есть сделаем так, чтобы справа появился логарифм с основанием 5.

Оказывается, любое число (a) можно представить в виде логарифма с нужным вам основанием (b) по формуле:
$$a=log_{b}(b^a);$$
Эту формулу можно просто запомнить. А въедливым читателям, я бы рекомендовал посидеть и подумать откуда берется данное выражение. Подсказка — оно напрямую вытекает из определения логарифма. Задайте себе вопрос — «В какую степень нужно возвести основание, чтобы получить аргумент?»

И так, воспользуемся формулой и распишем 2-ку:
$$2=log_{5}(5^2);$$
Подставим в уравнение:
$$log_{5}(x)=log_{5}(5^2);$$
Ура, у нас два логарифма с одинаковыми основаниями, теперь можно приравнять подлогарифмические выражения.
$$x=5^2;$$
$$x=25.$$

Пример 6
$$log_{3}(x+2)=0$$

Начинаем с ОДЗ:
$$x+2>0;$$
$$x>-2.$$

Приступаем к решению уравнения. Что делать в случае, когда справа стоит (0)? Ничего страшного в этом нет, действуем по прежнему плану — представим (0) в виде логарифма по нашей формуле:
$$a=log_{b}(b^a);$$
$$log_{3}(x+2)=log_{3}(3^0);$$
Вспоминаем, что любое число в нулевой степени это единица.
$$log_{3}(x+2)=log_{3}(1);$$
$$x+2=1;$$
$$x=-1.$$
Корень удовлетворяет ОДЗ — записываем ответ.
Ответ: (x=-1).

Подведем итоги. В большинстве случаев, для того, чтобы решить простейшее логарифмическое уравнение, необходимо привести логарифмы слева и справа к одинаковому основанию. Затем приравнять подлогарифмические выражения и решить получившееся уравнения. При этом ни в коем случае не забываем про ОДЗ. На ЕГЭ, если вы вдруг запишите в ответ хотя бы один корень, не удовлетворяющий ОДЗ, то вам поставят за это задание 0 баллов.

В общем виде формула для решения логарифмов выглядит так:
$$ log_{a}(f(x))=log_{a}(g(x)) qquad (*)$$
где (a>0) — основание логарифмов, а (f(x)) и (g(x)) — какие-то выражения, зависящие от (x).
$$ begin{cases}
f(x)>0, или \
g(x)>0. \
end{cases}$$
$$f(x)=g(x).$$

Обратите внимание на «или» в ОДЗ. Оказывается можно накладывать условие больше нуля только на одную функцию: либо на f(x), либо на g(x) — смотря какое неравенство вам кажется легче для решения. Дело в том, что если одна из функций будет больше нуля, то и другая автоматически тоже будет будет больше, ведь мы ищем корни, при которых (f(x)=g(x)).

Для того, чтобы закрепить материал, решим еще одно логарифмическое уравнение:

Пример 7
$$2*log_{4}(4+x)=4-log_{2}(x-2);$$

Здесь все несколько сложнее, чем в предыдущих примерах. Для того чтобы представить наше уравнение в виде (*), нужно избавиться от множителя (2) перед первым логарифмом, кроме этого, нам мешается отдельное слагаемое (4), и в придачу ко всем этим неприятностям у логарифмов разные основания!

Но перед тем как решать, запишем ОДЗ:
$$ begin{cases}
4+x>0, \
x-2>0. \
end{cases}$$

$$ begin{cases}
x>-4, \
x>2. \
end{cases}$$

Находим пересечение и в итоге ОДЗ получается:
$$ x>2.$$

Приступаем непосредственно к решению уравнения. Самое главное, нам необходимо привести все логарифмы к одинаковому основанию, и, по возможности, привести к виду (log_{a}f(x)=log_{a}g(x)).
Здесь не обойтись без свойств логарифмов.
Воспользуемся формулой вынесения степени из основания логарифма:
$$log_{a^n}(b)=frac{1}{n}*log_{a}(b)$$
$$log_{4}(4+x)=log_{2^2}(4+x)=frac{1}{2}*log_{2}(4+x)$$

Подставим в уравнение
$$2*frac{1}{2}*log_{2}(4+x)=4-log_{2}(x-2);$$
$$log_{2}(4+x)=4-log_{2}(x-2);$$
Теперь у нас хотя бы логарифмы с одинаковым основанием. Далее преобразуем левую часть уравнения, воспользовавшись формулами:
$$ a=log_{b}(b^a);$$
$$log_{a}(b)-log_{a}(c)=log_{a}(frac{b}{c})$$
$$4-log_{2}(x-2)=log_{2}(2^4)-log_{2}(2-x)=log_{2}(16)-log_{2}(2-x)=log_{2}(frac{16}{2-x});$$
Подставим получившееся выражение в уравнение:
$$log_{2}(4+x)=log_{2}(frac{16}{2-x});$$

Ура, теперь у нас слева и справа в уравнении логарифмы с одинаковым основанием (2).
Избавляемся от логарифмов и решаем:
$$4+x=frac{16}{x-2};$$
Перекинем все налево и приведем к общему знаменателю
$$4+x-frac{16}{x-2}=0;$$
$$frac{(4+x)(x-2)}{x-2}—frac{16}{x-2}=0;$$
$$frac{4x-8+x^2-2x–16}{x-2}=0;$$
$$frac{x^2+2x-24}{x-2}=0;$$
Дробь равна 0, когда числитель равен 0
$$x^2+2x-24=0;$$
$$D=(2^2-4*(-24)=4+96=100;$$
$${x}_{1,2}=frac{-2pm 10}{2};$$
$${x}_{1}=4;$$
$${x}_{2}=-6;$$
Мы получили два корня. Но не забываем про ОДЗ. Выше мы его посчитали и получилось, что (x>2). Значит второй корень не подходит.
Ответ: (x=4).

Логарифмические уравнения с переменным основанием

Рассмотри теперь уравнение, в котором есть, так называемый, логарифм с переменным основанием. То есть логарифм, у которого в основании стоит какое-то выражение, зависящее от (х).

Пример 8
$$log_{1-x}(x^2+3x+1)=1;$$

В основании логарифма стоит ((1-х)), это переменное основание, потому что я могу подставлять различные значения (х) и каждый раз основание логарифма будет разным. Ничего страшного в этом нет, начинаем решать, руководствуясь тем же принципом, что и в предыдущих примерах — стараемся привести обе части уравнения к виду двух логарифмов с одинаковым основанием. Для этого нужно представить (1) справа в виде логарифма с основанием ((1-х)).

Но первым делом выпишем ОДЗ, не забывая накладывать условия и на основание логарифма, так как оно зависит от (х):
$$ begin{cases}
x^2+3x+1>0, \
1-x>0, \
1-xneq1.\
end{cases} qquad (**)$$

Теперь приступаем к решению самого уравнения. Выпишем еще раз формулу, по которой преобразуем правую часть:

$$a=log_{b}(b^a);$$
Где (а=1), а (b=1-x):
$$1=log_{1-x}(1-x)^1=log_{1-x}(1-x);$$
Подставим в уравнение
$$log_{1-x}(x^2+3x+1)=log_{1-x}(1-x);$$

Два логарифма с одинаковым основанием — можем приравнять аргументы:
$$x^2+3x+1=1-x;$$
$$x^2+4x=0;$$
$$x(x+4)=0;$$
$$x=0;$$
$$x=-4.$$
Получили два корня, проверим удовлетворяют ли они ОДЗ, подставив их в (**). Корень (0) не удовлетворяет последнему неравенству в ОДЗ, а ((-4)) удовлетворяет всем условиям.
Ответ: x=-4.

Замена переменной в уравнениях с логарифмами

Разберем еще один частый тип логарифмических уравнений — это уравнения с заменой переменной. Общий принцип заключается в том, чтобы привести все логарифмы в уравнении к одинаковому основанию и одинаковому аргументу, а потом сделать замену.

Проще разобрать на примерах:

Пример 9

$$log^2_{2}(x)+6=5*log_{2}(x)$$

Как и любой пример на логарифмы, начинаем с ОДЗ:

$$x>0.$$

В уравнении один из логарифмов в квадрате, поэтому представить в виде равенства двух логарифмов, как мы делали в предыдущих примерах, не получится. Кроме этого, замечаем, что у нас оба логарифма абсолютно одинаковые (у них одинаковые основания, и одинаковые аргументы).

Попробуем сделать замену:
$$t=log_{2}(x)$$
Тогда наше уравнение после замены примет вид:
$$t^2-5t+6=0;$$
$$D=25-24=1;$$
$$t_{1}=frac{5+1}{2}=3;$$
$$t_{2}=frac{5-1}{2}=1;$$
И сделаем обратную замену, получив два простых логарифмических уравнения:
$$t_{1}=log_{2}(x)=3;$$
$$log_{2}(x)=log_{2}(2^3);$$
$$x=8.$$
$$t_{2}=log_{2}(x)=1;$$
$$log_{2}(x)=log_{2}(2^1);$$
$$x=2.$$
Обязательно, не забываем проверить, удовлетворяют ли корни ОДЗ ((x>0)). Оба корня подходят, записываем ответ.
Ответ: (x=8; , x=2.)

Пример 10
$$ log_{2}left(frac{8}{x}right)-frac{10}{log_{2}(16x)} = 0;$$

Как обычно, начинаем с ОДЗ:
$$ begin{cases}
frac{8}{x}>0, \
log_{2}(16x)neq0,\
16x>0.\
end{cases}$$

Решаем каждое из получившихся неравенств в системе:
$$ begin{cases}
x>0, \
xneqfrac{1}{16},\
x>0.\
end{cases}$$
В итоге ОДЗ будет: (xin(0;frac{1}{16})cup(frac{1}{16};infty)).

Посмотрим теперь на сам пример. Видим два логарифма, у них одинаковые основания, что хорошо. Но функции, стоящие под логарифмами, разные. Постараемся при помощи свойств логарифма сделать одинаковые аргументы, чтобы потом сделать замену.

Воспользуемся формулами суммы и разности логарифмов с одинаковыми основаниями:
$$log_{a}(b*c)=log_{a}(b)+log_{a}(c);$$
$$log_{a}(frac{b}{c})=log_{a}(b)-log_{a}(c);$$
$$log_{2}left(frac{8}{x}right)=log_{2}(8)-log_{2}(x)=3-log_{2}(x);$$
$$log_{2}(16x)=log_{2}(16)+log_{2}(x)=4+log_{2}(x);$$
Подставим наши преобразования в исходное уравнение
$$3-log_{2}(x)-frac{10}{4+log_{2}(x)}=0;$$
Теперь в уравнении все логарифмы одинаковые, модем сделать замену. Пусть (t=log_{2}(x)).
$$3-t-frac{10}{4+t}=0;$$
Приводим к общему знаменателю
$$frac{(3-t)(4+t)-10}{4+t}=0;$$
$$frac{-t^2-t+2}{4+t}=0;$$
Дробь равна нулю, когда числитель равен нулю:
$$-t^2-t+2=0;$$
$$t_{1}=1;$$
$$t_{2}=-2;$$
Делаем обратную замену:
$$t_{1}=log_{2}(x)=1;$$
$$log_{2}(x)=log_{2}(2^1);$$
$$x=2.$$
$$t_{2}=log_{2}(x)=-2;$$
$$log_{2}(x)=log_{2}({2}^{-2});$$
$$x=frac{1}{4}.$$
Сверяем с ОДЗ, видим, что оба корня подходят, записываем ответ.
Ответ: (x=2; , x=frac{1}{4}.)

Пример 11
$$log_{2}(x^2+4x)+log_{0,5}(frac{x}{4})+2=log_{2}(x^2+3x-4)$$

Область допустимых значений:
$$ begin{cases}
x^2+4x>0, \
x^2+3x-4>0,\
x>0.\
end{cases}$$

$$ begin{cases}
x(x+4)>0, \
x>0,\
(x-1)(x+4)>0.\
end{cases}$$

Зеденым цветом показано решение первого неравенства в системе, синим — второго и фиолетовым третьего. Область, которая находится на пересечении сразу всех трех промежутков заштрихована бордовым.

Решаем методом интервалов, и находим пересечение решений всех неравенств в системе:

В итоге получаем ОДЗ: (x>1).

Приступаем к решению самого уравнения. Первым делом приведем все логарифмы к одинаковому основанию (2). Для этого нужно преобразовать только второе слагаемое в уравнении:
$$0,5=frac{1}{2}=2^{-1};$$
$$log_{2}(x^2+4x)+log_{2^{-1}}(frac{x}{4})+2=log_{2}(x^2+3x-4);$$
Вынесем степень из основания, воспользовавшись формулой (log_{a^n}(b)=frac{1}{n}log_{a}(b)).
$$log_{2}(x^2+4x)-log_{2}(frac{x}{4})+2=log_{2}(x^2+3x-4);$$
В первом слагаемом под логарифмом вынесем общий множитель (х). А квадратный многочлен под логарифмом справа разложим на множители при помощи дискриминанта:
$$log_{2}(x(x+4))-log_{2}(frac{x}{4})+2=log_{2}((x-1)(x+4));$$
И опять воспользуемся формулами суммыразности логарифмов:

$$log_{a}(b*c)=log_{a}(b)+log_{a}(c);$$
$$log_{a}left(frac{b}{c}right)=log_{a}(b)-log_{a}(c);$$
$$log_{2}(x)+log_{2}(x+4)-log_{2}(x)+log_{2}(4)+2=log_{2}(x-1)+log_{2}(x+4);$$
Сократим подобные слагаемые и посчитаем (log_{2}(4)=2):
$$4=log_{2}(x-1);$$
$$log_{2}(x-1)=4;$$
$$log_{2}(x-1)=log_{2}(2^4);$$
$$x-1=16;$$
$$x=17.$$
Сверяем корень с ОДЗ — подходит. Записываем ответ.
Ответ: (x=17).

Задание 971

Найдите корень уравнения $$3^{log_9 (5x-5)}=5$$

Ответ: 6

Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!


Скрыть

$$3^{log_9 (5x-5)}=5Leftrightarrow 3^{frac{1}{2}log_3 (5x-5)}=5 Leftrightarrow$$ $$ 3^{log_3 sqrt{5x-5}}=5Leftrightarrow sqrt{5x-5}=5 Leftrightarrow$$ $$ 5x-5=25Leftrightarrow x=6$$

Задание 1010

Найдите корень уравнения $$log _{2} (-x) + log _{2} (2-x) = 3$$ .Если корней несколько, то в ответе укажите их сумму.

Ответ: -2

Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!


Скрыть

 $$log _{2} (-x) + log _{2} (2-x) = 3$$

$$-x > 0 ; 2 — x > 0 Leftrightarrow x<0$$

$$log _{2} ((-x) *(2-x)) = log _{2} 8$$

$$-2x+x^2=8$$

$$x^2-2x-8=0$$

$$x_1=4 — не входит в ОДЗ ; x_2 =-2$$

Задание 3653

Найдите корень уравнения $$log_{0,5}(5-3x)=-5$$

Ответ: -9

Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!


Скрыть

$$log_{0,5}(5-3x)=-5$$

ОДЗ: $$5-3x>0$$

$$x<frac{5}{3}$$

$$5-3x=(0,5)^{-5}=2^{5}=32$$

$$-3x=32-5=27$$

$$x=-9$$

Задание 6607

Решите уравнение $$7*5^{log_{5} x}=x^{2}-30$$. Если корней несколько, то в ответе укажите меньший корень

Ответ: 10

Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!


Скрыть

ОДЗ: x>0(1)

$$7*x=x^{2}-30Leftrightarrow$$$$x^{2}-7x-30=0$$

$$left{begin{matrix}x_{1}+x_{2}=7\x_{1}x_{2}=-30end{matrix}right.Leftrightarrow$$ left{begin{matrix}x_{1}=10\x_{2}=-3notin (1)end{matrix}right.$$

Задание 7051

Найдите корень уравнения $$log_{0,5} (x+5)=log_{2} (x+5)$$

Ответ: -4

Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!


Скрыть

$$log_{0,5}(x+5)=log_{2}(x+5)Leftrightarrow$$ $$log_{2^{-1}}(x+5)=log_{2}(x+5)Leftrightarrow$$ $$(-1)log_{2}(x+5)=log_{2}(x+5)Leftrightarrow$$ $$2log_{2}(x+5)=0Leftrightarrow$$ $$x+5=1Leftrightarrow$$ $$x=-4$$

Задание 7314

Найдите корень уравнения $$frac{1}{log_{4} (2x+1)}=-2$$

Ответ: -0,25

Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!


Скрыть

$$frac{1}{log_{4}(2x+1)}=-2Leftrightarrow$$ $$left{begin{matrix}log_{4}(2x+1)=-frac{1}{2}\2x+1>0\2x+1neq 1end{matrix}right.$$$$Leftrightarrow$$ $$2x+1=4-frac{1}{2}Leftrightarrow$$ $$2x+1=frac{1}{2}Leftrightarrow$$ $$2x=-frac{1}{2}Leftrightarrow$$ $$x=-0,25$$

Задание 9056

Найдите корень уравнения $$log_{2}(8-x)=2log_{2}(4+x)$$. Если уравнение имеет более одного корня, в ответе запишите наименьший из корней.

Ответ: -1

Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!


Задание 9139

Решите уравнение $$frac{log_{2}4}{x}=frac{3^{log_{3}x}}{2}$$. Если уравнение имеет несколько корней, в ответе укажите меньший из них.

Ответ: 2

Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!


Задание 9939

Решите уравнение: $$log_{frac{1}{8}}x+5log_{4}x+log_{sqrt{2}}x=16frac{2}{3}$$

Ответ: 16

Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!


Задание 10125

Решите уравнение $$log_{30-3cdot2^x}(2^x-3)^2=log_{2^x-2}(2^x-3)^2$$. Если корней несколько, в ответе укажите их сумму.

Ответ: 5

Скрыть

Задание 10159

Найдите произведение всех корней уравнения $$sqrt[3]{10+3x-x^2}cdotlg(7-x-x^2)=0$$

Ответ: 12

Скрыть

Задание 10478

Решите уравнение $$ln(frac{pi^{x}}{e^{x}}+2x-10)=x(ln pi-1)$$. Если корней больше одного, то в ответе запишите их сумму.

Ответ: 5

Задание 10488

Решите уравнение $$frac{5}{log_{2}x+3}+frac{4}{log_{2}x}=3$$. Если корней несколько, в ответе укажите их произведение.

Ответ: 1

Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!


Задание 10567

Найдите произведение всех различных корней уравнения: $${{log }_3 x }-6cdot {{log }_x 9 }=3$$

Ответ: 27

Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!


Скрыть
$${{log }_3 x }-6cdot {{log }_x 9 }=3;
Mleft(xright):left{ begin{array}{c}
x>0 \
xne 1 end{array}
right.$$
Учтем, что $${{log }_x 9 }=2cdot {{log }_x 3 }=frac{2}{{{log }_3 x }}$$; Замена: $${{log }_3 x }=y$$;

$$y-6cdot frac{2}{y}=3to frac{y^2-3cdot y-12}{y}=0to left{ begin{array}{c}
y_1+y_2=3 \
y_1cdot y_2=12 end{array}
right.$$ т.е. $${{log }_3 x_1+{{log }_3 x_2=3to {{log }_3 {(x}_1cdot x_2)=3to x_1cdot x_2=27 } } }$$

Задание 11266

Решить уравнение: $$frac{lg sqrt{x+11}-lg 2}{lg 8 -lg(x-1)}=-1$$

Ответ: 25

Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!


Понравилась статья? Поделить с друзьями:
  • Все типы задач на вероятность егэ профиль
  • Все типы задач на биосинтез белка егэ 2023
  • Все типы задач егэ физика
  • Все типы заданий егэ по математике профильный уровень 2022
  • Все типы банковских задач егэ