Все виды задач по биологии егэ

  • Основные термины генетики

  • Законы Г. Менделя

  • Первый закон Менделя — закон единообразия гибридов

  • Второй закон Менделя — закон расщепления

  • Третий закон Менделя — закон независимого наследования

  • Закон (гипотеза) «чистоты» гамет

  • Анализирующее скрещивание

  • Наследование групп крови (система АВ0)

  • Наследование признаков, сцепленных с полом

  • Типичные задания ЕГЭ по генетике

  • Определение числа типов гамет

  • Задачи на моно- и дигибридное скрещивание

  • На моногибридное скрещивание

  • На дигибридное скрещивание

  • Доминантные гены известны

  • Доминантные гены неизвестны

  • Решение задач на группы крови (система АВ0)

  • Решение задач на наследование признаков, сцепленных с полом

  • Решение задач смешанного типа

  • Задачи для самостоятельного решения

  • Ответы

Автор статьи — профессиональный репетитор, кандидат биологических наук Д. А. Соловков.

Среди заданий по генетике на ЕГЭ по биологии можно выделить 6 основных типов. Первые два — на определение числа типов гамет и моногибридное скрещивание — встречаются чаще всего в части А экзамена (вопросы А7, А8 и А30).

Задачи типов 3, 4 и 5 посвящены дигибридному скрещиванию, наследованию групп крови и признаков, сцепленных с полом. Такие задачи составляют большинство вопросов С6 в ЕГЭ.

Шестой тип задач — смешанный. В них рассматривается наследование двух пар признаков: одна пара сцеплена с Х-хромосомой (или определяет группы крови человека), а гены второй пары признаков расположены в аутосомах. Этот класс задач считается самым трудным для абитуриентов.

В этой статье изложены теоретические основы генетики, необходимые для успешной подготовки к заданию С6, а также рассмотрены решения задач всех типов и приведены примеры для самостоятельной работы.

к оглавлению ▴

Основные термины генетики

Ген — это участок молекулы ДНК, несущий информацию о первичной структуре одного белка. Ген — это структурная и функциональная единица наследственности.

Аллельные гены (аллели) — разные варианты одного гена, кодирующие альтернативное проявление одного и того же признака. Альтернативные признаки — признаки, которые не могут быть в организме одновременно.

Гомозиготный организм — организм, не дающий расщепления по тем или иным признакам. Его аллельные гены одинаково влияют на развитие данного признака.

Гетерозиготный организм — организм, дающий расщепление по тем или иным признакам. Его аллельные гены по-разному влияют на развитие данного признака.

Доминантный ген отвечает за развитие признака, который проявляется у гетерозиготного организма.

Рецессивный ген отвечает за признак, развитие которого подавляется доминантным геном. Рецессивный признак проявляется у гомозиготного организма, содержащего два рецессивных гена.

Генотип — совокупность генов в диплоидном наборе организма. Совокупность генов в гаплоидном наборе хромосом называется геномом.

Фенотип — совокупность всех признаков организма.

к оглавлению ▴

Законы Г. Менделя

Первый закон Менделя — закон единообразия гибридов rm F_1

Этот закон выведен на основании результатов моногибридного скрещивания. Для опытов было взято два сорта гороха, отличающихся друг от друга одной парой признаков — цветом семян: один сорт имел желтую окраску, второй — зеленую. Скрещивающиеся растения были гомозиготными.

Для записи результатов скрещивания Менделем была предложена следующая схема:

rm A — желтая окраска семян
rm a — зеленая окраска семян

Формулировка закона: при скрещивании организмов, различающихся по одной паре альтернативных признаков, первое поколение единообразно по фенотипу и генотипу.

к оглавлению ▴

Второй закон Менделя — закон расщепления

Из семян, полученных при скрещивании гомозиготного растения с желтой окраской семян с растением с зеленой окраской семян, были выращены растения, и путем самоопыления было получено rm F_2.

Формулировка закона: у потомства, полученного от скрещивания гибридов первого поколения, наблюдается расщепление по фенотипу в соотношении bf 3:1, а по генотипу — bf 1:2:1.

к оглавлению ▴

Третий закон Менделя — закон независимого наследования

Этот закон был выведен на основании данных, полученных при дигибридном скрещивании. Мендель рассматривал наследование двух пар признаков у гороха: окраски и формы семян.

В качестве родительских форм Мендель использовал гомозиготные по обоим парам признаков растения: один сорт имел желтые семена с гладкой кожицей, другой — зеленые и морщинистые.

rm A — желтая окраска семян, rm a — зеленая окраска семян,
rm B — гладкая форма, rm b — морщинистая форма.

Затем Мендель из семян rm F_1 вырастил растения и путем самоопыления получил гибриды второго поколения.

В rm F_2 произошло расщепление на 4 фенотипических класса в соотношении 9:3:3:1. 9/16 всех семян имели оба доминантных признака (желтые и гладкие), 3/16 — первый доминантный и второй рецессивный (желтые и морщинистые), 3/16 — первый рецессивный и второй доминантный (зеленые и гладкие), 1/16 — оба рецессивных признака (зеленые и морщинистые).

При анализе наследования каждой пары признаков получаются следующие результаты. В rm F_2 12 частей желтых семян и 4 части зеленых семян, т.е. соотношение 3:1. Точно такое же соотношение будет и по второй паре признаков (форме семян).

Формулировка закона: при скрещивании организмов, отличающихся друг от друга двумя и более парами альтернативных признаков, гены и соответствующие им признаки наследуются независимо друг от друга и комбинируются во всевозможных сочетаниях.

Третий закон Менделя выполняется только в том случае, если гены находятся в разных парах гомологичных хромосом.

к оглавлению ▴

Закон (гипотеза) «чистоты» гамет

При анализе признаков гибридов первого и второго поколений Мендель установил, что рецессивный ген не исчезает и не смешивается с доминантным. В rm F_2 проявляются оба гена, что возможно только в том случае, если гибриды rm F_1 образуют два типа гамет: одни несут доминантный ген, другие — рецессивный. Это явление и получило название гипотезы чистоты гамет: каждая гамета несет только один ген из каждой аллельной пары. Гипотеза чистоты гамет была доказана после изучения процессов, происходящих в мейозе.

Гипотеза «чистоты» гамет — это цитологическая основа первого и второго законов Менделя. С ее помощью можно объяснить расщепление по фенотипу и генотипу.

к оглавлению ▴

Анализирующее скрещивание

Этот метод был предложен Менделем для выяснения генотипов организмов с доминантным признаком, имеющих одинаковый фенотип. Для этого их скрещивали с гомозиготными рецессивными формами.

Если в результате скрещивания все поколение оказывалось одинаковым и похожим на анализируемый организм, то можно было сделать вывод: исходный организм является гомозиготным по изучаемому признаку.

Если в результате скрещивания в поколении наблюдалось расщепление в соотношении 1:1, то исходный организм содержит гены в гетерозиготном состоянии.

к оглавлению ▴

Наследование групп крови (система АВ0)

Наследование групп крови в этой системе является примером множественного аллелизма (это существование у вида более двух аллелей одного гена). В человеческой популяции имеется три гена rm i^0, I^a, I^b, кодирующие белки-антигены эритроцитов, которые определяют группы крови людей. В генотипе каждого человека содержится только два гена, определяющих его группу крови: первая группа rm i^0i^0; вторая rm I^Ai^0 и rm I^AI^A; третья rm I^BI^B и rm I^Bb^0 и четвертая rm I^AI^B.

к оглавлению ▴

Наследование признаков, сцепленных с полом

У большинства организмов пол определяется во время оплодотворения и зависит от набора хромосом. Такой способ называют хромосомным определением пола. У организмов с таким типом определения пола есть аутосомы и половые хромосомы — rm Y и rm X.

У млекопитающих (в т.ч. у человека) женский пол обладает набором половых хромосом rm XX, мужской пол — rm XY. Женский пол называют гомогаметным (образует один тип гамет); а мужской — гетерогаметным (образует два типа гамет). У птиц и бабочек гомогаметным полом являются самцы rm (XX), а гетерогаметным — самки rm (XY).

В ЕГЭ включены задачи только на признаки, сцепленные с rm X-хромосомой. В основном они касаются двух признаков человека: свертываемость крови (rm X^H — норма; rm X^h — гемофилия), цветовое зрение (rm X^D — норма, rm X^d — дальтонизм). Гораздо реже встречаются задачи на наследование признаков, сцепленных с полом, у птиц.

У человека женский пол может быть гомозиготным или гетерозиготным по отношению к этим генам. Рассмотрим возможные генетические наборы у женщины на примере гемофилии (аналогичная картина наблюдается при дальтонизме): rm X^HX^H — здорова; rm X^HX^h — здорова, но является носительницей; rm X^hX^h — больна. Мужской пол по этим генам является гомозиготным, т.к. rm Y-хромосома не имеет аллелей этих генов: rm X^HY — здоров; rm X^hY — болен. Поэтому чаще всего этими заболеваниями страдают мужчины, а женщины являются их носителями.

к оглавлению ▴

Типичные задания ЕГЭ по генетике

Определение числа типов гамет

Определение числа типов гамет проводится по формуле: rm 2^n, где rm n — число пар генов в гетерозиготном состоянии. Например, у организма с генотипом rm AAbbCC генов в гетерозиготном состоянии нет, т.е. rm n=0, следовательно, rm 2^0=1, и он образует один тип гамет rm (AbC). У организма с генотипом rm AaBBcc одна пара генов в гетерозиготном состоянии rm Aa, т.е. rm n=1, следовательно, rm 2^1=2, и он образует два типа гамет. У организма с генотипом rm AaBbCc три пары генов в гетерозиготном состоянии, т.е. rm n=3, следовательно, rm 2^3=8, и он образует восемь типов гамет.

к оглавлению ▴

Задачи на моно- и дигибридное скрещивание

На моногибридное скрещивание

Задача: Скрестили белых кроликов с черными кроликами (черный цвет — доминантный признак). В rm F_1 - 50% белых и 50% черных. Определите генотипы родителей и потомства.

Решение: Поскольку в потомстве наблюдается расщепление по изучаемому признаку, следовательно, родитель с доминантным признаком гетерозиготен.

к оглавлению ▴

На дигибридное скрещивание

Доминантные гены известны

Задача: Скрестили томаты нормального роста с красными плодами с томатами-карликами с красными плодами. В rm F_1 все растения были нормального роста; 75% — с красными плодами и 25% — с желтыми. Определите генотипы родителей и потомков, если известно, что у томатов красный цвет плодов доминирует над желтым, а нормальный рост — над карликовостью.

Решение: Обозначим доминантные и рецессивные гены: rm A — нормальный рост, rm a — карликовость; rm B — красные плоды, rm b — желтые плоды.

Проанализируем наследование каждого признака по отдельности. В rm F_1 все потомки имеют нормальный рост, т.е. расщепления по этому признаку не наблюдается, поэтому исходные формы — гомозиготны. По цвету плодов наблюдается расщепление 3:1, поэтому исходные формы гетерозиготны.

к оглавлению ▴

Доминантные гены неизвестны

Задача: Скрестили два сорта флоксов: один имеет красные блюдцевидные цветки, второй — красные воронковидные цветки. В потомстве было получено 3/8 красных блюдцевидных, 3/8 красных воронковидных, 1/8 белых блюдцевидных и 1/8 белых воронковидных. Определите доминантные гены и генотипы родительских форм, а также их потомков.

Решение: Проанализируем расщепление по каждому признаку в отдельности. Среди потомков растения с красными цветами составляют 6/8, с белыми цветами — 2/8, т.е. 3:1. Поэтому rm A — красный цвет, rm a — белый цвет, а родительские формы — гетерозиготны по этому признаку (т.к. есть расщепление в потомстве).

По форме цветка также наблюдается расщепление: половина потомства имеет блюдцеобразные цветки, половина — воронковидные. На основании этих данных однозначно определить доминантный признак не представляется возможным. Поэтому примем, что rm B — блюдцевидные цветки, rm b — воронковидные цветки.

rm 3/8  A_  B_ — красные блюдцевидные цветки,
rm 3/8  A_  bb — красные воронковидные цветки,
rm 1/8  aaBb — белые блюдцевидные цветки,
rm 1/8  aabb — белые воронковидные цветки.

к оглавлению ▴

Решение задач на группы крови (система АВ0)

Задача: у матери вторая группа крови (она гетерозиготна), у отца — четвертая. Какие группы крови возможны у детей?

Решение:

к оглавлению ▴

Решение задач на наследование признаков, сцепленных с полом

Такие задачи вполне могут встретиться как в части А, так и в части С ЕГЭ.

Задача: носительница гемофилии вышла замуж за здорового мужчину. Какие могут родиться дети?

Решение:

к оглавлению ▴

Решение задач смешанного типа

Задача: Мужчина с карими глазами и 3 группой крови женился на женщине с карими глазами и 1 группой крови. У них родился голубоглазый ребенок с 1 группой крови. Определите генотипы всех лиц, указанных в задаче.

Решение: Карий цвет глаз доминирует над голубым, поэтому rm A — карие глаза, rm a — голубые глаза. У ребенка голубые глаза, поэтому его отец и мать гетерозиготны по этому признаку. Третья группа крови может иметь генотип rm I^BI^B или rm I^Bi^0, первая — только rm i^0i^0. Поскольку у ребенка первая группа крови, следовательно, он получил ген rm i^0 и от отца, и от матери, поэтому у его отца генотип rm I^Bi^0.

Задача: Мужчина дальтоник, правша (его мать была левшой) женат на женщине с нормальным зрением (ее отец и мать были полностью здоровы), левше. Какие могут родиться дети у этой пары?

Решение: У человека лучшее владение правой рукой доминирует над леворукостью, поэтому rm A — правша, rm a — левша. Генотип мужчины rm Aa (т.к. он получил ген rm a от матери-левши), а женщины — rm aa.

Мужчина-дальтоник имеет генотип rm X^dY, а его жена — rm X^DX^D, т.к. ее родители были полностью здоровы.

к оглавлению ▴

Задачи для самостоятельного решения

  1. Определите число типов гамет у организма с генотипом rm AaBBCc.
  2. Определите число типов гамет у организма с генотипом rm AaBbX^dY.
  3. Определите число типов гамет у организма с генотипом rm aaBBI^Bi^0.
  4. Скрестили высокие растения с низкими растениями. В rm F_1 — все растения среднего размера. Какое будет rm F_2?
  5. Скрестили белого кролика с черным кроликом. В rm F_1 все кролики черные. Какое будет rm F_2?
  6. Скрестили двух кроликов с серой шерстью. В rm F_1 - 25% с черной шерстью, 50% — с серой и rm 25% с белой. Определите генотипы и объясните такое расщепление.
  7. Скрестили черного безрогого быка с белой рогатой коровой. В rm F_1 получили 25% черных безрогих, 25% черных рогатых, 25% белых рогатых и 25% белых безрогих. Объясните это расщепление, если черный цвет и отсутствие рогов — доминантные признаки.
  8. Скрестили дрозофил с красными глазами и нормальными крыльями с дрозофилами с белыми глазами и дефектными крыльями. В потомстве все мухи с красными глазами и дефектными крыльями. Какое будет потомство от скрещивания этих мух с обоими родителями?
  9. Голубоглазый брюнет женился на кареглазой блондинке. Какие могут родиться дети, если оба родителя гетерозиготны?
  10. Мужчина правша с положительным резус-фактором женился на женщине левше с отрицательным резусом. Какие могут родиться дети, если мужчина гетерозиготен только по второму признаку?
  11. У матери и у отца 3 группа крови (оба родителя гетерозиготны). Какая группа крови возможна у детей?
  12. У матери 1 группа крови, у ребенка — 3 группа. Какая группа крови невозможна для отца?
  13. У отца первая группа крови, у матери — вторая. Какова вероятность рождения ребенка с первой группой крови?
  14. Голубоглазая женщина с 3 группой крови (ее родители имели третью группу крови) вышла замуж за кареглазого мужчину со 2 группой крови (его отец имел голубые глаза и первую группу крови). Какие могут родиться дети?
  15. Мужчина-гемофилик, правша (его мать была левшой) женился на женщине левше с нормальной кровью (ее отец и мать были здоровы). Какие могут родиться дети от этого брака?
  16. Скрестили растения земляники с красными плодами и длинночерешковыми листьями с растениями земляники с белыми плодами и короткочерешковыми листьями. Какое может быть потомство, если красная окраска и короткочерешковые листья доминируют, при этом оба родительских растения гетерозиготны?
  17. Мужчина с карими глазами и 3 группой крови женился на женщине с карими глазами и 3 группой крови. У них родился голубоглазый ребенок с 1 группой крови. Определите генотипы всех лиц, указанных в задаче.
  18. Скрестили дыни с белыми овальными плодами с растениями, имевшими белые шаровидные плоды. В потомстве получены следующие растения: 3/8 с белыми овальными, 3/8 с белыми шаровидными, 1/8 с желтыми овальными и 1/8 с желтыми шаровидными плодами. Определите генотипы исходных растений и потомков, если у дыни белая окраска доминирует над желтой, овальная форма плода — над шаровидной.

к оглавлению ▴

Ответы

  1. 4 типа гамет.
  2. 8 типов гамет.
  3. 2 типа гамет.
  4. 1/4 высоких, 2/4 средних и 1/4 низких (неполное доминирование).
  5. 3/4 черных и 1/4 белых.
  6. rm AA — черные, rm aa — белые, rm Aa — серые. Неполное доминирование.
  7. Бык: rm AaBb, корова — rm aabb. Потомство: rm AaBb (черные безрогие), rm Aabb (черные рогатые), rm aaBb (белые рогатые), rm aabb (белые безрогие).
  8. rm A — красные глаза, rm a — белые глаза; rm B — дефектные крылья, rm b — нормальные. Исходные формы — rm AAbb и rm aaBB, потомство rm AaBb.
    Результаты скрещивания:
    а) rm AaBb times AAbb

    б) rm AaBb times aaBB

  9. rm A — карие глаза, rm a — голубые; rm B — темные волосы, rm b — светлые. Отец rm aaBb, мать — rm Aabb.
  10. rm A — правша, rm a — левша; rm B — положительный резус, rm b — отрицательный. Отец rm AABb, мать — rm aabb. Дети: rm 50%  AaBb (правша, положительный резус) и rm 50% Aabb (правша, отрицательный резус).
  11. Отец и мать — rm I^Bi^0. У детей возможна третья группа крови (вероятность рождения — rm 75%) или первая группа крови (вероятность рождения — 25%).
  12. Мать rm i^0i^0, ребенок rm I^Bi^0; от матери он получил ген rm i^0), а от отца — rm i^0. Для отца невозможны следующие группы крови: вторая rm I^AI^A, третья rm I^BI^B, первая rm i^0i^0, четвертая rm I^AI^B.
  13. Ребенок с первой группой крови может родиться только в том случае, если его мать гетерозиготна. В этом случае вероятность рождения составляет rm 50%.
  14. rm A — карие глаза, rm a — голубые. Женщина rm aaI^BI^B, мужчина rm AaI^Ai^0. Дети: rm AaI^AI^B (карие глаза, четвертая группа), rm AaI^Bi^0 (карие глаза, третья группа), rm aaI^AI^B (голубые глаза, четвертая группа), rm aaI^Bi^0 (голубые глаза, третья группа).
  15. rm A — правша, rm a — левша. Мужчина rm AaX^hY, женщина rm aaX^HX^H. Дети rm AaX^HY (здоровый мальчик, правша), rm AaX^HX^h (здоровая девочка, носительница, правша), rm aaX^HY (здоровый мальчик, левша), rm aaX^HX^h (здоровая девочка, носительница, левша).
  16. rm A — красные плоды, rm a — белые; rm B — короткочерешковые, rm b — длинночерешковые.
    Родители: rm Aabb и rm aaBb. Потомство: rm AaBb (красные плоды, короткочерешковые), rm Aabb (красные плоды, длинночерешковые), rm aaBb (белые плоды, короткочерешковые), rm aabb (белые плоды, длинночерешковые).
    Скрестили растения земляники с красными плодами и длинночерешковыми листьями с растениями земляники с белыми плодами и короткочерешковыми листьями. Какое может быть потомство, если красная окраска и короткочерешковые листья доминируют, при этом оба родительских растения гетерозиготны?
  17. rm A — карие глаза, rm a — голубые. Женщина rm AaI^BI^0, мужчина rm AaI^Bi^0. Ребенок: rm aaI^0I^0
  18. rm A — белая окраска, rm a — желтая; rm B — овальные плоды, rm b — круглые. Исходные растения: rm AaBb и rm Aabb. Потомство:
    rm A_Bb - 3/8 с белыми овальными плодами,
    rm A_bb - 3/8 с белыми шаровидными плодами,
    rm aaBb - 1/8 с желтыми овальными плодами,
    rm aabb - 1/8 с желтыми шаровидными плодами.

Если вы хотите разобрать большее количество примеров — записывайтесь на курсы подготовки к ЕГЭ по биологии онлайн

Благодарим за то, что пользуйтесь нашими публикациями.
Информация на странице «Задания по генетике на ЕГЭ по биологии. Задача С6.» подготовлена нашими авторами специально, чтобы помочь вам в освоении предмета и подготовке к экзаменам.
Чтобы успешно сдать необходимые и поступить в высшее учебное заведение или техникум нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими материалами из разделов нашего сайта.

Публикация обновлена:
09.03.2023

В разделе ЕГЭ по биологии Вы найдете разбор типовых заданий, тесты и теоретический материал. Уверены, что пользуясь нашим разделом Вы успешно сдадите экзамен в 2022 году!

Распределение тематик заданий

«Биология как наука. Методы научного познания»

В данном блоке проверяется знание материала о достижениях биологии, методах исследования, об основных уровнях организации живой природы.

«Клетка как биологическая система»

В данный раздел входят задания, проверяющие: знания о строении, жизнедеятельности и многообразии клеток; умения устанавливать взаимосвязь строения и функций органоидов клетки, распознавать и сравнивать клетки разных организмов, процессы, протекающие в них.

«Организм как биологическая система»

В данном разделе проверяется усвоение знаний о закономерностях наследственности и изменчивости, об онтогенезе и воспроизведении организмов, о селекции организмов и биотехнологии, а также выявляется уровень овладения умениями применять биологические знания при решении задач по генетике.

«Система и многообразие органического мира»

Проверяются: знания о многообразии, строении, жизнедеятельности и размножении организмов различных царств живой природы и вирусах; умения сравнивать организмы, характеризовать и определять их принадлежность к определённому систематическому таксону.

«Организм человека и его здоровье»

Данный блок направлен на определение уровня освоения системы знаний о строении и жизнедеятельности организма человека.

«Эволюция живой природы»

Сюда включены задания, направленные на контроль: знаний о виде, движущих силах, направлениях и результатах эволюции органического мира; умений объяснять основные ароморфозы в эволюции растительного и животного мира, устанавливать взаимосвязь движущих сил и результатов эволюции.

«Экосистемы и присущие им закономерности»

Этот блок содержит задания, направленные на проверку: знаний об экологических закономерностях, о круговороте веществ в биосфере; умений устанавливать взаимосвязи организмов в экосистемах, выявлять причины устойчивости, саморазвития и смены экосистем.

Распределение заданий экзаменационной работы по содержательным разделам курса биологии

Разделы Количество заданий
Первая часть Вторая часть Вся работа
Биология как наука. 1 1 2
Клетка как биологическая система. 4-3 1 5-4
Организм как биологическая система. 3-4 1 4-5
Система и многообразие органического мира. 3 1 4
Организм человека и его здоровье. 4 1 5
Эволюция живой природы. 3 1 4
Экосистемы и их закономерности. 3 1 4
Итого 21 7 28

Биология ЕГЭ Анализ каждого задания.
Материалы для подготовки к экзамену

Подготовка к ОГЭ по биологии путем разбора материала по каждому заданию (ответы и комментарии к заданиям ЕГЭ). Биология ЕГЭ Анализ каждого задания для учащихся 10—11 классов и учителей для организации учебного процесса. Представлены алгоритмы выполнения типовых заданий ЕГЭ по биологии. К каждому заданию приводятся все необходимые материалы: теоретические сведения, анализ типичных ошибок при выполнении, комментарии и подробные пояснения к правильным ответам.

Представленные материалы помогут выработать навыки выполнения заданий разных типов, систематизировать знания и качественно подготовиться к Единому государственному экзамену.

На выполнение экзаменационной работы по биологии отводится 235 минут (3 часа 55 минут). В экзамен входят 28 заданий, из них 21 задание с кратким ответом и семь с развёрнутым ответом.

Кодификатор ЕГЭ
  Образец работы с пояснениями
  Справочник по биологии

Выбрать задание ЕГЭ 2022:

• ЧАСТЬ 1 •

Задание № 1. Задание на анализ или прогноз результатов эксперимента (1 балл, новое).

Задание № 2. Умение прогнозировать результаты эксперимента по физиологии клеток и организмов (2 балла, новое).

Задание № 3. Генетическая информация в клетке (1 балл, 4 мин, 66%).

Задание № 4 (ранее — № 6). Задача по генетике (1 балл, 5 мин, 65%).

Задание № 5. Клетка как биологическая система (2 балла, 5 мин, 56%).

Задание № 6. Клетка как биологическая система (2 балла, 4 мин, 70%).

Задание № 7. Организм как биологическая система (2 балла, 5 мин, 63%).

Задание № 8. Организм как биологическая система (2 балла, 5 мин, 57%).

Задание № 9. Многообразие организмов (2 балла, 4 мин, 67%).

Задание № 10. Многообразие организмов (2 балла, 5 мин, 51%).

Задание № 11. Многообразие организмов (2 балла, 4 мин, 77%).

Задание № 12. Организм человека (2 балла, 5 мин, 67%).

Задание № 13. Организм человека (2 балла, 5 мин, 46%).

Задание № 14. Организм человека (2 балла, 5 мин, 44%).

Задание № 15. Эволюция живой природы (2 балла, 5 мин, 72%).

Задание № 16. Эволюция живой природы (2 балла, 5 мин, 56%).

Задание № 17. Экосистемы и присущие им закономерности (2 балла, 5 мин, 72%).

Задание № 18. Экосистемы и присущие им закономерности (2 балла, 4 мин, 55%).

Задание № 19. Общебиологические закономерности (2 балла, 5 мин, 50%).

Задание № 20. Общебиологические закономерности (2 балла, 5 мин, 56%).

Задание № 21. Биологические системы и их закономерности (2 балла, 5 мин, 64%).

• ЧАСТЬ 2 •

Задание № 22. Применение знаний по постановке эксперимента и интерпретации его результатов (3 балла, 10 мин, 25%).

Задание № 23. Анализ графического изображения (3 балла, 15 мин, 24%).

Задание № 24. Анализ биологической информации (3 балла, 15 мин, 35%).

Задание № 25. Применение знаний о человеке и многообразии организмов (3 балла, 15 мин, 13%).

Задание № 26. Применение знаний об эволюции и экологии в практических ситуациях (3 балла, 15 мин, 15%).

Задание № 27. Задачи по цитологии (3 балла, 20 мин, 35%).

Задание № 28. Задачи по генетике (3 балла, 20 мин, 25%).

Примечание: некоторые материалы недоступны или готовятся к публикации. В скобках указан максимальный балл за задание, примерное время выполнения и средний процент выполнения по результатам 2020 года)

Максимальное количество первичных баллов, которое может получить участник ЕГЭ по биологии за выполнение всей экзаменационной работы — 59 первичных баллов, что соответствует 100 тестовым (вторичным) баллам. Причём за первую часть можно получить максимум 38 первичных баллов (64 вторичных), а за вторую 21 первичных (36 вторичных).

Кодификатор ЕГЭ
  Образец работы с пояснениями
  Справочник по биологии

Биология ЕГЭ Анализ каждого задания

В учебных целях использованы цитаты из учебных пособий и электронных изданий:

  1. ЕГЭ. Биология : алгоритмы выполнения типовых заданий / Т. В. Никитинская. — Москва : Эксмо.
  2. ЕГЭ 2021 Биология. 30 тренировочных вариантов по демоверсии 2021 года. — Ростов н/Д : Легион.
  3. Катерина Лукомская. Задания ЕГЭ по биологии (основная и резервная волна)

Биология ЕГЭ Анализ каждого задания.
Материалы для подготовки к экзамену

Варианты ЕГЭ по биологии

Об экзамене

В 10-11 классах в непрофильных школах на биологию отводится всего 1 час. Хорошо, если у вас требовательный педагог, который заставляет много читать и учить, хотя это редкость, потому что биологию выбирают не так уж и часто. Поэтому, если нет лишних денег, чтобы обратиться к персональном наставнику, но есть большое желание подготовиться и успешно сдать, то необходимо обложить себя огромным количеством всевозможных учебников, справочников, пособий, все это дело учить, вычитывать, конспектировать и тут же применять на практике, решая варианты ЕГЭ по биологии. Известны случаи, когда выпускник к началу 11 класса ровным счетом не знал ничего, кроме яйцеклетки и сперматозоида и что, собственно, происходит после их встречи… В итоге же упорный труд приводил к вполне приличным баллам. И не надо спрашивать — хватит ли у меня времени на то, чтобы успеть подготовиться. Начните немедленно. Сейчас!

Структура

Каждый вариант экзаменационной работы включает 28 заданий и состоит из двух частей, различающихся по форме и уровню сложности.

Часть 1 содержит 21 задание: 7 – с множественным выбором с рисунком или без него; 6 – на установление соответствия с рисунком или без него; 3 – на установление последовательности систематических таксонов, биологических объектов, процессов, явлений; 2 – на решение биологических задач по цитологии и генетике; 1 – на дополнение недостающей информации в схеме; 1 – на дополнение недостающей информации в таблице; 1 – на анализ информации, представленной в графической или табличной форме. Часть 2 включает 7 заданий с развернутым ответом.

Пояснения к оцениванию заданий

Задания на работу со схемой (1) и решение биологических задач (3, 6) Каждое из заданий 1, 3, 6 оценивается 1 баллом. Задание считается выполненным верно, если ответ записан в той форме, которая указана в инструкции по выполнению задания. За выполение каждого из заданий 2, 4, 7, 9, 12, 15, 17, 21 выставляется 2 балла за полное правильное выполнение, 1 балл – за выполнение задания с одной ошибкой (одной неверно указанной, в том числе лишней, цифрой наряду со всеми верными цифрами) ИЛИ неполное выполнение задания (отсутствие одной необходимой цифры); 0 баллов – во всех остальных случаях. За выполнение каждого из заданий 5, 8, 10, 13, 16, 18, 20 выставляется 2 балла, если указана верная последовательность цифр, 1 балл, если допущена одна ошибка, 0 баллов во всех остальных случаях. За выполнение каждого из заданий 11, 14, 19 выставляется 2 балла, если указана верная последовательность цифр, 1 балл, если в последовательности цифр допущена одна ошибка (переставлены местами любые две цифры), 0 баллов во всех остальных случаях.

В части 2 задание 22 оценивается максимально в 2 балла; остальные задания 23–28 оцениваются максимально в 3 балла.

Максимальное количество баллов за всю работу – 59.

Тема Результат Задания
1. Биологические термины и понятия (дополнение схемы) Не изучена Отработать PDF
2. Биология как наука Не изучена Отработать PDF
3. Генетическая информация в клетке Не изучена Отработать PDF
4. Клетка, её жизненный цикл (множественный выбор) Не изучена Отработать PDF
5. Клетка, её жизненный цикл (установление соответствия) Не изучена Отработать PDF
6. Моно- и дигибридное, анализирующее скрещивание Не изучена Отработать PDF
7. Воспроизведение организмов. Селекция (множественный выбор) Не изучена Отработать PDF
8. Воспроизведение организмов. Селекция (установление соответствия) Не изучена Отработать PDF
9. Многообразие организмов (множественный выбор) Не изучена Отработать PDF
10. Многообразие организмов (установление соответствия) Не изучена Отработать PDF
11. Систематика Не изучена Отработать PDF
12. Организм человека (множественный выбор) Не изучена Отработать PDF
13. Организм человека (установление соответствия) Не изучена Отработать PDF
14. Организм человека (установление последовательности) Не изучена Отработать PDF
15. Эволюция живой природы (множественный выбор) Не изучена Отработать PDF
16. Эволюция живой природы (установление соответствия) Не изучена Отработать PDF
17. Экосистемы (множественный выбор) Не изучена Отработать PDF
18. Экосистемы (установление соответствия) Не изучена Отработать PDF
19. Общебиологические закономерности (установление последовательности) Не изучена Отработать PDF
20. Общебиологические закономерности (дополнение таблицы) Не изучена Отработать PDF
21. Общебиологические закономерности (анализ данных в табличной или графической форме) Не изучена Отработать PDF
Часть 2
22. При­ме­не­ние зна­ний в прак­ти­че­ских ситуациях Отработать PDF
23. Ана­лиз текстовой и гра­фи­че­ской информации Отработать PDF
24. За­да­ние на ана­лиз биологической информации Отработать PDF
25. Че­ло­век и мно­го­об­ра­зие организмов Отработать PDF
26. Эво­лю­ция и эко­ло­ги­че­ские закономерности Отработать PDF
27. За­да­ча по цитологии Отработать PDF
28. За­да­ча по генетике Отработать PDF

Любой учитель или репетитор может отслеживать результаты своих учеников по всей группе или классу.
Для этого нажмите ниже на кнопку «Создать класс», а затем отправьте приглашение всем заинтересованным.

Ознакомьтесь с подробной видеоинструкцией по использованию модуля.


Понравилась статья? Поделить с друзьями:
  • Все виды грамматических ошибок 8 задание егэ
  • Все виды 15 задания егэ математика профиль
  • Все виды 11 задания егэ по информатике
  • Все виды 1 задания егэ математика профильный уровень 2022
  • Все видоизменения растений для егэ