Вся теория по электричеству для егэ

Оглавление:

  • Основные теоретические сведения
    • Электрический ток. Сила тока. Сопротивление
    • Закон Ома. Последовательное и параллельное соединение проводников
    • ЭДС. Закон Ома для полной цепи
    • Работа и мощность тока. Закон Джоуля-Ленца
    • Энергобаланс замкнутой цепи
    • Электролиз
    • Электрический ток в газах и в вакууме

Основные теоретические сведения

Электрический ток. Сила тока. Сопротивление

К оглавлению…

В проводниках при определенных условиях может возникнуть непрерывное упорядоченное движение свободных носителей электрического заряда. Такое движение называется электрическим током. За направление электрического тока принято направление движения положительных свободных зарядов, хотя в большинстве случае движутся электроны – отрицательно заряженные частицы.

Количественной мерой электрического тока служит сила тока I – скалярная физическая величина, равная отношению заряда q, переносимого через поперечное сечение проводника за интервал времени t, к этому интервалу времени:

Формула Сила тока

Если ток не постоянный, то для нахождения количества прошедшего через проводник заряда рассчитывают площадь фигуры под графиком зависимости силы тока от времени.

Если сила тока и его направление не изменяются со временем, то такой ток называется постоянным. Сила тока измеряется амперметром, который включается в цепь последовательно. В Международной системе единиц СИ сила тока измеряется в амперах [А]. 1 А = 1 Кл/с.

Средняя сила тока находится как отношение всего заряда ко всему времени (т.е. по тому же принципу, что и средняя скорость или любая другая средняя величина в физике):

Средняя сила тока

Если же ток равномерно меняется с течением времени от значения I1 до значения I2, то можно значение среднего тока можно найти как среднеарифметическое крайних значений:

Средняя сила тока

Плотность тока – сила тока, приходящаяся на единицу поперечного сечения проводника, рассчитывается по формуле:

Формула Плотность тока

При прохождении тока по проводнику ток испытывает сопротивление со стороны проводника. Причина сопротивления – взаимодействие зарядов с атомами вещества проводника и между собой. Единица измерения сопротивления 1 Ом. Сопротивление проводника R определяется по формуле:

Формула Сопротивление проводника

где: l – длина проводника, S – площадь его поперечного сечения, ρ – удельное сопротивление материала проводника (будьте внимательны и не перепутайте последнюю величину с плотностью вещества), которое характеризует способность материала проводника противодействовать прохождению тока. То есть это такая же характеристика вещества, как и многие другие: удельная теплоемкость, плотность, температура плавления и т.д. Единица измерения удельного сопротивления 1 Ом·м. Удельное сопротивление вещества – табличная величина.

Сопротивление проводника зависит и от его температуры:

Формула Зависимость сопротивления проводника от температуры

где: R0 – сопротивление проводника при 0°С, t – температура, выраженная в градусах Цельсия, α – температурный коэффициент сопротивления. Он равен относительному изменению сопротивления, при увеличении температуры на 1°С. Для металлов он всегда больше нуля, для электролитов наоборот, всегда меньше нуля.

Диод в цепи постоянного тока

Диод – это нелинейный элемент цепи, сопротивление которого зависит от направления протекания тока. Обозначается диод следующим образом:

Обозначение диода

Стрелка в схематическом обозначении диода показывает, в каком направлении он пропускает ток. В этом случае его сопротивление равно нулю, и диод можно заменить просто на проводник с нулевым сопротивлением. Если ток течет через диод в противоположном направлении, то диод обладает бесконечно большим сопротивлением, то есть не пропускает ток совсем, и является разрывом в цепи. Тогда участок цепи с диодом можно просто вычеркнуть, так как ток по нему не идет.

Закон Ома. Последовательное и параллельное соединение проводников

К оглавлению…

Немецкий физик Г.Ом в 1826 году экспериментально установил, что сила тока I, текущего по однородному металлическому проводнику (то есть проводнику, в котором не действуют сторонние силы) сопротивлением R, пропорциональна напряжению U на концах проводника:

Формула Закон Ома

Величину R принято называть электрическим сопротивлением. Проводник, обладающий электрическим сопротивлением, называется резистором. Это соотношение выражает закон Ома для однородного участка цепи: сила тока в проводнике прямо пропорциональна приложенному напряжению и обратно пропорциональна сопротивлению проводника.

Проводники, подчиняющиеся закону Ома, называются линейными. Графическая зависимость силы тока I от напряжения U (такие графики называются вольт-амперными характеристиками, сокращенно ВАХ) изображается прямой линией, проходящей через начало координат. Следует отметить, что существует много материалов и устройств, не подчиняющихся закону Ома, например, полупроводниковый диод или газоразрядная лампа. Даже у металлических проводников при достаточно больших токах наблюдается отклонение от линейного закона Ома, так как электрическое сопротивление металлических проводников растет с ростом температуры.

Проводники в электрических цепях можно соединять двумя способами: последовательно и параллельно. У каждого способа есть свои закономерности.

1. Закономерности последовательного соединения:

Формула Закономерности последовательного соединения

Формула для общего сопротивления последовательно соединенных резисторов справедлива для любого числа проводников. Если же в цепь последовательно включено n одинаковых сопротивлений R, то общее сопротивление R0 находится по формуле:

Общее сопротивление n последовательно соединенных резисторов

2. Закономерности параллельного соединения:

Формула Закономерности параллельного соединения

Формула для общего сопротивления параллельно соединенных резисторов справедлива для любого числа проводников. Если же в цепь параллельно включено n одинаковых сопротивлений R, то общее сопротивление R0 находится по формуле:

Общее сопротивление n параллельно соединенных резисторов

Электроизмерительные приборы

Для измерения напряжений и токов в электрических цепях постоянного тока используются специальные приборы – вольтметры и амперметры.

Вольтметр предназначен для измерения разности потенциалов, приложенной к его клеммам. Он подключается параллельно участку цепи, на котором производится измерение разности потенциалов. Любой вольтметр обладает некоторым внутренним сопротивлением RB. Для того чтобы вольтметр не вносил заметного перераспределения токов при подключении к измеряемой цепи, его внутреннее сопротивление должно быть велико по сравнению с сопротивлением того участка цепи, к которому он подключен.

Амперметр предназначен для измерения силы тока в цепи. Амперметр включается последовательно в разрыв электрической цепи, чтобы через него проходил весь измеряемый ток. Амперметр также обладает некоторым внутренним сопротивлением RA. В отличие от вольтметра, внутреннее сопротивление амперметра должно быть достаточно малым по сравнению с полным сопротивлением всей цепи.

ЭДС. Закон Ома для полной цепи

К оглавлению…

Для существования постоянного тока необходимо наличие в электрической замкнутой цепи устройства, способного создавать и поддерживать разности потенциалов на участках цепи за счет работы сил неэлектростатического происхождения. Такие устройства называются источниками постоянного тока. Силы неэлектростатического происхождения, действующие на свободные носители заряда со стороны источников тока, называются сторонними силами.

Природа сторонних сил может быть различной. В гальванических элементах или аккумуляторах они возникают в результате электрохимических процессов, в генераторах постоянного тока сторонние силы возникают при движении проводников в магнитном поле. Под действием сторонних сил электрические заряды движутся внутри источника тока против сил электростатического поля, благодаря чему в замкнутой цепи может поддерживаться постоянный электрический ток.

При перемещении электрических зарядов по цепи постоянного тока сторонние силы, действующие внутри источников тока, совершают работу. Физическая величина, равная отношению работы Aст сторонних сил при перемещении заряда q от отрицательного полюса источника тока к положительному к величине этого заряда, называется электродвижущей силой источника (ЭДС):

Формула Электродвижущая сила источника тока (ЭДС)

Таким образом, ЭДС определяется работой, совершаемой сторонними силами при перемещении единичного положительного заряда. Электродвижущая сила, как и разность потенциалов, измеряется в вольтах (В).

Закон Ома для полной (замкнутой) цепи: сила тока в замкнутой цепи равна электродвижущей силе источника, деленной на общее (внутреннее + внешнее) сопротивление цепи:

Формула Закон Ома для полной цепи

Сопротивление r – внутреннее (собственное) сопротивление источника тока (зависит от внутреннего строения источника). Сопротивление R – сопротивление нагрузки (внешнее сопротивление цепи).

Падение напряжения во внешней цепи при этом равно (его еще называют напряжением на клеммах источника):

Формула Падение напряжения во внешней цепи Напряжение на клеммах источника

Важно понять и запомнить: ЭДС и внутреннее сопротивление источника тока не меняются, при подключении разных нагрузок.

Если сопротивление нагрузки равно нулю (источник замыкается сам на себя) или много меньше сопротивления источника, то тогда в цепи потечет ток короткого замыкания:

Формула Сила тока короткого замыкания

Сила тока короткого замыкания – максимальная сила тока, которую можно получить от данного источника с электродвижущей силой ε и внутренним сопротивлением r. У источников с малым внутренним сопротивлением ток короткого замыкания может быть очень велик, и вызывать разрушение электрической цепи или источника. Например, у свинцовых аккумуляторов, используемых в автомобилях, сила тока короткого замыкания может составлять несколько сотен ампер. Особенно опасны короткие замыкания в осветительных сетях, питаемых от подстанций (тысячи ампер). Чтобы избежать разрушительного действия таких больших токов, в цепь включаются предохранители или специальные автоматы защиты сетей.

Несколько источников ЭДС в цепи

Если в цепи присутствует несколько ЭДС подключенных последовательно, то:

1. При правильном (положительный полюс одного источника присоединяется к отрицательному другого) подключении источников общее ЭДС всех источников и их внутреннее сопротивление может быть найдено по формулам:

Последовательное подключение ЭДС

Например, такое подключение источников осуществляется в пультах дистанционного управления, фотоаппаратах и других бытовых приборах, работающих от нескольких батареек.

2. При неправильном (источники соединяются одинаковыми полюсами) подключении источников их общее ЭДС и сопротивление рассчитывается по формулам:

Последовательное подключение ЭДС

В обоих случаях общее сопротивление источников увеличивается.

При параллельном подключении имеет смысл соединять источники только c одинаковой ЭДС, иначе источники будут разряжаться друг на друга. Таким образом суммарное ЭДС будет таким же, как и ЭДС каждого источника, то есть при параллельном соединении мы не получим батарею с большим ЭДС. При этом уменьшается внутреннее сопротивление батареи источников, что позволяет получать большую силу тока и мощность в цепи:

Параллельное подключение ЭДС

В этом и состоит смысл параллельного соединения источников. В любом случае при решении задач сначала надо найти суммарную ЭДС и полное внутреннее сопротивление получившегося источника, а затем записать закон Ома для полной цепи.

Работа и мощность тока. Закон Джоуля-Ленца

К оглавлению…

Работа A электрического тока I, протекающего по неподвижному проводнику с сопротивлением R, преобразуется в теплоту Q, выделяющееся на проводнике. Эту работу можно рассчитать по одной из формул (с учетом закона Ома все они следуют друг из друга):

Формула Работа электрического тока Закон Джоуля-Ленца

Закон преобразования работы тока в тепло был экспериментально установлен независимо друг от друга Дж.Джоулем и Э.Ленцем и носит название закона Джоуля–Ленца. Мощность электрического тока равна отношению работы тока A к интервалу времени Δt, за которое эта работа была совершена, поэтому она может быть рассчитана по следующим формулам:

Формула Мощность электрического тока

Работа электрического тока в СИ, как обычно, выражается в джоулях (Дж), мощность – в ваттах (Вт).

Энергобаланс замкнутой цепи

К оглавлению…

Рассмотрим теперь полную цепь постоянного тока, состоящую из источника с электродвижущей силой ε и внутренним сопротивлением r и внешнего однородного участка с сопротивлением R. В этом случае полезная мощность или мощность, выделяемая во внешней цепи:

Формула Мощность, выделяемая во внешней цепи

Максимально возможная полезная мощность источника достигается, если R = r и равна:

Формула Максимально возможная полезная мощность источника

Если при подключении к одному и тому же источнику тока разных сопротивлений R1 и R2 на них выделяются равные мощности то внутреннее сопротивление этого источника тока может быть найдено по формуле:

Формула Внутреннее сопротивление источника тока при равных мощностях

Мощность потерь или мощность внутри источника тока:

Формула Мощность внутри источника тока

Полная мощность, развиваемая источником тока:

Формула Полная мощность, развиваемая источником тока

КПД источника тока:

Формула КПД источника тока

Электролиз

К оглавлению…

Электролитами принято называть проводящие среды, в которых протекание электрического тока сопровождается переносом вещества. Носителями свободных зарядов в электролитах являются положительно и отрицательно заряженные ионы. К электролитам относятся многие соединения металлов с металлоидами в расплавленном состоянии, а также некоторые твердые вещества. Однако основными представителями электролитов, широко используемыми в технике, являются водные растворы неорганических кислот, солей и оснований.

Прохождение электрического тока через электролит сопровождается выделением вещества на электродах. Это явление получило название электролиза.

Электрический ток в электролитах представляет собой перемещение ионов обоих знаков в противоположных направлениях. Положительные ионы движутся к отрицательному электроду (катоду), отрицательные ионы – к положительному электроду (аноду). Ионы обоих знаков появляются в водных растворах солей, кислот и щелочей в результате расщепления части нейтральных молекул. Это явление называется электролитической диссоциацией.

Закон электролиза был экспериментально установлен английским физиком М.Фарадеем в 1833 году. Закон Фарадея определяет количества первичных продуктов, выделяющихся на электродах при электролизе. Итак, масса m вещества, выделившегося на электроде, прямо пропорциональна заряду Q, прошедшему через электролит:

Формула Электролиз

Величину k называют электрохимическим эквивалентом. Он может быть рассчитан по формуле:

Формула Электрохимический эквивалент

где: n – валентность вещества, NA – постоянная Авогадро, M – молярная масса вещества, е – элементарный заряд. Иногда также вводят следующее обозначение для постоянной Фарадея:

Формула Постоянная Фарадея

Электрический ток в газах и в вакууме

К оглавлению…

Электрический ток в газах

В обычных условиях газы не проводят электрический ток. Это объясняется электрической нейтральностью молекул газов и, следовательно, отсутствием носителей электрических зарядов. Для того чтобы газ стал проводником, от молекул необходимо оторвать один или несколько электронов. Тогда появятся свободные носителя зарядов — электроны и положительные ионы. Этот процесс называется ионизацией газов.

Ионизировать молекулы газа можно внешним воздействием — ионизатором. Ионизаторами может быть: поток света, рентгеновские лучи, поток электронов или α-частиц. Молекулы газа также ионизируются при высокой температуре. Ионизация приводит к возникновению в газах свободных носителей зарядов — электронов, положительных ионов, отрицательных ионов (электрон, объединившийся с нейтральной молекулой).

Если создать в пространстве, занятом ионизированным газом, электрическое поле, то носители электрических зарядов придут в упорядоченное движение – так возникает электрический ток в газах. Если ионизатор перестает действовать, то газ снова становится нейтральным, так как в нем происходит рекомбинация – образование нейтральных атомов ионами и электронами.

Электрический ток в вакууме

Вакуумом называется такая степень разрежения газа, при котором можно пренебречь соударением между его молекулами и считать, что средняя длина свободного пробега превышает линейные размеры сосуда, в котором газ находится.

Электрическим током в вакууме называют проводимость межэлектродного промежутка в состоянии вакуума. Молекул газа при этом столь мало, что процессы их ионизации не могут обеспечить такого числа электронов и ионов, которые необходимы для ионизации. Проводимость межэлектродного промежутка в вакууме может быть обеспечена лишь с помощью заряженных частиц, возникших за счет эмиссионных явлений на электродах.

  • Главная


  • Теория ЕГЭ


  • Физика — теория ЕГЭ



  • Полная теория Электростатики, ЕГЭ по физике

Полная теория Электростатики, ЕГЭ по физике

29.09.2013

Полный материал по физике на тему: Электростатика.

Материал содержит в себе необходимую теорию по теме, а также множество различных практических заданий и тестов, ориентированных на ЕГЭ.

Вместе с этим материалом вы сможете максимально качественно изучить раздел физики «Электростатика» для ЕГЭ.

Смотреть в PDF:

Или прямо сейчас: Скачайте в pdf файле.

Сохранить ссылку:

Комментарии (0)
Добавить комментарий

Добавить комментарий

Комментарии без регистрации. Несодержательные сообщения удаляются.

Имя (обязательное)

E-Mail

Подписаться на уведомления о новых комментариях

Отправить

Проводники и диэлектрики в электростатическом поле. Диэлектрическая проницаемость вещества. Электроемкость. Конденсаторы. Поле плоского конденсатора. Электроемкость плоского конденсатора. Последовательное и параллельное соединение конденсаторов. Энергия заряженного конденсатора.

  • Проводники и диэлектрики в электростатическом поле

    Вещества в природе можно разделить на проводники и диэлектрики.

    Основная особенность — наличие свободных зарядов (электронов), которые участвуют в тепловом движении и могут перемещаться по всему объему проводника.

    Типичные проводники — металлы.

  • Диэлектрическая проницаемость вещества

    В отсутствие внешнего поля в любом элементе объема проводника отрицательный свободный заряд компенсируется положительным зарядом ионной решетки. В проводнике, внесенном в электрическое поле, происходит перераспределение свободных зарядов, в результате чего на поверхности проводника возникают нескомпенсированные положительные и отрицательные заряды. Этот процесс называют электростатической индукцией, а появившиеся на поверхности проводника заряды — индукционными зарядами.

    В отличие от проводников, в диэлектриках (изоляторах) нет свободных электрических зарядов. Они состоят из нейтральных атомов или молекул. Заряженные частицы в нейтральном атоме связаны друг с другом и не могут перемещаться под действием электрического поля по всему объему диэлектрика.

  • Физическая величина, равная отношению модуля напряженности (vec{E}_0) внешнего электрического поля в вакууме к модулю напряженности (vec{E}) полного поля в однородном диэлектрике, называется диэлектрической проницаемостью вещества (varepsilon).

    [varepsilon=dfrac{vec{E}_0}{vec{E}}]

  • Электроемкостью системы из двух проводников называется физическая величина, определяемая как отношение заряда (q) одного из проводников к разности потенциалов (Delta varphi) между ними:

    [fbox{$C=dfrac{q}{Delta varphi}$}]

    Единицы измерения: (displaystyle [text{Ф}]) (фарад).

    Величина электроемкости зависит от формы и размеров проводников и от свойств диэлектрика, разделяющего проводники.

  • Существуют такие конфигурации проводников, при которых электрическое поле оказывается сосредоточенным (локализованным) лишь в некоторой области пространства. Такие системы называются конденсаторами, а проводники, составляющие конденсатор, — обкладками.

  • Плоский конденсатор — система из двух плоских проводящих пластин, расположенных параллельно друг другу на малом по сравнению с размерами пластин расстоянии и разделенных слоем диэлектрика.

  • Электроемкость плоского конденсатора

    Разность потенциалов (Delta varphi) между пластинами в однородном электрическом поле равна (Ed), где (d) — расстояние между пластинами. Из этих соотношений можно получить формулу для электроемкости плоского конденсатора:

    [C=dfrac{q}{Delta varphi}=dfrac{sigma S}{Ed}=dfrac{varepsilon_0S}{d}]

    Таким образом, электроемкость плоского конденсатора прямо пропорциональна площади пластин (обкладок) и обратно пропорциональна расстоянию между ними. Если пространство между обкладками заполнено диэлектриком, электроемкость конденсатора увеличивается в (varepsilon) раз:

    [fbox{$C=dfrac{varepsilon_0varepsilon S}{d}$}]

  • Электрическое поле плоского конденсатора в основном локализовано между пластинами; однако, вблизи краев пластин и в окружающем пространстве также возникает сравнительно слабое электрическое поле, которое называют полем рассеяния. В целом ряде задач приближенно можно пренебрегать полем рассеяния и полагать, что электрическое поле плоского конденсатора целиком сосредоточено между его обкладками.

  • Последовательное и параллельное соединение конденсаторов

    Для достижения нужной емкости или при напряжении, превышающем номинальное напряжение, конденсаторы, могут соединяться последовательно или параллельно. Любое же сложное соединение состоит из нескольких комбинаций последовательного и параллельного соединений.

    • Последовательное соединение конденсаторов

      При последовательном соединении, конденсаторы подключены таким образом, что только первый и последний конденсатор подключены к источнику тока одной из своих пластин. Заряд одинаков на всех пластинах, но внешние заряжаются от источника, а внутренние образуются только за счет разделения зарядов ранее нейтрализовавших друг друга. При этом заряд конденсаторов в батарее меньше, чем, если бы каждый конденсатор подключался бы отдельно. Следовательно, и общая емкость батареи конденсаторов меньше.

      Напряжение на данном участке цепи соотносятся следующим образом:

      [fbox{$U=U_1+U_2$}]

      Зная, что напряжение конденсатора можно представить через заряд и емкость, запишем:

      [dfrac{q}{C}=dfrac{q}{C_1}+dfrac{q}{C_2}]

      Сократив выражение на (Q), получим формулу:

      [fbox{$dfrac{1}{C}=dfrac{1}{C_1}+dfrac{1}{C_2}$}]

      Откуда эквивалентная емкость батареи конденсаторов соединенных последовательно:

      [fbox{$C=dfrac{C_1C_2}{C_1+C_2}$}]

    • Параллельное соединение конденсаторов

      При параллельном соединении конденсаторов напряжение на обкладках одинаковое, а заряды разные.

      Величина общего заряда полученного конденсаторами, равна сумме зарядов всех параллельно подключенных конденсаторов. В случае батареи из двух конденсаторов:

      [fbox{$q=q_1+q_2$}]

      Так как заряд конденсатора

      [q=CU]

      А напряжения на каждом из конденсаторов равны, получаем следующее выражение для эквивалентной емкости двух параллельно соединенных конденсаторов

      [CU=C_1U+C_2U]

      [fbox{$C=C_1+C_2$}]

    • По сути, расчет общей емкости конденсаторов схож с расчетом общего сопротивления цепи в случае с последовательным или параллельным соединением, но при этом, зеркально противоположен.

  • Энергия заряженного конденсатора

    Заряженный конденсатор обладает энергией. В этом можно убедиться на опыте. Если зарядить конденсатор и замкнуть его на лампочку, то (при условии того, что ёмкость конденсатора достаточно велика) лампочка ненадолго загорится. Следовательно, в заряженном конденсаторе запасена энергия, которая и выделяется при его разрядке.

    Вычислим эту энергию: начнём с плоского воздушного конденсатора.

    Ответим на такой вопрос: какова силу притяжения его обкладок друг к другу. Величины используем следующие: заряд конденсатора (q), площадь обкладок (S). Возьмём на второй обкладке настолько маленькую площадку, что заряд (q_0) этой площадки можно считать точечным. Данный заряд притягивается к первой обкладке с силой

    [F_0 = q_0E_1,]

    где (E_1) — напряжённость поля первой обкладки:

    [E_1=dfrac{sigma}{2varepsilon_0}=dfrac{q}{2varepsilon_0S}]

    Значит

    [F_0=dfrac{qq_0}{2varepsilon_0S}]

    Направлена эта сила параллельно линиям поля (т.е. перпендикулярно пластинам). Результирующая сила (F) притяжения второй обкладки к первой складывается из всех этих сил (F_0), с которыми притягиваются к первой обкладке всевозможные маленькие заряды (q_0) второй обкладки. При этом суммировании постоянный множитель (displaystyledfrac{q}{2varepsilon_0S}) вынесется за скобку, а в скобке просуммируются все (q_0) и дадут (q). В результате получим

    [F=dfrac{q^2}{2varepsilon_0S}]

    Предположим теперь, что расстояние между обкладками изменилось от начальной величины (d_1) до конечной величины (d_2). Сила притяжения пластин совершает при этом работу [A = F(d_1 -d_2)]

    Знак правильный: если пластины сближаются ((d_2 < d_1)), то сила совершает положительную работу, так как пластины притягиваются друг к другу. Наоборот, если удалять пластины ((d_2 > d_1)), то работа силы притяжения получается отрицательной, как и должно быть.

    Получаем

    [A=dfrac{q^2}{2varepsilon_0S}(d_1-d_2)=dfrac{q^2d_1}{2varepsilon_0S}-dfrac{q^2d_2}{2varepsilon_0S}=dfrac{q^2}{2C_1}-dfrac{q^2}{2C_2}=W_1-W_2]

    Это можно переписать следующим образом: [A =-(W_2-W_1) =-Delta W,]

    где [fbox{$W=dfrac{q^2}{2C}$}, (1)]

    Работа потенциальной силы (F) притяжения обкладок оказалась равна изменению со знаком минус величины (W). Это как раз и означает, что (W) — потенциальная энергия взаимодействия обкладок, или энергия заряженного конденсатора. Используя соотношение (q = CU), можно получить ещё две формулы для энергии конденсатора (проделать это самостоятельно).

    [fbox{$W=dfrac{qU}{2}$}, (2)]

    [fbox{$W=dfrac{CU^2}{2}$}, (3)]

    Формулы (1)—(3) универсальны: они справедливы как для воздушного конденсатора, так и для конденсатора с диэлектриком.

  • Электрическое поле, магнитное поле. Принцип суперпозиции электрических полей, магнитное поле проводника с током, сила Ампера, сила Лоренца, правило Ленца

    В. З. Шапиро

    В задании 13 проверяются знания по теме «Электродинамика». Это задание относится к базовому уровню проверки знаний. Задачи носят качественный характер, в которых ответ необходимо записать словом (словами).

    1. На рисунке показаны сечения двух параллельных длинных прямых проводников и направления токов в них.

    Сила тока I1 в первом проводнике больше силы тока I2 во втором. Куда направлен относительно рисунка (вправо, влево, вверх, вниз, к наблюдателю, от наблюдателя) вектор индукции магнитного поля этих проводников в точке А, расположенной точно посередине между проводниками? Ответ запишите словом (словами).

    Ответ: ______________ _____________.

    Необходимая теория: Магнитное поле. Линии

    Согласно правилу буравчика, определим направление силовых линий магнитного поля, которое создано каждым током.

    Вектор магнитной индукции направлен по касательной к силовой линии магнитного поля в данной точке (см. рис.)

    Сложение двух векторов overrightarrow{B_1}  и overrightarrow{B_2} даст результирующий вектор, который направлен вертикально вверх, так как магнитное поле тока I1 сильнее магнитного поля тока  I2. Соответственно,  вектор overrightarrow{B_1}  больше по модулю вектора   overrightarrow{B_2}.

    Ответ: вверх.

    Секрет решения. В подобных задачах, если нет специальных оговорок, рисунок в условии задается в вертикальной плоскости. Можно представить, что он расположен также, как монитор компьютера (строго вертикально). Ответ необходимо давать именно относительно вертикальной плоскости.

    Направление магнитных линий вокруг проводника с током лучше определять по правилу буравчика. Безусловно, можно воспользоваться и правилом правой руки, но только в том случае, если существует четкое разграничение в применении правил правой и левой руки.

    2. Заряд + q > 0 находится на равном расстоянии от неподвижных точечных зарядов + Q > 0 и – Q, расположенных на концах тонкой стеклянной палочки (см. рисунок). Куда направлено (вверх, вниз, влево, вправо, от наблюдателя, к наблюдателю) ускорение заряда + q  в этот момент времени, если на него действуют только заряды + Q и – Q? Ответ запишите словом (словами).

    Ответ: _________________________ .

    Необходимая теория: Электрический заряд

    Результат взаимодействия электрических зарядов зависит от знака самих зарядов. Так как одноименные заряды отталкиваются, а разноименные –притягиваются, то на заряд +q будут действовать силы F1 и F2 (см.рис.) Модули этих сил равны на основании закона Кулона.

    Векторное сложение указанных сил дает равнодействующую силу, направленную вправо. 

    Ответ: вправо.   

    Секрет решения. Решение задач по электростатике по темам «Закон Кулона», «Напряженность электростатического поля», «Принцип суперпозиции полей» в обязательном порядке требует построения точных чертежей. Во многом верный результат решения основывается на применении геометрических законов. В обязательном порядке необходимо четко владеть основными геометрическими понятиями, такими как: теорема Пифагора, теорема косинусов, соотношения в прямоугольном треугольнике.      

     3. Электрическая цепь, состоящая из трёх прямолинейных горизонтальных проводников (2–3, 3–4, 4–1) и источника постоянного тока, находится в однородном магнитном поле, у которого вектор магнитной индукции направлен так, как показано на рисунке. Куда направлена относительно рисунка (вправо, влево, вверх, вниз, к наблюдателю, от наблюдателя) вызванная этим полем сила Ампера, действующая на проводник 4–1? Ответ запишите словом (словами).

    Ответ: _____________________ .

    Необходимая теория: Магнитное поле. Силы

    За направление электрического тока принято считать направление движения положительно заряженных частиц. Если же ток обусловлен движением отрицательно заряженных частиц, то за его направление берут направление, противоположенное их движению. При наличии в электрической цепи источника тока принято говорить, что ток течет от «плюса» к «минусу». В данной схеме ток течет против часовой стрелки.

    Применяя для данного рисунка правило левой руки, учитывая направление тока и направление вектора магнитной индукции, можно определить, что сила Ампера направлена вправо.

    Ответ: вправо.

    Секрет решения. Правило левой руки запоминается достаточно легко. Для этого надо взять несколько задач с рисунками и на практике отработать эту закономерность. В данной задаче надо учесть, что, согласно условию, все проводники расположены в горизонтальной плоскости. В противном случае ответ будет неправильным.

    Приведем примеры задач на определение направления силы Ампера при помощи правила левой руки.

    Так как в задачах нет никаких оговорок, то все рисунки считаются расположенными в вертикальной плоскости.

    Рис. А – сила Ампера направлена вверх.

    Рис. Б – сила Ампера направлена вправо.

    Рис. В – сила Ампера направлена от наблюдателя.

    Рис. Г – сила Ампера направлена влево.

    Спасибо за то, что пользуйтесь нашими материалами.
    Информация на странице «Задание 13 ЕГЭ по физике» подготовлена нашими редакторами специально, чтобы помочь вам в освоении предмета и подготовке к ЕГЭ и ОГЭ.
    Чтобы успешно сдать необходимые и поступить в ВУЗ или колледж нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
    Также вы можете воспользоваться другими материалами из данного раздела.

    Публикация обновлена:
    09.03.2023

    Чему посвящен раздел электрический ток на ЕГЭ по физике? Если вы не можете ответить на этот вопрос, вам обязательно стоит начать изучать материал по этой теме. Если вы визуал, то лучше всего подойдут обучающие видеоролики. Один из них – перед вами. Его подготовил эксперт ЕГЭ учебного центра Годограф.

    Все формулы для ЕГЭ по электродинамике запомнить сложно, но можно. Для этого в первую очередь нужно стремление и поддержка опытного педагога. Запишитесь на пробный урок в учебный центр Годограф, чтобы получить фундаментальные знания по предмету и сдать ЕГЭ по физике на 80+ баллов.

    Электрический ток – это упорядоченное движение заряженных частиц. Здесь очень важно каждое слово. Например, если частицы будут не заряжены, то никакого тока не будет. Или если они будут находится в статике, то будет аналогичная картина.

    У разных материй носители заряда отличаются:

    • для металлов – это электроны;
    • для растворов электролитов – положительные и отрицательные ионы;
    • для полупроводников – электроны;
    • для газов – положительные ионы и электроны;
    • для вакуума – любые заряженные частицы.

    Обозначается электрический ток латинской I. Из определения можно выделить формулу: I = Δq/Δt. То есть сколько заряда прошло за единицу времени через условный провод.

    Источники тока в электродинамике ЕГЭ

    Если говорить по-простому и не совсем с научной точки зрения, то источник тока – это любой источник электрического напряжения. Например, розетка, генератор, батарейка. Внутри заряды движутся под воздействием сторонних сил, в то время как источник электрического поля приводит в движение электрическое поле. Фактически источник не создает заряды, а перемещает их.

    По аналогии с гидравликой, источник электрического тока – это насос, проталкивающий с определенным усилием заряды по проводнику, который сопротивляется этому движению.

    Направление электрического тока

    Знак заряда частиц определяет направление их движения. Положительно заряженные частицы идут от «плюса» к «минусу», а отрицательно заряженные – в обратном направлении.

    Что же принимать считать направлением тока? Когда мы говорим этом, то имеем в виду направление движения положительных зарядов. То есть ток течет от “+” к “–”. Исключение составляют свободные электроны металлических проводников, которые двигаются от “–” к “+”.



    Рассылка с лучшими статьями. Раз в неделю для самых занятных

    Для тех, кто ценит свое время. Выбирайте интересную вам тему и подписывайтесь, чтобы ничего не пропустить. Это бесплатно!


    Все формулы взяты в строгом соответствии с Федеральным институтом педагогических измерений (ФИПИ)

    3.1 ЭЛЕКТРИЧЕСКОЕ ПОЛЕ

    3.1.1 Электризация тел и её проявления. Электрический заряд. Два вида заряда. Элементарный электрический заряд. Закон сохранения электрического заряда

    1.       Существуют заряды двух видов: положительные (+) и отрицательные (-). Положительный заряд возникает при трении стекла о кожу или шелк, а отрицательный — при трении янтаря (или эбонита) о шерсть.

    2.       Заряды (или заряженные тела) взаимодействуют друг с другом. Одноименные заряды отталкиваются, а разноименные заряды притягиваются.

    3.       Состояние электризации можно передать от одного тела к другому, что связано с переносом электрического заряда. При этом телу можно передать больший или меньший заряд, т. е. заряд имеет величину. При электризации трением заряд приобретают оба тела, причем одно — положительный, а другое — отрицательный. Следует подчеркнуть, что абсолютные величины зарядов наэлектризованных трением тел равны, что подтверждается многочисленными измерениями зарядов с помощью электрометров.

    Объяснить, почему тела электризуются (т. е. заряжаются) при трении, стало возможным после открытия электрона и изучения строения атома. Как известно, все вещества состоят из атомов; атомы, в свою очередь, состоят из элементарных частиц — отрицательно заряженных электронов, положительно заряженных протонов и нейтральных частиц —нейтронов. Электроны и протоны являются носителями элементарных (минимальных) электрических зарядов.

    Элементарный электрический заряд (е) — это наименьший электрический заряд, положительный или отрицательный, равный величине заряда электрона:

    Закон сохранения электрического заряда — алгебраическая сумма электрических зарядов всех частиц изолированной системы не меняется при происходящих в ней процессах.

    3.1.2 Взаимодействие зарядов. Точечные заряды. Закон Кулона:

    Электрический заряд (Кл) — это физическая величина, являющаяся источником электрического поля, посредством которого осуществляется взаимодействие частиц, обладающих зарядом.

    Закон Кулона — это один из основных законов электростатики. Он определяет величину и направление силы взаимодействия между двумя неподвижными точечными зарядами.

    Кулон (Кл) — единица СИ количества электричества (электрического заряда).Она является производной единицей и определяется через единицу силы тока — 1 ампер (А), которая входит в число основных единиц СИ.

    За единицу электрического заряда принимают заряд, проходящий через поперечное сечение проводника при силе тока 1 А за 1 с.

    [1 Кл = 1 А ·Bс]

    Точечный заряд — заряженное тело, размер которого много меньше расстояния его возможного воздействия на другие тела. В таком случае ни форма, ни размеры заряженных тел не влияют практически на взаимодействие между ними.

    3.1.3 Электрическое поле. Его действие на электрические заряды

    Электрическое поле — это особая форма материи, посредством которой осуществляется взаимодействие электрически заряженных частиц.

    Главным свойством электрического поля является действие его на электрические заряды с некоторой силой. По этому действию устанавливается факт его существования. Действие поля на единичный заряд — напряженность поля — является одной из его основных характеристик, по которой изучается распределение поля в пространстве.

    3.1.4 Напряжённость электрического поля (Н/м) — векторная характеристика поля, сила, действующая на единичный покоящийся в данной системе отсчета электрический заряд:

    Поле точечного заряда:

    Однородное поле:

    Картины линий полей

    3.1.5 Потенциальность электростатического поля

    Потенциал (потенциальная функция) (от лат. potentia — сила) является энергетической характеристикой векторных полей, к числу которых относятся гравитационное, электромагнитное и электростатическое поля.

    Потенциал электростатического поля в данной точке численно равен работе, которую совершают силы поля при перемещении единичного положительного заряда из данной точки в бесконечность.

    Разность потенциалов и напряжение

    Работа по перемещению заряда (Дж) в однородном электростатическом поле зависит только от начального и конечного положений движущегося заряда и не зависит от формы траектории. При перемещении заряда по замкнутой траектории работа равна нулю.

    Потенциальная энергия заряда в электростатическом поле(Дж):

    Потенциал электростатического поля(Дж/Кл):

    Связь напряжённости поля и разности потенциалов для однородного электростатического поля: U = Ed 

    3.1.6 Принцип суперпозиции электрических полей:

    3.1.7 Проводники в электростатическом поле. Условие равновесия зарядов: внутри проводника

    Внутри и на поверхности проводника

    3.1.8 Диэлектрики в электростатическом поле. Диэлектрическая проницаемость вещества ε.

    Диэлектрики (или изоляторы) — вещества, относительно плохо проводящие электрический ток (по сравнению с проводниками).

    Полярные диэлектрики состоят из молекул, в которых центры распределения положительных и отрицательных зарядов не совпадают. Такие молекулы можно представить в виде двух одинаковых по модулю разноименных точечных зарядов, находящихся на некотором расстоянии друг от друга, называемых диполем.

    Неполярные диэлектрики состоят из атомов и молекул, у которых центры распределения положительных и отрицательных зарядов совпадают.

    Относительная диэлектрическая проницаемость среды ε — это физическая величина, показывающая, во сколько раз модуль напряженности электростатического поля Е внутри однородного диэлектрика меньше модуля напряженности поля Е0 в вакууме:

    3.1.9 Конденсатор. Электроёмкость конденсатора(Ф):

    Электроёмкость плоского конденсатора — величина заряда, которую нужно сообщить конденсатору, чтобы изменить его потенциал на единицу:

    3.1.10 Параллельное соединение конденсаторов:

    Последовательное соединение конденсаторов:

    3.1.11 Энергия заряженного конденсатора (Дж):

    ЭЛЕКТРОСТАТИКА
    Теория и формулы (кратко и сжато)

    [button title=»Электростатика – раздел электродинамики, изучающий покоящиеся электрически заряженные тела. Существует два вида электрических зарядов: положительные (стекло о шелк) и отрицательные (эбонит о шерсть).» color=»blue» size=»2″ full_width=»1″]

    Элементарный заряд – минимальный заряд (е = 1,6∙10-19 Кл)

    Заряд любого тела кратен целому числу элементарных зарядов:     q = N∙е

    Электризация тел – перераспределение заряда между телами. Способы электризации: трение,  касание, влияние.

    Закон сохранения электрического заряда – в замкнутой системе алгебраическая сумма зарядов всех частиц остается неизменной.  q1 + q 2 + q 3 + …..+ qnconst

    Пробный заряд – точечный положительный заряд.

    [hr height=»15″ style=»zigzag» line=»default» themecolor=»1″]

    Закон Кулона

    Закон Кулона (установлен опытным путем в 1785 году) Сила взаимодействия двух неподвижных точечных зарядов в вакууме прямо пропорциональна произведению модулей зарядов и обратно пропорционально квадрату расстояния между ними.

    Электростатика


    Закон кулона

    [hr height=»15″ style=»zigzag» line=»default» themecolor=»1″]

    Электрическое поле

    Электрическое поле – вид материи, осуществляющий взаимодействие между электрическими зарядами, возникает вокруг зарядов, действует только на заряды

    Электрическое поле

    Электрическое поле

    Электрическое поле 2

    Электрическое поле 3

    Силовые линии напряженности электрического поля – непрерывные линии, касательные к которым в каждой точке, через которые они проходят, совпадают с вектором напряженности.

    Свойства силовых линий: 

    • не замкнуты;
    • не пересекаются;
    • непрерывны;
    • направление совпадает с направлением вектора напряжённости;
    • начало на + q или в бесконечности, конец на – q или в бесконечности;
    • гуще вблизи зарядов (где больше напряжённость).
    • перпендикулярны поверхности проводника

    Разность потенциалов или напряжение (Δφ или U) — это разность потенциалов в начальной и конечной точках траектории заряда            Δφ = φ1 – φ2

    Чем меньше меняется потенциал на отрезке пути, тем меньше напряженность поля.
    Напряженность электрического поля направлена в сторону уменьшения потенциала.

    [hr height=»15″ style=»zigzag» line=»default» themecolor=»1″]

    Электроемкость

    Электроемкость Схарактеризует способность проводника  накапливать электрический заряд на своей поверхности.

    • не зависит от электрического заряда и напряжения.
    • — зависит от геометрических размеров проводников, их формы, взаимного расположения, электрических свойств среды между проводниками.

    Электростатика_4

    [hr height=»15″ style=»zigzag» line=»default» themecolor=»1″]

    Проводники и диэлектрики

    проводники

    [hr height=»15″ style=»zigzag» line=»default» themecolor=»1″]

    Конденсаторы

    Конденсатор — электротехническое устройство, служащее для быстрого накопления электрического заряда и быстрой отдачи его в цепь (два проводника, разделенных слоем диэлектрика ).

    конденсаторы


    [hr height=»15″ style=»zigzag» line=»default» themecolor=»1″]

    Скачать таблицы по теме «Электростатика»

    Электростатика кратко миниатюра

    Электростатика шпора миниатюра


    Конспект уроков по теме «Электростатика. Теория и формулы» + шпаргалка.

    Еще конспекты для 10-11 классов:

    Понравилась статья? Поделить с друзьями:
  • Вся теория по химии для сдачи егэ
  • Вся теория для первой части егэ по математике профильный уровень
  • Вся теория для первого задания егэ по русскому
  • Вся теория для первого задания егэ по профильной математике
  • Вся теория для первого задания егэ по обществознанию