Все задания с логарифмами разбор егэ

Всего: 35    1–20 | 21–35

Добавить в вариант

Найдите значение выражения 2 в степени левая круглая скобка логарифм по основанию 2 6 минус 3 правая круглая скобка

Источник: Апробация базового ЕГЭ по математике, 13—17 октября: вариант 166702.


Найдите значение выражения 7 умножить на 5 в степени левая круглая скобка log правая круглая скобка _54.


Решите уравнение  логарифм по основанию левая круглая скобка x минус 5 правая круглая скобка 49=2. Если уравнение имеет более одного корня, в ответе укажите меньший из них.


Решите уравнение  логарифм по основанию левая круглая скобка x минус 1 правая круглая скобка 81=2. Если уравнение имеет более одного корня, в ответе укажите меньший из них.


Найдите значение выражения 6 в степени левая круглая скобка 5 логарифм по основанию 6 3 правая круглая скобка .

Источник: Апробация базового ЕГЭ по математике, 13—17 октября: вариант 120911.


Найдите значение выражения log _52,5 плюс log _510.

Источник: Апробация базового ЕГЭ по математике, 13—17 октября: вариант 166081.


Найдите значение выражения log _70,5 плюс log _798.

Источник: Апробация базового ЕГЭ по математике, 13—17 октября: вариант 166084.


Найдите значение выражения log _2112 минус log _27.

Источник: Апробация базового ЕГЭ по математике, 13—17 октября: вариант 166212.


Найдите значение выражения log_340,5 плюс log_36.

Источник: Апробация базового ЕГЭ по математике, 13—17 октября: вариант 137751.


Найдите значение выражения log _5150 минус log _56.

Источник: Апробация базового ЕГЭ по математике, 13—17 октября: вариант 137753.


Найдите значение выражения log_4512 минус log_42.

Источник: Апробация базового ЕГЭ по математике, 13—17 октября: вариант 152742.


Найдите значение выражения log _354 минус log _32.

Источник: Апробация базового ЕГЭ по математике, 13—17 октября: вариант 152744.


Найдите значение выражения log_60,8} плюс {log_645.

Источник: Апробация базового ЕГЭ по математике, 13—17 октября: вариант 153692.


Найдите значение выражения 6 в степени левая круглая скобка 3 логарифм по основанию 6 2 правая круглая скобка .

Источник: Апробация базового ЕГЭ по математике, 13—17 октября: вариант 166704.


Каждому из четырёх неравенств в левом столбце соответствует одно из решений в правом столбце. Установите соответствие между неравенствами и их решениями.

Запишите в ответ цифры, расположив их в порядке, соответствующем буквам:


Каждому из четырёх неравенств в левом столбце соответствует одно из решений в правом столбце. Установите соответствие между неравенствами и их решениями.

РЕШЕНИЯ

Номер в банке ФИПИ: 59750B


Каждому из четырёх неравенств в левом столбце соответствует одно из решений в правом столбце. Установите соответствие между неравенствами и их решениями.

РЕШЕНИЯ

Запишите в ответ цифры, расположив их в порядке, соответствующем буквам:

Номер в банке ФИПИ: 6E05B2


Каждому из четырёх неравенств в левом столбце соответствует одно из решений в правом столбце. Установите соответствие между неравенствами и их решениями.

Запишите в ответ цифры, расположив их в порядке, соответствующем буквам:

Номер в банке ФИПИ: 96353F


Найдите значение выражения  логарифм по основанию 2 0,2 плюс логарифм по основанию 2 20.


Найдите значение выражения  логарифм по основанию 5 0,2 плюс логарифм по основанию 5 125.

Всего: 35    1–20 | 21–35

04
Авг 2013

Категория: 06 ВычисленияЛогарифмы

06. Логарифмические выражения

2013-08-04
2022-09-11


Задача 1. Найдите значение выражения log_{0,2}125.

Решение: + показать



Задача 2. Найдите значение выражения  9cdot 7^{log_73}.

Решение: + показать



Задача 3. Найдите значение выражения 16^{log_47}.

Решение: + показать



Задача 4. Найдите значение выражения 6^{2+log_68}.

Решение: + показать



Задача 5. Найдите значение выражения log_8160-log_82,5.

Решение: + показать



Задача 6. Найдите значение выражения (log_981)cdot (log_264).

Решение: + показать



Задача 7. Найдите значение выражения log_432+log_{0,1}10.

Решение: + показать



Задача 8. Найдите значение выражения log_{sqrt[9]{13}}13.

Решение: + показать



Задача 9. Найдите значение выражения frac{log_42}{log_45}+log_50,5.

Решение: + показать



Задача 10. Найдите значение выражения frac{log_2225}{log_215}.

Решение: + показать



Задача 11. Найдите значение выражения frac{log_92}{log_{81}2}.

Решение: + показать



Задача 12. Найдите значение выражения log_311cdot log_{11}27.

Решение: + показать



Задача 13. Найдите значение выражения frac{3^{log_{13}507}}{3^{log_{13}3}}.

Решение: + показать



Задача 14. Найдите значение выражения (1-log_218)(1-log_918).

Решение: + показать



Задача 15. Вычислите значение выражения: (5^{log_57})^{log_72}.

Решение: + показать



Задача 16. Найдите значение выражения log_{16}log_39.

Решение: + показать



Задача 17. Найдите значение выражения log^2_{sqrt2}4.

Решение: + показать



Задача 18. Найдите log_afrac{a^3}{b^5}, если log_ab=7.

Решение: + показать



Задача 19. Найдите значение выражения log_a(ab^6), если log_ba=frac{2}{11}.

Решение: + показать



тест

Вы можете пройти обучающий тест по теме «Преобразование логарифмических выражений».

Автор: egeMax |

комментариев 11

Задание 903

Найдите значение выражения $$log^{3}_{sqrt{3}}{{frac{1}{3}}^3}$$

Ответ: -216

Скрыть

Рассмотрим сам логарифм: $$ log_{sqrt{3}}{{frac{1}{3}}^3}=log_{3^{1/2}}{3^{-3}}=frac{1}{frac{1}{2}}*left(-3right)log_33=-6 $$ Так как он был в третьей степени, то возведем -6 в нее и получим -216

Задание 939

Известно, что $$log_a b *log_b c = -5$$ . Найдите значение выражения $$log_c a$$

Ответ: -0.2

Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!


Скрыть

$$log_a b *log_b c = frac{1}{log_b a}*log_b c=frac{log_b c}{log_b a}=log_a c=-5$$ $$log_c a=frac{1}{log_a c}=frac{1}{-5}=-0.2$$

Задание 2494

Найдите значение выражения: $$6^{2+log_{6}8}$$

Ответ: 288

Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!


Скрыть

$$6^{2+log_{6}8}=$$ $$=36cdot 6^{log_{6}8}=36cdot 8=288$$

Задание 2825

Найдите значение выражения: $$frac{log_{9}10}{log_{9}11}+log_{11}0,1$$

Ответ: 0

Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!


Скрыть

$$frac{log_{9}10}{log_{9}11}+log_{11}0,1=$$ $$=log_{11}10+log_{11}0,1=log_{11}(10cdot 0,1)=log_{11}1=0$$

Задание 3030

Найдите значение выражения $$64^{log_{8}sqrt{3}}$$

Ответ: 3

Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!


Скрыть

$$64^{log_{8}sqrt{3}}=8^{2log_{8}sqrt{3}}=8^{log_{8}3}=3$$

Задание 3114

Найдите значение выражения $$lg(lgsqrt[10]{10})$$

Ответ: -1

Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!


Скрыть

$$lg(lgsqrt[10]{10})=lgfrac{1}{10}cdotlg 10=lgfrac{1}{10}=-1$$

Задание 3285

Найдите значение выражения $$log_5 312,5 — log_5 2,5$$

Ответ: 3

Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!


Скрыть

$$log_5 312,5 — log_5 2,5 = log_5 frac{312,5}{2,5}= log_5 125 = 3$$

Задание 3372

Найдите значение выражения: $$(log_{0,5}sqrt{8sqrt[3]{2}})^{-1}$$

Ответ: -0,6

Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!


Скрыть

$$(log_{0,5}sqrt{8sqrt[3]{2}})^{-1}=$$ $$=(log_{0,5}(2^{3}cdot2^{frac{1}{3}})^{frac{1}{2}})^{-1}=$$ $$=(-1cdotlog_{2}2^{frac{5}{3}})^{-1}=(-frac{5}{3})^{-1}=-frac{3}{5}=-0,6$$

Задание 4236

Най­ди­те зна­че­ние вы­ра­же­ния $$(log_{2}16)cdot(log_{6}36)$$

Ответ: 8

Задание 4237

Най­ди­те зна­че­ние вы­ра­же­ния  $$7cdot5^{log_{5}4}$$

Ответ: 28

Задание 4238

Най­ди­те зна­че­ние вы­ра­же­ния $$36^{log_{6}5}$$

Ответ: 25

Задание 4239

Най­ди­те зна­че­ние вы­ра­же­ния $$log_{0,25}2$$

Ответ: -0,5

Задание 4240

Най­ди­те зна­че­ние вы­ра­же­ния  $$log_{4}8$$

Ответ: 1,5

Задание 4241

Най­ди­те зна­че­ние вы­ра­же­ния $$log_{5}60-log_{5}12$$

Ответ: 1

Задание 4242

Най­ди­те зна­че­ние вы­ра­же­ния $$log_{5}0,2+log_{0,5}4$$

Ответ: -3

14 января 2018

В закладки

Обсудить

Жалоба

Логарифмы в заданиях ЕГЭ

Большая часть заданий, включенных в ЕГЭ, представляет собой задания на вычисление значений числовых логарифмических выражений.

При подготовке следует обратить внимание на формулу перехода к новому основанию логарифма и следствия из нее. Задачи на использование этих формул в школьных учебниках практически не встречаются.

Материал для проведения самостоятельных работ. 15 вариантов по 28 заданий. Ответы прилагаются.

log-sm.docx

Как решать логарифмические уравнения

Уравнения, содержащие в том или ином виде логарифмы от некоторого выражения, зависящего от (х), называются логарифмическими.

Давайте сразу же рассмотрим пример, так будет легче всего разобраться.

Пример 1
$$ log_{2}(x)=log_{2}(5)$$

Мы видим слева и справа логарифмы с одинаковыми основаниями, равными (2). Вполне логично предположить, что логарифмы будут равны, если будут равны выражения, стоящие под логарифмом (их называют аргументами) — то есть (х=5). Мы только что решили логарифмическое уравнение!

На самом деле, абсолютно такая же логика применима при решении почти всех логарифмических уравнений — если у нас сравниваются два логарифма с одинаковыми основаниями, то мы можем избавиться от логарифмов, приравнять их аргументы и решить получившееся уравнение.

Пример 2
$$ log_{3}(2x+5)=log_{3}(11) $$

Опять имеем два логарифма с одинаковым основанием (3). Избавляемся от логарифмов, приравнивая аргументы:

$$ 2x+5=11,$$
$$ 2x=6,$$
$$ x=3.$$

Кажется, что все очень просто. Но есть несколько непростых нюансов, которые необходимо обсудить. Давайте посмотрим еще один пример:

Пример 3
$$ log_{2}(1+3x)=log_{2}(2x-3) $$

Смотрим на основания — они одинаковые, значит убираем логарифмы и решаем уравнение:

$$1+3x=2x-3,$$
$$3x-2x=-3-1,$$
$$x=-4.$$

Мы решили уравнение, но я хочу позанудствовать и проверить, действительно ли получившийся корень является корнем исходного уравнения. Для этого подставим его в логарифмическое уравнение:

$$ log_{2}(1+3*(-4))=log_{2}(2*(-4)-3),$$
$$log_{2}(-11)=log_{2}(-11).$$

Мы получили слева и справа два одинаковых логарифма, вот только эти логарифмы НЕ СУЩЕСТВУЮТ, потому что нельзя взять логарифм от отрицательного числа.

Действительно, давайте вспомним определение логарифма (log_{a}b) — это в какую степень нужно возвести (a), чтобы получить (b). При этом определение справедливо не для всех (a) и (b), а только для (a>0), (b>0), (a neq 1). Подробнее про логарифм и его свойства можно почитать здесь.

Значит, с нашим решением что-то не так — мы нашли корень, подставили его в уравнение, но получили логарифм от отрицательного числа, который не существует!

Тут самое время вспомнить про область допустимых значений (ОДЗ). В логарифмах нужно всегда внимательно следить за тем, чтобы не нарушались ограничения, которые вытекают из определения логарифма. Рассмотрим логарифм от некоторой функции:

$$log_{a}f(x)$$

Область допустимых значений (ОДЗ) для него будет задаваться системой неравенств:

$$ begin{cases}
f(x)>0, \
a>0, \
a neq 1.
end{cases}$$

И при решении любых логарифмических уравнений или неравенств всегда первым делом записываем ОДЗ для каждого логарифма в уравнении.
В нашем примере 3, ОДЗ будет выглядеть вот так:

$$ begin{cases}
1+3x>0, \
2x-3>0. \
end{cases}$$

Решаем получившуюся систему

$$ begin{cases}
x>-frac{1}{3}, \
x>frac{3}{2}. \
end{cases}$$

Находим (х), удовлетворяющие одновременно обоим неравенствам, и получаем в итоге ОДЗ:
$$x>frac{3}{2}.$$

Вспоминаем, что решая это уравнение мы получили корень (x=-4), который нашему ОДЗ не удовлетворяет. Поэтому в примере 3 корней нет.

И так, всегда пишем ОДЗ!

Следующая трудность при решении логарифмических уравнений возникает, когда у нас сравниваются логарифмы с разными основаниями:

Пример 4
$$ log_{2}(x)=log_{4}(9).$$

Запишем ОДЗ: (x>0).

У логарифма слева основание (2), а у логарифма справа основание (4). Чтобы воспользоваться способом решения, аналогичным первым трем примерам, необходимо привести логарифмы к одинаковому основанию.

$$ log_{2}(x)=log_{2}(3).$$

Ого, как я такое получил?
Просто воспользовался формулой возведения в степень основания и аргумента логарифма — если возвести в одинаковую степень, то логарифм от этого не поменяется:

$$ log_{a}(b)=log_{a^n}(b^n).$$

В нашем примере возведем основание и аргумент в степень (frac{1}{2}):

$$ log_{4}(9)=log_{4^{frac{1}{2}}}(9^{frac{1}{2}})=log_{2}(3).$$

$$ log_{2}(x)=log_{2}(3).$$

Ну теперь основании у логарифмов одинаковые и можно с чистым сердцем приравнять аргументы, как мы делали до этого.
$$x=3.$$

Кстати, решить уравнение (log_{2}(x)=log_{4}(9))
можно было и по-другому — привести к основанию (4) логарифм, стоящий слева в уравнении:

Опять воспользуемся свойством логарифма:
$$ log_{a}(b)=log_{a^n}(b^n);$$
$$log_{2}(x)=log_{2^2}(x^2)=log_{4}(x^2);$$
Подставим в исходное уравнение наши преобразования:
$$ log_{4}(x^2)=log_{4}(9);$$
Ура, у нас слева и справа логарифмы с одинаковым основанием — вычеркиваем логарифмы:
$$x^2=9;$$
Решаем аккуратно простейшее квадратное уравнение. Не забываем, что у него будет 2 корня!
$$x=pm3;$$

Опа, у нас получилось два корня. А когда мы решали первым способом был один корень! Что за дела?

Вспоминаем, что в самом начале к уравнению мы записывали ОДЗ (х>0). Тогда корень (x=-3) не удовлетворяет ОДЗ. Обратите внимание, что без учета ОДЗ в этом случае, мы бы получили неправильный ответ.

Ответ: (x=3.)

Подробнее про свойства логарифмов можно посмотреть тут. Логарифмические уравнения с разными основаниями встречаются в ЕГЭ регулярно, поэтому важно уметь применять все свойства логарифмов.

Рассмотрим еще один пример.

Пример 5
$$log_{5}(x)=2$$

Как видим, в примере есть только логарифм в левой части равенства, а справа стоит просто число 2. Давайте постараемся привести к такому же виду, как и в прошлых примерах. То есть сделаем так, чтобы справа появился логарифм с основанием 5.

Оказывается, любое число (a) можно представить в виде логарифма с нужным вам основанием (b) по формуле:
$$a=log_{b}(b^a);$$
Эту формулу можно просто запомнить. А въедливым читателям, я бы рекомендовал посидеть и подумать откуда берется данное выражение. Подсказка — оно напрямую вытекает из определения логарифма. Задайте себе вопрос — «В какую степень нужно возвести основание, чтобы получить аргумент?»

И так, воспользуемся формулой и распишем 2-ку:
$$2=log_{5}(5^2);$$
Подставим в уравнение:
$$log_{5}(x)=log_{5}(5^2);$$
Ура, у нас два логарифма с одинаковыми основаниями, теперь можно приравнять подлогарифмические выражения.
$$x=5^2;$$
$$x=25.$$

Пример 6
$$log_{3}(x+2)=0$$

Начинаем с ОДЗ:
$$x+2>0;$$
$$x>-2.$$

Приступаем к решению уравнения. Что делать в случае, когда справа стоит (0)? Ничего страшного в этом нет, действуем по прежнему плану — представим (0) в виде логарифма по нашей формуле:
$$a=log_{b}(b^a);$$
$$log_{3}(x+2)=log_{3}(3^0);$$
Вспоминаем, что любое число в нулевой степени это единица.
$$log_{3}(x+2)=log_{3}(1);$$
$$x+2=1;$$
$$x=-1.$$
Корень удовлетворяет ОДЗ — записываем ответ.
Ответ: (x=-1).

Подведем итоги. В большинстве случаев, для того, чтобы решить простейшее логарифмическое уравнение, необходимо привести логарифмы слева и справа к одинаковому основанию. Затем приравнять подлогарифмические выражения и решить получившееся уравнения. При этом ни в коем случае не забываем про ОДЗ. На ЕГЭ, если вы вдруг запишите в ответ хотя бы один корень, не удовлетворяющий ОДЗ, то вам поставят за это задание 0 баллов.

В общем виде формула для решения логарифмов выглядит так:
$$ log_{a}(f(x))=log_{a}(g(x)) qquad (*)$$
где (a>0) — основание логарифмов, а (f(x)) и (g(x)) — какие-то выражения, зависящие от (x).
$$ begin{cases}
f(x)>0, или \
g(x)>0. \
end{cases}$$
$$f(x)=g(x).$$

Обратите внимание на «или» в ОДЗ. Оказывается можно накладывать условие больше нуля только на одную функцию: либо на f(x), либо на g(x) — смотря какое неравенство вам кажется легче для решения. Дело в том, что если одна из функций будет больше нуля, то и другая автоматически тоже будет будет больше, ведь мы ищем корни, при которых (f(x)=g(x)).

Для того, чтобы закрепить материал, решим еще одно логарифмическое уравнение:

Пример 7
$$2*log_{4}(4+x)=4-log_{2}(x-2);$$

Здесь все несколько сложнее, чем в предыдущих примерах. Для того чтобы представить наше уравнение в виде (*), нужно избавиться от множителя (2) перед первым логарифмом, кроме этого, нам мешается отдельное слагаемое (4), и в придачу ко всем этим неприятностям у логарифмов разные основания!

Но перед тем как решать, запишем ОДЗ:
$$ begin{cases}
4+x>0, \
x-2>0. \
end{cases}$$

$$ begin{cases}
x>-4, \
x>2. \
end{cases}$$

Находим пересечение и в итоге ОДЗ получается:
$$ x>2.$$

Приступаем непосредственно к решению уравнения. Самое главное, нам необходимо привести все логарифмы к одинаковому основанию, и, по возможности, привести к виду (log_{a}f(x)=log_{a}g(x)).
Здесь не обойтись без свойств логарифмов.
Воспользуемся формулой вынесения степени из основания логарифма:
$$log_{a^n}(b)=frac{1}{n}*log_{a}(b)$$
$$log_{4}(4+x)=log_{2^2}(4+x)=frac{1}{2}*log_{2}(4+x)$$

Подставим в уравнение
$$2*frac{1}{2}*log_{2}(4+x)=4-log_{2}(x-2);$$
$$log_{2}(4+x)=4-log_{2}(x-2);$$
Теперь у нас хотя бы логарифмы с одинаковым основанием. Далее преобразуем левую часть уравнения, воспользовавшись формулами:
$$ a=log_{b}(b^a);$$
$$log_{a}(b)-log_{a}(c)=log_{a}(frac{b}{c})$$
$$4-log_{2}(x-2)=log_{2}(2^4)-log_{2}(2-x)=log_{2}(16)-log_{2}(2-x)=log_{2}(frac{16}{2-x});$$
Подставим получившееся выражение в уравнение:
$$log_{2}(4+x)=log_{2}(frac{16}{2-x});$$

Ура, теперь у нас слева и справа в уравнении логарифмы с одинаковым основанием (2).
Избавляемся от логарифмов и решаем:
$$4+x=frac{16}{x-2};$$
Перекинем все налево и приведем к общему знаменателю
$$4+x-frac{16}{x-2}=0;$$
$$frac{(4+x)(x-2)}{x-2}—frac{16}{x-2}=0;$$
$$frac{4x-8+x^2-2x–16}{x-2}=0;$$
$$frac{x^2+2x-24}{x-2}=0;$$
Дробь равна 0, когда числитель равен 0
$$x^2+2x-24=0;$$
$$D=(2^2-4*(-24)=4+96=100;$$
$${x}_{1,2}=frac{-2pm 10}{2};$$
$${x}_{1}=4;$$
$${x}_{2}=-6;$$
Мы получили два корня. Но не забываем про ОДЗ. Выше мы его посчитали и получилось, что (x>2). Значит второй корень не подходит.
Ответ: (x=4).

Логарифмические уравнения с переменным основанием

Рассмотри теперь уравнение, в котором есть, так называемый, логарифм с переменным основанием. То есть логарифм, у которого в основании стоит какое-то выражение, зависящее от (х).

Пример 8
$$log_{1-x}(x^2+3x+1)=1;$$

В основании логарифма стоит ((1-х)), это переменное основание, потому что я могу подставлять различные значения (х) и каждый раз основание логарифма будет разным. Ничего страшного в этом нет, начинаем решать, руководствуясь тем же принципом, что и в предыдущих примерах — стараемся привести обе части уравнения к виду двух логарифмов с одинаковым основанием. Для этого нужно представить (1) справа в виде логарифма с основанием ((1-х)).

Но первым делом выпишем ОДЗ, не забывая накладывать условия и на основание логарифма, так как оно зависит от (х):
$$ begin{cases}
x^2+3x+1>0, \
1-x>0, \
1-xneq1.\
end{cases} qquad (**)$$

Теперь приступаем к решению самого уравнения. Выпишем еще раз формулу, по которой преобразуем правую часть:

$$a=log_{b}(b^a);$$
Где (а=1), а (b=1-x):
$$1=log_{1-x}(1-x)^1=log_{1-x}(1-x);$$
Подставим в уравнение
$$log_{1-x}(x^2+3x+1)=log_{1-x}(1-x);$$

Два логарифма с одинаковым основанием — можем приравнять аргументы:
$$x^2+3x+1=1-x;$$
$$x^2+4x=0;$$
$$x(x+4)=0;$$
$$x=0;$$
$$x=-4.$$
Получили два корня, проверим удовлетворяют ли они ОДЗ, подставив их в (**). Корень (0) не удовлетворяет последнему неравенству в ОДЗ, а ((-4)) удовлетворяет всем условиям.
Ответ: x=-4.

Замена переменной в уравнениях с логарифмами

Разберем еще один частый тип логарифмических уравнений — это уравнения с заменой переменной. Общий принцип заключается в том, чтобы привести все логарифмы в уравнении к одинаковому основанию и одинаковому аргументу, а потом сделать замену.

Проще разобрать на примерах:

Пример 9

$$log^2_{2}(x)+6=5*log_{2}(x)$$

Как и любой пример на логарифмы, начинаем с ОДЗ:

$$x>0.$$

В уравнении один из логарифмов в квадрате, поэтому представить в виде равенства двух логарифмов, как мы делали в предыдущих примерах, не получится. Кроме этого, замечаем, что у нас оба логарифма абсолютно одинаковые (у них одинаковые основания, и одинаковые аргументы).

Попробуем сделать замену:
$$t=log_{2}(x)$$
Тогда наше уравнение после замены примет вид:
$$t^2-5t+6=0;$$
$$D=25-24=1;$$
$$t_{1}=frac{5+1}{2}=3;$$
$$t_{2}=frac{5-1}{2}=1;$$
И сделаем обратную замену, получив два простых логарифмических уравнения:
$$t_{1}=log_{2}(x)=3;$$
$$log_{2}(x)=log_{2}(2^3);$$
$$x=8.$$
$$t_{2}=log_{2}(x)=1;$$
$$log_{2}(x)=log_{2}(2^1);$$
$$x=2.$$
Обязательно, не забываем проверить, удовлетворяют ли корни ОДЗ ((x>0)). Оба корня подходят, записываем ответ.
Ответ: (x=8; , x=2.)

Пример 10
$$ log_{2}left(frac{8}{x}right)-frac{10}{log_{2}(16x)} = 0;$$

Как обычно, начинаем с ОДЗ:
$$ begin{cases}
frac{8}{x}>0, \
log_{2}(16x)neq0,\
16x>0.\
end{cases}$$

Решаем каждое из получившихся неравенств в системе:
$$ begin{cases}
x>0, \
xneqfrac{1}{16},\
x>0.\
end{cases}$$
В итоге ОДЗ будет: (xin(0;frac{1}{16})cup(frac{1}{16};infty)).

Посмотрим теперь на сам пример. Видим два логарифма, у них одинаковые основания, что хорошо. Но функции, стоящие под логарифмами, разные. Постараемся при помощи свойств логарифма сделать одинаковые аргументы, чтобы потом сделать замену.

Воспользуемся формулами суммы и разности логарифмов с одинаковыми основаниями:
$$log_{a}(b*c)=log_{a}(b)+log_{a}(c);$$
$$log_{a}(frac{b}{c})=log_{a}(b)-log_{a}(c);$$
$$log_{2}left(frac{8}{x}right)=log_{2}(8)-log_{2}(x)=3-log_{2}(x);$$
$$log_{2}(16x)=log_{2}(16)+log_{2}(x)=4+log_{2}(x);$$
Подставим наши преобразования в исходное уравнение
$$3-log_{2}(x)-frac{10}{4+log_{2}(x)}=0;$$
Теперь в уравнении все логарифмы одинаковые, модем сделать замену. Пусть (t=log_{2}(x)).
$$3-t-frac{10}{4+t}=0;$$
Приводим к общему знаменателю
$$frac{(3-t)(4+t)-10}{4+t}=0;$$
$$frac{-t^2-t+2}{4+t}=0;$$
Дробь равна нулю, когда числитель равен нулю:
$$-t^2-t+2=0;$$
$$t_{1}=1;$$
$$t_{2}=-2;$$
Делаем обратную замену:
$$t_{1}=log_{2}(x)=1;$$
$$log_{2}(x)=log_{2}(2^1);$$
$$x=2.$$
$$t_{2}=log_{2}(x)=-2;$$
$$log_{2}(x)=log_{2}({2}^{-2});$$
$$x=frac{1}{4}.$$
Сверяем с ОДЗ, видим, что оба корня подходят, записываем ответ.
Ответ: (x=2; , x=frac{1}{4}.)

Пример 11
$$log_{2}(x^2+4x)+log_{0,5}(frac{x}{4})+2=log_{2}(x^2+3x-4)$$

Область допустимых значений:
$$ begin{cases}
x^2+4x>0, \
x^2+3x-4>0,\
x>0.\
end{cases}$$

$$ begin{cases}
x(x+4)>0, \
x>0,\
(x-1)(x+4)>0.\
end{cases}$$

Зеденым цветом показано решение первого неравенства в системе, синим — второго и фиолетовым третьего. Область, которая находится на пересечении сразу всех трех промежутков заштрихована бордовым.

Решаем методом интервалов, и находим пересечение решений всех неравенств в системе:

В итоге получаем ОДЗ: (x>1).

Приступаем к решению самого уравнения. Первым делом приведем все логарифмы к одинаковому основанию (2). Для этого нужно преобразовать только второе слагаемое в уравнении:
$$0,5=frac{1}{2}=2^{-1};$$
$$log_{2}(x^2+4x)+log_{2^{-1}}(frac{x}{4})+2=log_{2}(x^2+3x-4);$$
Вынесем степень из основания, воспользовавшись формулой (log_{a^n}(b)=frac{1}{n}log_{a}(b)).
$$log_{2}(x^2+4x)-log_{2}(frac{x}{4})+2=log_{2}(x^2+3x-4);$$
В первом слагаемом под логарифмом вынесем общий множитель (х). А квадратный многочлен под логарифмом справа разложим на множители при помощи дискриминанта:
$$log_{2}(x(x+4))-log_{2}(frac{x}{4})+2=log_{2}((x-1)(x+4));$$
И опять воспользуемся формулами суммыразности логарифмов:

$$log_{a}(b*c)=log_{a}(b)+log_{a}(c);$$
$$log_{a}left(frac{b}{c}right)=log_{a}(b)-log_{a}(c);$$
$$log_{2}(x)+log_{2}(x+4)-log_{2}(x)+log_{2}(4)+2=log_{2}(x-1)+log_{2}(x+4);$$
Сократим подобные слагаемые и посчитаем (log_{2}(4)=2):
$$4=log_{2}(x-1);$$
$$log_{2}(x-1)=4;$$
$$log_{2}(x-1)=log_{2}(2^4);$$
$$x-1=16;$$
$$x=17.$$
Сверяем корень с ОДЗ — подходит. Записываем ответ.
Ответ: (x=17).

Лучшие репетиторы для сдачи ЕГЭ

Задания по теме «Логарифмические уравнения»

Открытый банк заданий по теме логарифмические уравнения. Задания B5 из ЕГЭ по математике (профильный уровень)

Геометрические фигуры на плоскости: вычисление величин с использованием углов

Задание №887

Тип задания: 5
Тема:
Логарифмические уравнения

Условие

Найдите корень уравнения 5^{log_{25}(10x-8)}=8.

Показать решение

Решение

Найдем ОДЗ: 10x-8>0.

5^{log_{25}(10x-8)}=5^{log_58},

log_{25}(10x-8)=log_58,

log_{5^2}(10x-8)=log_58,

frac12log_5(10x-8)=log_58,

log_5(10x-8)=2log_58,

log_5(10x-8)=log_58^2,

10x-8=64, значит, условие 10x-8>0 выполняется.

10x=72,

x=7,2.

Ответ

7,2

Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Задание №885

Тип задания: 5
Тема:
Логарифмические уравнения

Условие

Найдите корень уравнения log_3(28+4x)=log_3(18-x).

Показать решение

Решение

28+4x=18-x,

5x=-10,

x=-2.

Сделаем проверку.

log_3(28+4cdot(-2))=log_3(18-(-2)),

log_3 20=log_3 20. Верно, значит, x=-2 — корень уравнения.

Ответ

-2

Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Задание №288

Тип задания: 5
Тема:
Логарифмические уравнения

Условие

Найдите корень уравнения log_{x-7}81=2. Если уравнение имеет более одного корня, в ответе укажите меньший из них.

Показать решение

Решение

Согласно определению логарифма x-7>0 и x-7neq1, тогда x>7 и xneq8.

Так как 2=log_{x-7}(x-7)^2 при x>7 и xneq8, то получаем уравнение log_{x-7}81=log_{x-7}(x-7)^2.

Поэтому (x-7)^2=81,

x-7=pm9,

x_1=16,

x_2=-2.

x_2=-2 решением не является, так как x>7.

Ответ

16

Источник: «Математика. Подготовка к ЕГЭ-2016. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Задание №287

Тип задания: 5
Тема:
Логарифмические уравнения

Условие

Найдите корень уравнения log_3(12-x)=4.

Показать решение

Решение

Так как 4=log_33^4=log_381, то log_3(12-x)=log_381,

12-x=81,

x=-69.

Ответ

-69

Источник: «Математика. Подготовка к ЕГЭ-2016. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Задание №286

Тип задания: 5
Тема:
Логарифмические уравнения

Условие

Найдите корень уравнения log_6(5x+27)=log_6(3+x)+1.

Показать решение

Решение

log_6(5x+27)=log_6(3+x)+log_66,

log_6(5x+27)=log_6(6cdot(3+x)),

log_6(5x+27)=log_6(18+6x),

5x+27=18+6x,

x=9.

Проверка:

log_6(5cdot9+27)=log_6(3+9)+1,

log_672=log_612+1,

log_672=log_672.

x=9 — корень уравнения.

Ответ

9

Источник: «Математика. Подготовка к ЕГЭ-2016. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Задание №284

Тип задания: 5
Тема:
Логарифмические уравнения

Условие

Найдите корень уравнения log_{14}(x-3)=log_{14}(8x-31).

Показать решение

Решение

x-3=8x-31,

7x=28,

x=4.

Проверкой убеждаемся, что x=4 действительно является корнем исходного уравнения.

Ответ

4

Источник: «Математика. Подготовка к ЕГЭ-2016. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Задание №34

Тип задания: 5
Тема:
Логарифмические уравнения

Условие

Найдите корень уравнения: log_42^{2x+5}=4.

Показать решение

Решение

Воспользуемся формулой: 

log_{a}b=x Leftrightarrow a^x=b

Значит:

log_{4}2^{2x+5}=log_{4}256

2^{2x+5}=256

2^{2x+5}=2^8

2x+5=8

2x=3

x=frac{3}{2}=1,5

Ответ

1,5

Задание №33

Тип задания: 5
Тема:
Логарифмические уравнения

Условие

Найдите корень уравнения: log_4(2-x)=log_{16}25.

Показать решение

Решение

Воспользуемся формулой: 

log_{a^k}x=frac{1}{k}log_{a}x, kneq 0

Получим:

log_{4}(2-x)=log_{4^2}25

log_{4}(2-x)=frac{1}{2}log_{4}25

2log_{4}(2-x)=log_{4}25

log_{4}(2-x)^2=log_{4}25

(2-x)^2=25

|2-x|=5

2-x=5

x=-3

Ответ

-3

Задание №26

Тип задания: 5
Тема:
Логарифмические уравнения

Условие

Найдите корень уравнения: log_7(9-x)=3log_73.

Показать решение

Решение

Выполним преобразования:

log_7(9-x)=log_73^3

Раскроем знак логарифма:

9-x=3^3

9-x=27

-x=27-9

x=-18

Ответ

-18

Задание №25

Тип задания: 5
Тема:
Логарифмические уравнения

Условие

Найдите корень уравнения: log_2(7-x)=5.

Показать решение

Решение

Раскроем знак логарифма по формуле

log_ab=c Leftrightarrow b=a^c

и выполним преобразования:

7-x=2^5

7-x=32

-x=32-7

x=-25

Ответ

-25

Лучшие репетиторы для сдачи ЕГЭ

Сложно со сдачей ЕГЭ?

Звоните, и подберем для вас репетитора: 78007750928

Есть в Профильном ЕГЭ по математике, и даже в первой его части, такие задачи, для решения которых нужно знать ВСЁ. То есть всю школьную программу алгебры, с 5 класса до 11. Или почти всю.

Например, задание №6 Профильного ЕГЭ по математике – вычисления и преобразования. Вам могут встретиться и совсем простые задачи (на сложение дробей), и задания, которые не решить без подготовки. Например, вычисление и преобразование иррациональных выражений, тригонометрических, логарифмических. Задачи на определение модуля и понятие функции. В общем, типов задач здесь множество, по всему курсу алгебры.

И помните, что в ответе в заданиях первой части Профильного ЕГЭ по математике у вас должны получаться целые числа или конечные десятичные дроби.

Дробно-рациональные выражения. Формулы сокращенного умножения

Темы для повторения: Формулы сокращенного умножения, Приемы быстрого счета

Если вам встретится такое задание на ЕГЭ – значит, повезло!

1. Найдите значение выражения frac{2,88cdot 44,5}{0,288cdot 4,45}.

Не спешите перемножать десятичные дроби. Посмотрите на задачу внимательно.

frac{2,88cdot 44,5}{0,288cdot 4,45}=frac{2,88cdot 44,5}{2,88cdot 0,445}=frac{44,5}{0,445}=100.

Первый множитель в знаменателе умножили на 10, а второй поделили на 10, просто передвинув запятую.

Ответ: 100.

2. Найдите значение выражения 7frac{9}{13}:frac{5}{13}.

7frac{9}{13}:frac{5}{13}=frac{100}{13}cdot frac{13}{5}=20.

Ответ: 20.

Корни и степени. Иррациональные выражения

Темы для повторения: Арифметический квадратный корень.

Арифметический квадратный корень из числа a — это такое неотрицательное число, квадрат которого равен a.

left ( sqrt{a} right )^{2}=a;;sqrt{a}geq 0;;ageq 0 .

3. Вычислите sqrt{12+4sqrt{5}}cdot sqrt{12-4sqrt{5}} .

sqrt{12+4sqrt{5}}cdot sqrt{12-4sqrt{5}}=sqrt{left ( 12+4sqrt{5} right )left ( 12-4sqrt{5} right )}=

=sqrt{144-80}=sqrt{64}=8.

Применили одну из формул сокращенного умножения.

Ответ: 8.

4. Вычислите:
left ( sqrt{28}-sqrt{12} right )cdot sqrt{10+sqrt{84}}.

Упростим множители:

sqrt{28}-sqrt{12}=sqrt{4cdot 7}-sqrt{3cdot 4}=2left ( sqrt{7}-sqrt{3} right );

sqrt{84}=sqrt{3cdot 7cdot 4}=2sqrt{3cdot 7};

left ( sqrt{28}-sqrt{12} right )cdot sqrt{10+sqrt{84}}=2left ( sqrt{7}-sqrt{3} right )cdot sqrt{10+2sqrt{3cdot 7}}=

=2left ( sqrt{7}-sqrt{3} right )cdot sqrt{left ( sqrt{7} right )^{2}+2sqrt{3}cdot sqrt{7}+left ( sqrt{3} right )^{2}}=

=2left ( sqrt{7}-sqrt{3} right )cdot sqrt{left ( sqrt{7}+sqrt{3}right )^{2}}=2left ( sqrt{7}-sqrt{3} right )left ( sqrt{7}+sqrt{3} right )=

=2cdot left ( 7-3 right )=8.

Ответ: 8.

Действия со степенями

Темы для повторения:
Вспомним правила действий со степенями.

a^{m}cdot a^{n}=a^{m+n}.

frac{a^{m}}{a^{n}}=a^{m-n}.

left ( a^{m} right )^{n}=left ( a^{n} right )^{m}=a^{mn}.

a^{n}b^{n}=left ( ab right )^{n}.

frac{a^{n}}{b^{n}}=left ( frac{a}{b} right )^{n}.

5. Найдите значение выражения: frac{a^{8,9}}{a^{4,9}} при a=4.

frac{a^{8,9}}{a^{4,9}}=a^{8,9-4,9}=a^{4}=4^{4}=256.

Применили формулу частного степеней frac{a^{m}}{a^{n}}=a^{m-n}.

Ответ: 256.

6. Вычислите left ( frac{2^{frac{1}{3}}cdot 2^{frac{1}{4}}}{sqrt[12]{2}} right )^{2}.

left ( frac{2^{frac{1}{3}}cdot 2^{frac{1}{4}}}{sqrt[12]{2}} right )^{2}=left ( frac{2^{frac{1}{3}}cdot 2^{frac{1}{4}}}{2^{frac{1}{12}}} right )^{2}=left ( 2^{frac{1}{3}+frac{1}{4}-frac{1}{12}} right )^{2}=left ( 2^{frac{4}{12}+frac{3}{12}-frac{1}{12}} right )^{2}=

=left (2^{frac{1}{2}} right )^{2}=2.

Ответ: 2.

7. Вычислите frac{5left ( m^{6} right )^{5}+13left ( m^{10} right )^{3}}{left ( 2m^{15} right )^{2}}, если m=3,7.

Спокойно, не пугаемся. И конечно, не спешим подставлять значение m=3,7. Сначала упростим выражение.

frac{5left ( m^{6} right )^{5}+13left ( m^{10} right )^{3}}{left ( 2m^{15} right )^{2}}=frac{5m^{30}+13m^{30}}{4m^{30}}=frac{18m^{30}}{4m^{30}}=4,5.

Ответ: 4,5.

8. Вычислите 0,75^{frac{1}{8}}cdot 4^{frac{1}{4}}cdot 12^{frac{7}{8}}.

0,75^{frac{1}{8}}cdot 4^{frac{1}{4}}cdot 12^{frac{7}{8}}=left ( frac{3}{4} right )^{frac{1}{8}}cdot 4^{frac{1}{4}}cdot left ( 3cdot 4 right )^{frac{7}{8}}=frac{3^{frac{1}{8}}cdot 4^{frac{1}{4}}cdot 3^{frac{7}{8}}cdot 4^{frac{7}{8}}}{4^{frac{1}{8}}}=3cdot 4=12.

Применили формулу для произведения степеней: a^{m}cdot a^{n}=a^{m+n}.

Ответ: 12.

9. Вычислите frac{sqrt[28]{3}cdot 3cdot sqrt[21]{3}}{sqrt[12]{3}}.

frac{sqrt[28]{3}cdot 3cdot sqrt[21]{3}}{sqrt[12]{3}}=frac{3^{frac{1}{28}}cdot 3cdot 3^{frac{1}{21}}}{3^{frac{1}{12}}}=3^{frac{1}{28}+1+frac{1}{21}-frac{1}{12}}=3^{frac{3}{84}+1+frac{4}{84}-frac{7}{84}}=3.

Записали корни в виде степеней (это удобно!) и применили формулу произведения степеней.

Ответ: 3.

Логарифмические выражения

Темы для повторения:
Логарифмы

Логарифм положительного числа b по основанию a — это показатель степени, в которую надо возвести a, чтобы получить b.

log _{a}b=cLeftrightarrow a^{c}=b.

При этом b> 0, a > 0, aneq 1.

Основные логарифмические формулы:

Основное логарифмическое тождество: boldsymbol{log _{a}a^{c}=c, ; a^{log _{a}b}=b}.

Логарифм произведения равен сумме логарифмов: boldsymbol{log _{a}left ( bc right )=log _{a}b+log _{a}c}.

Логарифм частного равен разности логарифмов: boldsymbol{log _{a}left ( frac{b}{c} right )=log _{a}b-log _{a}c}.

Формула для логарифма степени: boldsymbol{log _{a}b^{m}=mlog_{a}b}.

Формула перехода к новому основанию: boldsymbol{log _{a}b=frac{1}{log _{b}a},; log _{a}b=frac{log _{c}b}{log _{c}a}}.

10. Вычислите: log _{5}7cdot log _{7}25.

log _{5}7cdot log _{7}25=log _{5}7cdot log _{7}5^{2}=2log _{5}7cdot log _{7}5=2.

Снова формула перехода к другому основанию.

log _{a}b=frac{1}{log _{b}a}, поэтому
log _{a}bcdot log _{b};a=1.

11. Найдите log _{a}frac{a^{6}}{b^{4}}, если log _{a}b=-2.

log _{a}frac{a^{6}}{b^{4}}=log _{a}a^{6}-log _{a}b^{6}=6-4log _{a}b=6-4cdot left ( -2 right )=6+8=14.

12. Найдите значение выражения frac{log _{2}80}{3+log _{2}10}.

frac{log _{2}80}{3+log _{2}10}=frac{log _{2}left (8cdot 10 right )}{3+log _{2}10}=frac{log _{2}8+log _{2}10}{3+log _{2}10}=frac{3+log _{2}10}{3+log _{2}10}=1.

13. Найдите значение выражения frac{log _{9}sqrt[10]{8}}{log _{9}8}.

frac{log _{9}sqrt[10]{8}}{log _{9}8}=frac{log _{9}8^{frac{1}{10}}}{log _{9}8}=frac{1}{10}=0,1.

14. Найдите значение выражения left ( 1-log _{3}18 right )left ( log _{6}54 -1right ).

left ( 1-log _{3}18 right )left ( log _{6}54 -1right )=-left ( log _{3}18-log _{3}3 right )cdot left ( log _{6}54-log _{6}6 right )=-log _{3}6cdot log _{6}9=-2log _{3}6cdot log _{6}3=-2.

Тригонометрия. Формулы тригонометрии и формулы приведения

Темы для повторения:
Тригонометрический круг.
Формулы тригонометрии.
Формулы приведения.

15. Вычислите: 44sqrt{3}tgleft ( -480^{circ} right ).

44sqrt{3}tgleft ( -480^{circ} right )=44sqrt{3}cdot frac{sin left ( -480^{circ} right )}{cos left ( -480^{circ} right )}=-44sqrt{3}cdot frac{sin 480^{circ}}{cos 480^{circ}}=-44sqrt{3}cdot frac{sin 120^{circ}}{cos 120^{circ}}=-44sqrt{3}cdot frac{sqrt{3}}{2}:left ( -frac{1}{2} right )=132.

16. Найдите 3cos alpha, если sin alpha =-frac{2sqrt{2}}{3} и alpha in left ( frac{3pi }{2};;2pi right ).

cos ^{2}alpha =1-sin ^{2}alpha =1-left ( -frac{2sqrt{2}}{3} right )^{2}=1-frac{8}{9}=frac{1}{9}.

Т.к. alpha in left ( frac{3pi }{2};;2pi right ), то cos alpha =frac{1}{3}.
3cos alpha =3cdot frac{1}{3}=1.

17. Найдите tgalpha, если sin alpha =-frac{1}{sqrt{5}} и alpha in left ( 1,5pi ;;2pi right ).

cos ^{2}alpha =1-sin ^{2}alpha =1-left ( -frac{1}{sqrt{5}} right )^{2}=1-frac{1}{5}=frac{4}{5}.

Т.к. alpha in left ( 1,5pi ;;2pi right ), то
cos alpha =frac{2}{sqrt{5}}.

tgalpha =frac{sin alpha }{cos alpha }=-frac{1}{sqrt{5}}:frac{2}{sqrt{5}}=-2.

18. Найдите значение выражения: frac{13sin 152^{circ}}{cos 76^{circ}cdot cos 14^{circ}}.

frac{13sin 152^{circ}}{cos 76^{circ}cdot cos 14^{circ}}=frac{13cdot 2sin 76^{circ}cdot cos 76^{circ}}{cos 76^{circ}cdot cos 14^{circ}}=frac{26sin 76^{circ}}{cos 14^{circ}}=frac{26sin left ( 90^{circ}-14^{circ} right )}{cos 14^{circ}}=

=frac{26cos 14^{circ}}{cos 14^{circ}}=26.

Применили формулу приведения.

19. Упростите выражение: frac{3cos(pi - beta)+sin(frac{pi}{2}+beta)}{cos(beta+3pi)}.

frac{3cos left ( pi -beta right )+sin left ( frac{pi }{2}+beta right )}{cos left ( beta +3pi right )}=frac{-3cos beta +cos beta }{-cos beta }=frac{-2cos beta }{-cos beta }=2.

Применили формулу приведения.

20. Найдите 2cos 2alpha, если sin alpha =-0,7..

2cos 2alpha =2left ( 1-2sin ^{2}alpha right )=2-4sin ^{2}alpha =2-4cdot left ( -0,7 right )^{2}=0,04.

21. Вычислите frac{1-cos 2alpha +sin 2alpha }{1+cos 2alpha +sin 2alpha }, если tgalpha =0,3.

frac{1-cos 2alpha +sin 2alpha }{1+cos 2alpha +sin 2alpha }=frac{1-cos ^{2}alpha +sin ^{2}alpha +2sin alpha cos alpha }{1+cos ^{2}alpha -sin ^{2}alpha +2sin alpha cos alpha }=

=frac{2sin ^{2}alpha +2sin alpha cos alpha }{2cos ^{2}alpha +2sin alpha cos alpha }=frac{sin alpha left ( sin alpha +cos alpha right )}{cos alpha left ( cos alpha +sin alpha right )}=frac{sin alpha }{cos alpha }=tgalpha =0,3.

Алгебраические выражения, корни, степени и логарифмы. И еще тригонометрия. Это всё, что может встретиться в задании 6 Профильного ЕГЭ по математике?

Оказывается, и это не всё! Еще нужно знать, что такое модуль. И как найти sqrt{a^{2}}.

Другие типы заданий

Темы для повторения:
Модуль числа.
Что такое функция.

22. Найдите значение выражения
sqrt{left ( a-2 right )^{2}}+sqrt{left ( a-4 right )^{2}} при 2leq aleq 4.

Запомним: sqrt{a^{2}}=left | a right |.

sqrt{left ( a-2 right )^{2}}+sqrt{left ( a-4 right )^{2}}=left | a-2 right |+left | a-4 right |.

Если 2leq aleq 4, то a-2geq 0 и left | a-2 right |=a-2.

При этом a-4leq 0 и left | a-4 right |=4-a.

При 2leq aleq 4 получаем: left | a-2 right |+left | a-4 right |=a-2+4-a=2.

Ответ: 2.

23. Найдите значение выражения

x+sqrt{x^{2}-24x+144} при xleq 12.

При xleq 12 получим:

x+sqrt{x^{2}-24x+144}=x+sqrt{left ( x-12 right )^{2}}=x+left | x-12 right |=x+12-x=12.

Ответ: 12.

24. Найдите frac{gleft ( 5-x right )}{gleft ( 5+x right )}, если gleft ( x right )=sqrt[9]{xleft ( 10-x right )}, при left | x right |neq 5.

Что такое gleft ( x right )? Это функция, каждому числу ставящая в соответствие число sqrt[9]{xleft ( 10-x right )}. Например, gleft ( 0 right )=0;

gleft ( 1 right )=sqrt[9]{1cdot left ( 10-1 right )}=sqrt[9]{9}.

Тогда:

gleft ( 5-x right )=sqrt[9]{left ( 5-x right )left ( 10-5+x right )}=sqrt[9]{left ( 5-x right )left ( 5+x right )};

gleft ( 5+x right )=sqrt[9]{left ( 5+x right )left ( 10-5-x right )}=sqrt[9]{left ( 5+x right )left ( 5-x right )}.

Заметим, что gleft ( 5-x right )=gleft ( 5+x right ).

Значит, при left | x right |neq 5.
frac{gleft ( 5-x right )}{gleft ( 5+x right )}=1.

25. Найдите frac{pleft ( b right )}{pleft ( frac{1}{b} right )}, если pleft ( b right )=left ( b-frac{9}{b} right )left ( -9b+frac{1}{b} right ), при bneq 0.

pleft ( b right )=left ( b-frac{9}{b} right )left ( -9b+frac{1}{b} right ) — функция, каждому числу b ставящая в соответствии число
left ( b-frac{9}{b} right )left ( -9b+frac{1}{b} right ).

Тогда при bneq 0.

pleft ( frac{1}{b} right )=left ( frac{1}{b}-9b right )left ( -frac{9}{b} +bright )=left ( b-frac{9}{b} right )left (-9b +frac{1}{b} right )=pleft ( b right ), и значение выражения frac{pleft ( b right )}{pleft ( frac{1}{b} right )} равно 1.

Благодарим за то, что пользуйтесь нашими публикациями.
Информация на странице «Задание 6 ЕГЭ по математике. Вычисления и преобразования» подготовлена нашими редакторами специально, чтобы помочь вам в освоении предмета и подготовке к экзаменам.
Чтобы успешно сдать нужные и поступить в ВУЗ или колледж нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими материалами из разделов нашего сайта.

Публикация обновлена:
09.03.2023

Понравилась статья? Поделить с друзьями:
  • Все задания на автодроме на экзамене
  • Все задания закрытый сегмент егэ 4000 задач с ответами математика ященко решения
  • Все задания закрытый сегмент егэ 4000 задач ответы
  • Все задания егэ по русскому языку с объяснением
  • Все задания егэ информатика на питоне