На уроке рассматривается разбор 2 задания ЕГЭ по информатике, дается подробное объяснение того, как решать подобные задачи
Содержание:
- Объяснение задания 2 ЕГЭ по информатике
- Таблицы истинности и порядок выполнения логических операций
- Решение заданий 2 ЕГЭ по информатике
- Задания для тренировки
2-е задание: «Таблицы истинности»
Уровень сложности
— базовый,
Требуется использование специализированного программного обеспечения
— нет,
Максимальный балл
— 1,
Примерное время выполнения
— 3 минуты.
Проверяемые элементы содержания: Умение строить таблицы истинности и логические схемы
Типичные ошибки и рекомендации по их предотвращению:
«Игнорирование прямо указанного в условии задания требования, что заполненная таблица истинности не должна содержать одинаковых строк. Это приводит к внешне правдоподобному, но на самом деле неверному решению»
ФГБНУ «Федеральный институт педагогических измерений»
Таблицы истинности и порядок выполнения логических операций
Для логических операций приняты следующие обозначения:
операция | пояснение | в программировании |
---|---|---|
¬ A, A | не A (отрицание, инверсия) | not(A) |
A ∧ B, A ⋅ B | A и B (логическое умножение, конъюнкция) | A and B |
A ∨ B, A + B | A или B (логическое сложение, дизъюнкция) | A or B |
A → B | импликация (следование) | A <= B |
A ↔ B, A ≡ B, A ∼ B | эквиваленция (эквивалентность, равносильность) | A==B (python) A=B(pascal) |
A ⊕ B | строгая дизъюнкция | A != B (python) A <> B (pascal) |
Егифка ©:
Отрицание (НЕ):
Таблица истинности операции НЕ
Конъюнкция (И):
Таблица истинности операции И (конъюнкция)
Дизъюнкция (ИЛИ):
Таблица истинности операции ИЛИ (дизъюнкция)
Импликация (если…, то…):
Таблица истинности операции Импликация (если…, то…)
Эквивалентность (тогда и только тогда, …):
Таблица истинности операции Эквивалентность (тогда и только тогда, …)
Сложение по модулю 2 (XOR):
A | B | A ⊕ B |
0 | 0 | 0 |
0 | 1 | 1 |
1 | 0 | 1 |
1 | 1 | 0 |
Порядок выполнения операций:
- если нет скобок, сначала выполняются все операции «НЕ», затем – «И», затем – «ИЛИ», импликация, равносильность
Еще о логических операциях:
- логическое произведение X∙Y∙Z∙… равно 1, т.е. выражение является истинным, только тогда, когда все сомножители равны 1 (а в остальных случаях равно 0)
- логическая сумма X+Y+Z+… равна 0, т.е. выражение является ложным только тогда, когда все слагаемые равны 0 (а в остальных случаях равна 1)
О преобразованиях логических операций читайте здесь.
Егифка ©:
Решение заданий 2 ЕГЭ по информатике
Задание 2_11: Решение 2 задания ЕГЭ по информатике:
Логическая функция F задается выражением
(¬x ∨ y ∨ z) ∧ (x ∨ ¬z ∨ ¬w)
Ниже приведен фрагмент таблицы истинности функции F, содержащей все наборы аргументов, при которых функция F ложна.
Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных x, y, z, w.
Перем.1 | Перем.2 | Перем.3 | Перем.4 | F |
??? | ??? | ??? | ??? | F |
0 | 1 | 1 | 0 | 0 |
0 | 1 | 1 | 1 | 0 |
1 | 0 | 0 | 0 | 0 |
1 | 1 | 0 | 0 | 0 |
В ответе запишите буквы в том порядке, в котором идут соответствующие им столбцы.
✍ Решение:
✎ Способ 1. Электронные таблицы Excel + Логические размышления:
- Отобразим перебор всех значений использующихся в выражении переменных (всю таблицу истинности). Поскольку в выражении используются 4 переменных, то строк таблицы будет 24=16:
- Далее обе скобки исходного выражения необходимо записать в виде логического выражения, каждую — в отдельном столбце. Также в отдельном столбце добавьте формулу итоговой функции F:
xwzy
-
✎ Способ 2. Программирование:
- В результате будут выведены значения для
F=0
:
Язык python:
print('x y z w') for x in 0, 1: for y in 0, 1: for z in 0, 1: for w in 0, 1: F = (not(x) or y or z) and (x or not(z) or not(w)) if not(F): print(x, y, z, w)
x y z w 0 0 1 1 0 1 1 1 1 0 0 0 1 0 0 1
xwzy
Язык pascalAbc.net:
begin writeln('x':7, 'y':7, 'z':7,'w':7); for var x:=false to true do for var y:=false to true do for var z:=false to true do for var w:=false to true do if not((not x or y or z) and (x or not z or not w)) then writeln(x:7, y:7, z:7,w:7); end.
F=0
:x y z w False False True True False True True True True False False False True False False True
false
= 0, True
= 1Ответ:
xwzy
-
✎ Способ 3. Логические размышления:
- Внешняя операция выражения — конъюнкция (∧). Во всех указанных строках таблицы истинности функция принимает значение 0 (ложь). Конъюнкция ложна аж в трех случаях, поэтому проверить на ложь очень затруднительно. Тогда как конъюнкция истинна (= 1) только в одном случае: когда все операнды истинны. Т.е. в нашем случае:
(¬x ∨ y ∨ z) ∧ (x ∨ ¬z ∨ ¬w) = 1 когда: 1. (¬x ∨ y ∨ z) = 1 И 2. (x ∨ ¬z ∨ ¬w) = 1
x | y | z | результат |
0 | 0 | 0 | 1 |
0 | 0 | 1 | 1 |
0 | 1 | 0 | 1 |
0 | 1 | 1 | 1 |
1 | 0 | 0 | 0 |
1 | 0 | 1 | 1 |
1 | 1 | 0 | 1 |
1 | 1 | 1 | 1 |
x | z | w | результат |
0 | 0 | 0 | 1 |
0 | 0 | 1 | 1 |
0 | 1 | 0 | 1 |
0 | 1 | 1 | 0 |
1 | 0 | 0 | 1 |
1 | 0 | 1 | 1 |
1 | 1 | 0 | 1 |
1 | 1 | 1 | 1 |
x | y | z | w | F |
0 | 0 | 1 | 1 | 0 |
0 | 1 | 1 | 1 | 0 |
1 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 1 | 0 |
x | y | z | w | F |
0 | 0 | 1 | 1 | 0 |
0 | 1 | 1 | 1 | 0 |
1 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 1 | 0 |
x | ??? | ??? | ??? | F |
0 | 1 | 1 | 0 | 0 |
0 | 1 | 1 | 1 | 0 |
1 | 0 | 0 | 0 | 0 |
1 | 1 | 0 | 0 | 0 |
x | y | z | w | F |
0 | 0 | 1 | 1 | 0 |
0 | 1 | 1 | 1 | 0 |
1 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 1 | 0 |
x | ??? | ??? | y | F |
0 | 1 | 1 | 0 | 0 |
0 | 1 | 1 | 1 | 0 |
1 | 0 | 0 | 0 | 0 |
1 | 1 | 0 | 0 | 0 |
x | y | z | w | F |
0 | 0 | 1 | 1 | 0 |
0 | 1 | 1 | 1 | 0 |
1 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 1 | 0 |
x | w | z | y | F |
0 | 1 | 1 | 0 | 0 |
0 | 1 | 1 | 1 | 0 |
1 | 0 | 0 | 0 | 0 |
1 | 1 | 0 | 0 | 0 |
Результат: xwzy
🎦 Видеорешение (бескомпьютерный вариант):
📹 здесь
📹 Видеорешение на RuTube здесь
Задание 2_12: Разбор 2 задания ЕГЭ:
Миша заполнял таблицу истинности функции:
(¬z ∧ ¬(x ≡ y)) → ¬(y ∨ w)
но успел заполнить лишь фрагмент из трех различных ее строк, даже не указав, какому столбцу таблицы соответствует каждая из переменных w, x, y, z:
Перем.1 | Перем.2 | Перем.3 | Перем.4 | F |
??? | ??? | ??? | ??? | F |
1 | 1 | 0 | ||
1 | 0 | 0 | ||
1 | 1 | 0 | 0 |
Определите, какому столбцу таблицы соответствует каждая из переменных x, y, z, w.
В ответе напишите буквы w, x, y, z в том порядке, в котором идут соответствующие им столбцы.
Подобные задания для тренировки
✍ Решение:
✎ Способ 1. Логические размышления (бескомпьютерный вариант):
- Решим задание методом построения полной таблицы истинности.
- Посчитаем общее количество строк в таблице истинности и построим ее:
4 переменных -> 24 = 16 строк
(¬z ∧ ¬(x ≡ y)) → ¬(y ∨ w) 1. Избавимся от импликации: ¬(¬z ∧ ¬(x ≡ y)) ∨ ¬(y ∨ w) 2. Внесем знак отрицания в скобки (закон Де Моргана): (z ∨ (x ≡ y)) ∨ (¬y ∧ ¬w) = 0 1 часть = 0 2 часть = 0 * Исходное выражение должно быть = 0. Дизъюнкция = 0, когда оба операнда равны 0.
(z ∨ (x ≡ y)) = 0 когда z = 0 и x ≡ y = 0 ¬y ∧ ¬w = 0 когда: 1. ¬y = 0 ¬w = 0 2. ¬y = 1 ¬w = 0 3. ¬y = 0 ¬w = 1
x | y | w | z | F |
0 | 1 | 0 | 0 | 0 |
0 | 1 | 1 | 0 | 0 |
1 | 0 | 1 | 0 | 0 |
y | w | x | z | F |
1 | 1 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 |
0 | 1 | 1 | 0 | 0 |
Результат: ywxz
✎ Способ 2. Программирование:
- В результате будут выведены значения для F=0:
Язык PascalAbc.net:
begin writeln('x':7, 'y':7, 'z':7,'w':7); for var x:=false to true do for var y:=false to true do for var z:=false to true do for var w:=false to true do if not((not z and (x xor y)) <= not(y or w)) then writeln(x:7, y:7, z:7,w:7); end.
x y z w False True False False False True False True True False False True
false
= 0, True
= 1Сопоставив их с исходной таблицей, получим результат: ywxz
Язык Python:
print ('x y z w') for x in 0,1: for y in 0,1: for z in 0,1: for w in 0,1: F=(not z and not(x==y))<=(not(y or w)) if not F: print (x,y,z,w)
F=0
:x y z w 0 1 0 0 0 1 0 1 1 0 0 1
Сопоставив их с исходной таблицей, получим результат:
Результат: ywxz
🎦 Доступно видео решения этого задания (бескомпьютерный вариант):
📹 здесь
📹 Видеорешение на RuTube здесь
🎦 Видео (решение 2 ЕГЭ в Excel):
📹 здесь
📹 Видеорешение на RuTube здесь
📹 Видеорешение на RuTube здесь (Программирование)
Задание 2_10: Решение 2 задания ЕГЭ по информатике:
Логическая функция F задается выражением
¬a ∧ b ∧ (c ∨ ¬d)
Ниже приведен фрагмент таблицы истинности функции F, содержащей все наборы аргументов, при которых функция F истинна.
Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных a, b, c, d.
Перем.1 | Перем.2 | Перем.3 | Перем.4 | F |
??? | ??? | ??? | ??? | F |
0 | 1 | 0 | 0 | 1 |
1 | 1 | 0 | 0 | 1 |
1 | 1 | 0 | 1 | 1 |
В ответе запишите буквы в том порядке, в котором идут соответствующие им столбцы.
✍ Решение:
🎦 (Бескомьютерный вариант) Предлагаем подробный разбор посмотреть на видео:
📹 здесь
📹 Видеорешение на RuTube здесь
Задание 2_3: Решение задания 2. Демоверсия ЕГЭ 2018 информатика:
Логическая функция F задаётся выражением ¬x ∨ y ∨ (¬z ∧ w).
На рисунке приведён фрагмент таб. ист-ти функции F, содержащий все наборы аргументов, при которых функция F ложна.
Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных w, x, y, z.
Перем. 1 | Перем. 2 | Перем. 3 | Перем. 4 | F |
??? | ??? | ??? | ??? | F |
1 | 0 | 0 | 0 | 0 |
1 | 1 | 0 | 0 | 0 |
1 | 1 | 1 | 0 | 0 |
В ответе напишите буквы w, x, y, z в том порядке, в котором идут соответствующие им столбцы (сначала – буква, соответствующая первому столбцу; затем – буква, соответствующая второму столбцу, и т.д.) Буквы в ответе пишите подряд, никаких разделителей между буквами ставить не нужно.
Подобные задания для тренировки
✍ Решение:
-
✎ Логические размышления (бескомпьютерный вариант):
- Внешним действием (последним выполняемым) в исходном выражении является дизъюнкция:
¬x ∨ y ∨ (¬z ∧ w)
x1 | x2 | F |
0 | 0 | 0 |
0 | 1 | 1 |
1 | 0 | 1 |
1 | 1 | 1 |
¬x
= 1 или 0, y
= 1 или 0, ¬z ∧ w
= 1 или 0).¬x
= 0, иными словами x
= 1. Значит первый столбец соответствует переменной x
. Перем. 1 | Перем. 2 | Перем. 3 | Перем. 4 | F |
x | ??? | ??? | ??? | F |
1 | 0 | 0 | 0 | 0 |
y
= 0. Значит четвертый столбец соответствует переменной y
. Перем. 1 | Перем. 2 | Перем. 3 | Перем. 4 | F |
x | ??? | ??? | y | F |
1 | 1 | 1 | 0 | 0 |
¬z ∧ w
должно равняться 0, чтобы функция была ложной. Конъюнкция истинна только тогда, когда оба операнда истинны (=1); в нашем случае функция должна быть ложной, но пойдем от обратного. Если ¬z
= 1, т.е. z
= 0, а w
= 1, то это неверно для нашего случая. Значит всё должно быть наоборот: z
= 1, а w
= 0. Таким образом столбец второй соответствует z
, а столбец третий — w
. x | z | w | y | F |
1 | 0 | 0 | 0 | 0 |
1 | 1 | 0 | 0 | 0 |
1 | 1 | 1 | 0 | 0 |
Результат: xzwy
✎ Способ 2. Программирование:
Язык pascalABC.NET:
begin writeln('x ','y ','z ','w '); for var x:=false to true do for var y:=false to true do for var z:=false to true do for var w:=false to true do if not(not x or y or(not z and w)) then writeln(x:7,y:7,z:7,w:7); end.
🎦 (бескомпьютерный вариант) Подробное решение данного 2 задания из демоверсии ЕГЭ 2018 года смотрите на видео:
📹 здесь
📹 Видеорешение на RuTube здесь
Задание 2_13: Разбор досрочного егэ по информатике 2019
Логическая функция F задаётся выражением
(x ∧ ¬y) ∨ (y ≡ z) ∨ ¬w
Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных x, y, z, w.
В ответе напишите буквы x, y, z, w в том порядке, в котором идут соответствующие им столбцы.
Перем.1 | Перем.2 | Перем.3 | Перем.4 | F |
??? | ??? | ??? | ??? | F |
0 | 0 | 0 | ||
0 | 1 | 0 | 1 | 0 |
1 | 0 | 0 |
✍ Решение:
🎦 Видеорешение (бескомпьютерный вариант):
📹 здесь
📹 Видеорешение на RuTube здесь
Задания для тренировки
Задание 2_2: Задание 2 ЕГЭ по информатике:
Каждое из логических выражений F и G содержит 5 переменных. В табл. истинности для F и G есть ровно 5 одинаковых строк, причем ровно в 4 из них в столбце значений стоит 1.
Сколько строк таблицы истинности для F ∨ G содержит 1 в столбце значений?
Подобные задания для тренировки
✍ Решение:
- Поскольку в каждом из выражений присутствует 5 переменных, то эти 5 переменных порождают таблицу истинности из 32 строк: т.к. каждая из переменных может принимать оно из двух значений (0 или 1), то различных вариантов с пятью переменными будет 25=32, т.е. 32 строки.
- Из этих 32 строк и для F и для G мы знаем наверняка только о 5 строках: 4 из них истинны (=1), а одна ложна (=0).
- Вопрос стоит о количестве строк = 1 для таб. истинности F ∨ G. Данная операция — дизъюнкция, которая ложна только в одном случае — если F = 0 и одновременно G = 0
- В исходных таблицах для F и G мы знаем о существовании только одного 0, т.е. в остальных строках может быть 1. Т.о., и для F и для G в 31 строке могут быть единицы (32-1=31), а лишь в одной — ноль.
- Тогда для F ∨ G только в одном случае будет 0, когда и F = 0 и G = 0:
- Соответственно, истинными будут все остальные строки:
№ | F | G | F ∨ G |
---|---|---|---|
1 | 0 | 0 | 0 |
2 | 0 | 1 | 1 |
… | … | … | 1 |
32 | … | … | 1 |
32 - 1 = 31
Результат: 31
Подробное объяснение данного задания смотрите на видео:
📹 здесь
Задание 2_6: Решение 2 задания ЕГЭ по информатике:
Каждое логическое выражение A и B зависит от одного и того же набора из 7 переменных. В таблицах истинности каждого из этих выражений в столбце значений стоит ровно по 4 единицы.
Каково максимально возможное число единиц в столбце значений таблицы истинности выражения A ∨ B?
✍ Решение:
- Полная таблица истинности для каждого из выражений A и B состоит из 27 = 128 строк.
- В четырех из них результат равен единице, значит в остальных — 0.
- A ∨ B истинно в том случае, когда либо A = 1 либо B = 1, или и A и B = 1.
- Поскольку А = 1 только в 4 случаях, то чтобы получить максимальное количество единиц в результирующей таблице истинности (для A ∨ B), расположим все единицы т.и. для выражения A так, чтобы они были в строках, где B = 0, и наоборот, все строки, где B = 1, поставим в строки, где A = 0:
- Итого получаем 8 строк.
- Если бы в задании требовалось найти минимальное количество единиц, то мы бы совместили строки со значением = 1, и получили бы значение 4.
A | B |
1 | 0 |
1 | 0 |
1 | 0 |
1 | 0 |
0 | 1 |
0 | 1 |
0 | 1 |
0 | 1 |
0 | 0 |
… | … |
Результат: 8
Задание 2_7: Решение 2 задания ЕГЭ по информатике:
Каждое логическое выражение A и B зависит от одного и того же набора из 8 переменных. В таблицах истинности каждого из этих выражений в столбце значений стоит ровно по 6 единиц.
Каково максимально возможное число нулей в столбце значений таблицы истинности выражения A ∧ B?
✍ Решение:
- Полная таблица истинности для каждого из выражений A и B состоит из 28 = 256 строк.
- В шести из них результат равен единице, значит в остальных — 0.
- A ∧ B ложно в том случае, когда:
A ∧ B = 0 если: 1. A = 0, B = 1 2. B = 0, A = 1 3. A = 0 и B = 0
- Во всех случаях там где А=1 может стоять B=0, и тогда результат F = 0. Поскольку нам необходимо найти максимально возможное число нулей, то как раз для всех шести А=1 сопоставим B=0, и наоборот, для всех шести возможных B=1 сопоставим A=0
- Поскольку строк всего 256, то вполне возможно, что все 256 из них возвратят в результате 0
A | B | F |
1 | 0 | 0 |
1 | 0 | 0 |
1 | 0 | 0 |
1 | 0 | 0 |
0 | 1 | 0 |
0 | 1 | 0 |
0 | 1 | 0 |
0 | 1 | 0 |
0 | 0 | 0 |
… | … | … |
Результат: 256
Задание 2_4: 2 задание:
Дан фрагмент таблицы истинности выражения F.
x1 | x2 | x3 | x4 | x5 | x6 | x7 | F |
1 | 0 | 0 | 1 | 1 | 1 | 1 | 0 |
0 | 1 | 0 | 0 | 1 | 0 | 1 | 1 |
0 | 1 | 0 | 1 | 1 | 0 | 1 | 0 |
Каким из приведённых ниже выражений может быть F?
1) ¬x1 ∧ x2 ∧ ¬x3 ∧ ¬x4 ∧ x5 ∧ ¬x6 ∧ x7
2) x1 ∨ x2 ∨ x3 ∨ ¬x4 ∨ ¬x5 ∨ ¬x6 ∨ ¬x7
3) x1 ∧ ¬x2 ∧ x3 ∧ ¬x4 ∧ x5 ∧ x6 ∧ ¬x7
4) x1 ∨ ¬x2 ∨ x3 ∨ x4 ∨ ¬x5 ∨ ¬x6 ∨ x7
✍ Решение:
- В первом внешняя операция (выполняется последней) — конъюнкция. Начнем рассмотрение с нее. Соответственно, проверяем по второй строке таб. ист-ти, там где F = 1, так как в таком случае все аргументы должны быть истинными (см. таб. истинности для конъюнкции).
- Если мы подставим в нее все аргументы выражения, то функция действительно возвращает истину. Т.е. пункт первый подходит:
- Но проверим на всякий случай остальные.
- Второй пункт проверяем по первой и третьей строке, так как основная операция — дизъюнкция — ложна только в том случае, если все аргументы ложны (см. таб. истинности для дизъюнкции). Проверяя по первой строке, сразу видим, что x1 в ней равен 1. В таком случаем функция будет = 1. Т.е. этот пункт не подходит:
- Третий пункт проверяем по второй строке, так как основная операция — конъюнкция — возвратит истину только тогда, когда все операнды равны 1. Видим, что x1 = 0, соответственно функция будет тоже равна 0. Т.е. выражение нам не подходит:
- Четвертый пункт проверяем по первой и третьей строкам. В первой — x1 = 1, т.е. функция должна быть равна 1. Т.е. пункт тоже не подходит:
- Таким образом, ответ равен 1.
Результат: 1
Решение 2 задания ГВЭ по информатике смотрите на видео:
📹 здесь
Задание 2_8: Решение 2 задания ЕГЭ по информатике:
Дано логическое выражение, зависящее от 5 логических переменных:
(¬x1 ∨ ¬x2 ∨ ¬x3 ∨ x4 ∨ x5) ∧ (x1 ∨ x2 ∨ x3 ∨ ¬x4 ∨ ¬x5)
Сколько существует различных наборов значений переменных, при которых выражение истинно?
1) 0
2) 30
3) 31
4) 32
Подобные задания для тренировки
✍ Решение:
- Поскольку выражение включает 5 переменных, то таб. ист-ти состоит из 25 = 32 строк.
- Внешней операцией (последней) является конъюнкция (логическое умножение), а внутри скобок — дизъюнкция (логическое сложение).
- Обозначим первую скобку за А, а вторую скобку за B. Получим A ∧ B.
- Найдем сколько нулей существует для таб. истинности:
A B F 1. 0 0 0 2. 0 1 0 3. 1 0 0
Теперь рассмотрим каждый случай отдельно:
¬x1 ∨ ¬x2 ∨ ¬x3 ∨ x4 ∨ x5 = 0
и
x1 ∨ x2 ∨ x3 ∨ ¬x4 ∨ ¬x5 = 0.
32 - 2 = 30, что соответствует номеру 2
Результат: 2
Подробное решение задания смотрите в видеоуроке:
📹 здесь
Задание 2_5: Решение 2 задания ЕГЭ по информатике:
Дан фрагмент таблицы истинности для выражения F:
x1 | x2 | x3 | x4 | x5 | x6 | F |
0 | 0 | 1 | 1 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 1 | 1 | 1 |
1 | 0 | 1 | 0 | 1 | 1 | 1 |
0 | 1 | 1 | 1 | 0 | 1 | 0 |
Укажите максимально возможное число различных строк полной таблицы истинности этого выражения, в которых значение x3 не совпадает с F.
Подобные задания для тренировки
✍ Решение:
- Полная таблица истинности будет иметь 26 = 64 строк (т.к. 6 переменных).
- 4 из них нам известны: в них x3 два раза не совпадает с F.
- Неизвестных строк:
64 - 4 = 60
60 + 2 = 62
Результат: 62
Задание 2_9: Решение 2 задания ЕГЭ по информатике:
Дан фрагмент таблицы истинности для выражения F:
x1 | x2 | x3 | x4 | x5 | x6 | x7 | F |
0 | 0 | 0 | |||||
0 | 0 | 1 | |||||
1 | 1 | 1 |
Каким выражением может быть F?
1) x1 ∧ (x2 → x3) ∧ ¬x4 ∧ x5 ∧ x6 ∧ ¬x7
2) x1 ∨ (¬x2 → x3) ∨ ¬x4 ∨ ¬x5 ∨ x6 ∨ ¬x7
3) ¬x1 ∧ (x2 → ¬x3) ∧ x4 ∧ ¬x5 ∧ x6 ∧ x7
4) ¬x1 ∨ (x2 → ¬x3) ∨ x4 ∨ x5 ∨ x6 ∧ x7
✍ Решение:
- Рассмотрим отдельно каждый пункт и найдем последнюю операцию, которая должна быть выполнена (внешнюю).
1 пункт:
(((x1 ∧ (x2 → x3) ∧ ¬x4) ∧ x5) ∧ x6) ∧ ¬x7
2 пункт:
(((x1 ∨ (¬x2 → x3) ∨ ¬x4) ∨ ¬x5) ∨ x6) ∨ ¬x7
3 пункт:
(((¬x1 ∧ (x2 → ¬x3) ∧ x4) ∧ ¬x5) ∧ x6) ∧ x7
Результат: 4
В видеоуроке рассмотрено подробное решение 2 задания:
📹 здесь
Задание 2_1: Задание 2 ЕГЭ по информатике:
Логическая функция F задается выражением
(y → x) ∧ (y → z) ∧ z.
Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных x, y, z.
№ | Перем. 1 | Перем. 2 | Перем. 3 | F |
---|---|---|---|---|
??? | ??? | ??? | F | |
1 | 0 | 0 | 0 | 0 |
2 | 0 | 0 | 1 | 0 |
3 | 0 | 1 | 0 | 1 |
4 | 0 | 1 | 1 | 1 |
5 | 1 | 0 | 0 | 0 |
6 | 1 | 0 | 1 | 0 |
7 | 1 | 1 | 0 | 0 |
8 | 1 | 1 | 1 | 1 |
В ответе напишите буквы x, y, z в том порядке, в котором идут соответствующие им столбцы.
✍ Решение:
- Сначала необходимо рассмотреть логическую операцию, которую мы будем выполнять в последнюю очередь — это логическое И (конъюнкция) или ∧. То есть внешнюю операцию:
(y → x) ∧ (y → z) ∧ z
(y → x) ∧ (y → z) ∧ z = 1 если: 1. (y → x) = 1 2. (y → z) = 1 3. z = 1
№ | Перем. 1 | Перем. 2 | Перем. 3 | F |
---|---|---|---|---|
3 | 0 | 1 | 0 | 1 |
№ | Перем. 1 | Перем. 2 | Перем. 3 | F |
---|---|---|---|---|
_ | ??? | z | ??? | F |
№ | Перем. 1 | z | Перем. 3 | F |
---|---|---|---|---|
4 | 0 | 1 | 1 | 1 |
Результат: yzx
Детальный разбор данного задания 2 ЕГЭ по информатике предлагаем посмотреть в видео:
📹 здесь
Продолжаем наш видеокурс по подготовке к ЕГЭ по информатике 2022. Сегодня разоблачим второе задание!
Кто незнаком с основными логическими операциями, можете посмотреть прошлогоднюю статью по заданию 2 из ЕГЭ по информатике.
В этой статье будут раскрыты методики решения 2 задания через язык программирования Питон.
Будем перебирать для каждой логической переменной все возможные варианты в программе. А логическая переменная всего два значения может принимать: 1 или 0 (истину или ложь). Таким образом, если к примеру у нас 4 переменные, мы получим 24=16 различных комбинаций.
Кто знаком с мощнейшим методом для 2 задания из ЕГЭ по информатике, о котором я рассказывал в прошлогодней статье, тот поймёт, что мы будем применять тот же самый мощнейший метод, но автоматизированный с помощью питона.
Нам нужно будет запрограммировать логическую функцию на языке Питон. Вот таблица, которая поможет это сделать.
Логическая операция | Представление в Питоне |
Отрицание ¬ | not() |
Логическое умножение ∧ | and |
Логическое сложение ∨ | or |
Следование A ⟶ B | not(A) or B |
Равносильность ≡ | == |
Перейдём к практике решения задач задания 2 с помощью языка программирования Python.
Задача (Классическая)
Миша заполнял таблицу истинности логической функции F
(w → z) ∧ ((y → x) ≡ (z → y)),
но успел заполнить лишь фрагмент из трёх различных её строк, даже
не указав, какому столбцу таблицы соответствует каждая из переменных
w, x, y, z.
Определите, какому столбцу таблицы соответствует каждая из переменных
w, x, y, z.
В ответе напишите буквы w, x, y, z в том порядке, в котором идут
соответствующие им столбцы (сначала буква, соответствующая первому
столбцу; затем буква, соответствующая второму столбцу, и т.д.). Буквы
в ответе пишите подряд, никаких разделителей между буквами ставить
не нужно.
Пример. Функция F задана выражением ¬x / y, зависящим от двух
переменных, а фрагмент таблицы имеет следующий вид.
В этом случае первому столбцу соответствует переменная y, а второму
столбцу – переменная x. В ответе следует написать: yx.
Решение:
Решать задачу будем с помощью шаблона на языке Python (Питон).
print('x y z w') for x in range(0, 2): for y in range(0, 2): for w in range(0, 2): for z in range(0, 2): if (not(w) or z) and ((not(y) or x) == (not(z) or y)): print(x, y, z, w)
В задаче у нас 4 переменные, значит, формируем 4 вложенных цикла. В каждом цикле перебираем все возможные значения для конкретной переменной. Мы перебираем значения 0 и 1.
Функция должна выдавать всегда 1 (единицу, истину). Внутри всех циклов прописываем условие, которое срабатывает как раз на истину. В этом условии прописываем нашу функцию. Если наша функция будет выдавать истину, то мы распечатаем значения переменных, при которых это произошло. Если функция будет выдавать ложь, значит, ничего распечатано не будет.
Четыре вложенных цикла проверяют все возможные варианты (24 = 16 вариантов), и мы получим таблицу истинности, почти такую же, как нам и дали в условии задачи.
Так же вверху печатаем названия переменных, чтобы знать, какие значения каким переменным принадлежат.
Запустим программу, и на экране распечатается табличка:
В получившийся табличке может быть больше строчек, чем в условии. Так же при поиске переменных нельзя опираться на порядок, в котором идут нули и единицы в нашей табличке. А можно опираться лишь на количество нулей и единиц в строчках или столбцах.
Можно вычеркнуть первую строчку и последнюю, потому что в таблице, которую дали в условии, в каждой строчке есть хотя бы один ноль и хотя бы одна единица.
Сразу видно, что первый столбец принадлежит переменной x, только там могут быть все единицы.
Второй столбец принадлежит переменной w, только там могут быть все нули.
У нас остались две пустые клеточки в самой таблице. Нам нужно где-то поставить единицу, а где-то ноль, потому что у нас остались столбцы с двумя единицами и одним нулём, а так же с двумя нулями и одной единицей. Если мы в третий столбец поставим единицу, а в четвёртый ноль, то первая строчка и вторая будут совпадать.
А в условии сказано, что строки не должны повторяться. Поэтому нужно ноль и единицу расставить наоборот.
Получается, что в третий столбец идёт z, а в четвёртый y
Ответ: xwzy
Посмотрим, как решать задачи второго задания из ЕГЭ по информатике, когда функция выдаёт нули в таблице истинности.
Задача (Классическая, закрепление)
Миша заполнял таблицу истинности функции (x ≡ ¬y) → ((x ∧ w) ≡ z), но успел заполнить лишь фрагмент из трёх различных её строк, даже не указав, какому столбцу таблицы соответствует каждая из переменных w, x, y, z.
Определите, какому столбцу таблицы соответствует каждая из переменных
w, x, y, z.
В ответе напишите буквы w, x, y, z в том порядке, в котором идут
соответствующие им столбцы (сначала буква, соответствующая первому
столбцу; затем буква, соответствующая второму столбцу, и т.д.). Буквы
в ответе пишите подряд, никаких разделителей между буквами ставить
не нужно.
Пример. Функция F задана выражением ¬x / y, зависящим от двух
переменных, а фрагмент таблицы имеет следующий вид.
В этом случае первому столбцу соответствует переменная y, а второму
столбцу – переменная x. В ответе следует написать: yx.
Решение:
Воспользуемся программой на языке Python.
print('x y z w') for x in range(0, 2): for y in range(0, 2): for w in range(0, 2): for z in range(0, 2): if not( not(( x == (not(y)) )) or ((x and w) == z) ): print(x, y, z, w)
От прошлой программы эта программа отличается только функцией!
В таблице видим, что функция должна выдавать ноль. Поэтому в условии мы функцию «оборачиваем» в not().
После == операцию not() мы заключили в скобки, чтобы не было синтаксической ошибки.
Получаем следующую таблицу истинности:
Разгадаем, где какая переменная находится.
Последнюю строку из нашей таблицы можно вычеркнуть, потому что, если мы вычеркнем другую строку, то не получится столбца, где все три единицы, а он должен быть.
Получается, что второй столбец достаётся переменной z.
В первом столбце должно быть две единицы. На эту роль подходит переменная y.
В нашей таблице нет строчки, где все единицы, значит, во второй строчке в пустом окошке выставляем ноль. И в этой строчке нулём обладает переменная x. Следовательно, в третьем столбце будет находится x.
А в последний столбец идёт переменная w по остаточному принципу.
Ответ: yzxw
А как Питон справится с более сложной функцией из примерного варианта ЕГЭ по информатике?
Задача (Сложная функция)
Логическая функция F задаётся выражением ((x → y ) ∧ (y → w)) ∨ (z ≡ ( x ∨ y)).
Дан частично заполненный фрагмент, содержащий неповторяющиеся строки таблицы истинности функции F.
Определите, какому столбцу таблицы истинности соответствует каждая из переменных x, y, z, w.
В ответе напишите буквы x, y, z, w в том порядке, в котором идут соответствующие им столбцы (сначала — буква, соответствующая первому столбцу; затем — буква, соответствующая второму столбцу, и т. д.). Буквы в ответе пишите подряд, никаких разделителей между буквами ставить не нужно.
Пример. Пусть задано выражение x → y, зависящее от двух переменных x и y, и фрагмент таблицы истинности:
Тогда первому столбцу соответствует переменная y, а второму столбцу соответствует переменная x. В ответе нужно написать: yx.
Источник задачи сайт решу ЕГЭ: https://inf-ege.sdamgia.ru/
Решение:
Запрограммируем функцию на языке Python.
print('x y z w') for x in range(0, 2): for y in range(0, 2): for w in range(0, 2): for z in range(0, 2): if not( ((not(x) or y) and (not(y) or w)) or (z == (x or y)) ): print(x, y, z, w)
Запустим программу и расставим переменные по своим местам.
Переменная z может быть только в третьем столбце.
Во второй столбец идёт переменная w, только этот столбец может иметь одну единицу.
Посмотрим на строчку, где у w стоит единица. В этой же строчке и у x единица. Значит, x идёт в последний столбец, а y в первый столбец.
Ответ: ywzx
Тот же шаблон работает, когда у нас во втором задании три переменные.
Задача (Три переменные)
(№ 1608) Логическая функция F задаётся выражением (¬x ∧ z) ∨ (¬x ∧ ¬y ∧ ¬z)
На рисунке приведён фрагмент таблицы истинности функции F, содержащий все наборы аргументов, при которых функция F истинна. Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных x, y, z.
Источник задачи сайт К. Ю. Полякова: https://kpolyakov.spb.ru/
Решение:
Для трёх переменных шаблон на Питоне отлично работает.
print('x y z') for x in range(0, 2): for y in range(0, 2): for z in range(0, 2): if (not(x) and z) or (not(x) and not(y) and not(z)): print(x, y, z)
Здесь и так понятно, куда какая переменная идёт.
Ответ: yxz
Посмотрим, как решать задачи из второго задания ЕГЭ по информатике, когда в таблице истинности разные значения у функции F.
Задача (Разные значения функции)
Логическая функция F задаётся выражением (¬a ∨ b ∨ ¬c) ∧ (b ∨ ¬c). Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных a, b, c.
В ответе напишите буквы a, b, c в том порядке, в котором идут соответствующие им столбцы (без разделителей).
Источник задачи сайт К. Ю. Полякова: https://kpolyakov.spb.ru/
Решение:
Когда такая ситуация, что функция имеет различные значения в таблице, мы можем проверить, какие значения переменных дают единицу у всей функции. А потом проверить, какие значения выдают ноль у всей функции, если это потребуется.
print('a b c') for a in range(0, 2): for b in range(0, 2): for c in range(0, 2): if (not(a) or b or not(c)) and (b or not(c)): print(a, b, c)
В таблице 6 строчек, в которых главная функция превращается в единицу. Далее эти строчки и будем рассматривать. У нас тоже получилось 6 строчек.
Переменная a имеет три единицы. Это второй столбец, потому что там три единицы.
Переменная b имеет четыре единицы, значит, она расположена в первом столбце.
Переменной c достаётся последний столбец.
Ответ: bac
Ещё одна интересная задача для подготовки к ЕГЭ по информатике 2022.
Задача(С подвохом)
Логическая функция F задаётся выражением a ≡ b ∨ b → c.
На рисунке приведён частично заполненный фрагмент таблицы истинности функции F, содержащий неповторяющиеся строки. Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных a, b, c.
Источник задачи группа Евгения Джобса: https://vk.com/inform_web
Решение:
Подвох заключается в том, что если мы переведём бездумно функцию на язык Питон, то получится a==b or not(b) or c. Но у нас существуют приоритеты для логических операций, которые описаны в прошлогодней статье по подготовке к ЕГЭ по информатике.
В начале должно обрабатываться или, которое было изначально. Затем должно обработаться следование, а потом равносильность. А если мы переведём формулу бездумно, порядок будет не правильный.
Операцию b ∨ b можно представить, как просто b. Ведь, если b принимает значение 0, тогда будет 0 ∨ 0 = 0. Если значение будет 1, то 1 ∨ 1 = 1. Поэтому формулу можно переписать следующим образом:
a ≡ b → c
a == (not(b) or c)
В предыдущих задачах нам не приходилось думать над приоритетами, потому что везде были расставлены скобки. И в основном они уже расставлены в задачах второго задания из ЕГЭ по информатике.
Дальше решаем как обычно.
print('a b c') for a in range(0, 2): for b in range(0, 2): for c in range(0, 2): if a == (not(b) or c): print(a, b, c)
Последнюю строчку можно вычеркнуть из нашей таблицы, т.к. у нас в каждой строчке есть хотя бы один ноль.
Последний столбец занимает переменная a, т.к. только в последний столбец может влезть две единицы.
В строчке, где у a ноль, так же ноль и у переменной c. Значит, во второй столбец идёт переменная c. Если мы ноль поставим в первой строчке в первом столбце, то получится первый столбец из всех нулей. А такого у нас в таблице истинности нет.
Тогда переменная b в первом столбце.
Ответ: bca
слишком много лишних скобок ни к чему. Код очень грязный
А есть какой-нибудь простой код, который смог бы помочь с таким заданием: «Сколькими способами можно поставить в соответствие переменные w, x, y, z столбцам таблицы истинности функции F, опираясь на информацию из данного фрагмента?», или же в данном случае нужно самому подбирать комбинации?
Доброго времени суток, есть вопрос про операции в последней задаче. Вот там написано что b ∨ b можно представить как b. А если будет b ∧ b, то это можно будет представить как b? И можете объяснить почему?
Как в циклах идут переменные, это не важно. Это просто перебор всех возможных вариантов.
Володя, b ∧ b = b, эти формулы приведены в материале, на который я даю ссылку в начале статьи.
Алгебра логики
Алгебра логики
Алгебра логики (англ. algebra of logic) — один из основных разделов математической логики, в котором методы алгебры используются в логических преобразованиях.
Основоположником алгебры логики является английский математик и логик Дж. Буль (1815–1864), положивший в основу своего логического учения аналогию между алгеброй и логикой. Любое высказывание он записывал с помощью символов разработанного им языка и получал «уравнения», истинность или ложность которых можно было доказать, исходя из определенных логических законов, таких как законы коммутативности, дистрибутивности, ассоциативности и др.
Современная алгебра логики является разделом математической логики и изучает логические операции над высказываниями с точки зрения их истинностного значения (истина, ложь). Высказывания могут быть истинными, ложными или содержать истину и ложь в разных соотношениях.
Логическое высказывание — это любое повествовательное предложение, в отношении которого можно однозначно утверждать, что его содержание истинно или ложно.
Например, «3 умножить на 3 равно 9», «Архангельск севернее Вологды» — истинные высказывания, а «Пять меньше трех», «Марс — звезда» — ложные.
Очевидно, что не всякое предложение может быть логическим высказыванием, т. к. не всегда есть смысл говорить о его ложности или истинности. Например, высказывание «Информатика — интересный предмет» неопределенно и требует дополнительных сведений, а высказывание «Для ученика 10-А класса Иванова А. А. информатика — интересный предмет» в зависимости от интересов Иванова А. А. может принимать значение «истина» или «ложь».
Кроме двузначной алгебры высказываний, в которой принимаются только два значения — «истинно» и «ложно», существует многозначная алгебра высказываний. В такой алгебре, кроме значений «истинно» и «ложно», употребляются такие истинностные значения, как «вероятно», «возможно», «невозможно» и т. д.
В алгебре логики различаются простые (элементарные) высказывания, обозначаемые латинскими буквами (A, B, C, D, …), и сложные (составные), составленные из нескольких простых с помощью логических связок, например таких, как «не», «и», «или», «тогда и только тогда», «если … то». Истинность или ложность получаемых таким образом сложных высказываний определяется значением простых высказываний.
Обозначим как А высказывание «Алгебра логики успешно применяется в теории электрических схем», а через В — «Алгебра логики применяется при синтезе релейно-контактных схем».
Тогда составное высказывание «Алгебра логики успешно применяется в теории электрических цепей и при синтезе релейно-контактных схем» можно кратко записать как А и В; здесь «и» — логическая связка. Очевидно, что поскольку элементарные высказывания А и В истинны, то истинно и составное высказывание А и В.
Каждая логическая связка рассматривается как операция над логическими высказываниями и имеет свое название и обозначение.
Логических значений всего два: истина (TRUE) и ложь (FALSE). Это соответствует цифровому представлению — 1 и 0. Результаты каждой логической операции можно записать в виде таблицы. Такие таблицы называют таблицами истинности.
Основные операции алгебры логики
1. Логическое отрицание, инверсия (лат. inversion — переворачивание) — логическая операция, в результате которой из данного высказывания (например, А) получается новое высказывание (не А), которое называется отрицанием исходного высказывания, обозначается символически чертой сверху ($A↖{-}$) или такими условными обозначениями, как ¬, ‘not’, и читается: «не А», «А ложно», «неверно, что А», «отрицание А». Например, «Марс — планета Солнечной системы» (высказывание А); «Марс — не планета Солнечной системы» ($A↖{-}$); высказывание «10 — простое число» (высказывание В) ложно; высказывание «10 — не простое число» (высказывание B ) истинно.
Операция, используемая относительно одной величины, называется унарной. Таблица значений данной операции имеет вид
A | ¬A |
истина | ложь |
ложь | истина |
или
Высказывание $A↖{-}$ ложно, когда А истинно, и истинно, когда А ложно.
Геометрически отрицание можно представить следующим образом: если А — это некоторое множество точек, то $A↖{-}$ — это дополнение множества А, т. е. все точки, которые не принадлежат множеству А.
2. Конъюнкция (лат. conjunctio — соединение) — логическое умножение, операция, требующая как минимум двух логических величин (операндов) и соединяющая два или более высказываний при помощи связки «и» (например, «А и В»), которая символически обозначается с помощью знака ∧ (А ∧ В) и читается: «А и В». Для обозначения конъюнкции применяются также следующие знаки: А ∙ В; А & В, А and В, а иногда между высказываниями не ставится никакого знака: АВ. Пример логического умножения: «Этот треугольник равнобедренный и прямоугольный». Данное высказывание может быть истинным только в том случае, если выполняются оба условия, в противном случае высказывание ложно.
Таблица истинности операции имеет вид
A | B | A ∧ B |
истина | ложь | ложь |
ложь | истина | ложь |
ложь | ложь | ложь |
истина | истина | истина |
или
A | B | A ∧ B |
1 | 0 | 0 |
0 | 1 | 0 |
0 | 0 | 0 |
1 | 1 | 1 |
Высказывание А ∧ В истинно только тогда, когда оба высказывания — А и В истинны.
Геометрически конъюнкцию можно представить следующим образом: если А, В — это некоторые множества точек, то А ∧ В есть пересечение множеств А и В.
3. Дизъюнкция (лат. disjunction — разделение) — логическое сложение, операция, соединяющая два или более высказываний при помощи связки «или» (например, «А или В»), которая символически обозначается с помощью знака ∨ (А ∨ В) и читается: «А или В». Для обозначения дизъюнкции применяются также следующие знаки: А + В; А or В; А | B. Пример логического сложения: «Число x делится на 3 или на 5». Это высказывание будет истинным, если выполняются оба условия или хотя бы одно из условий.
Таблица истинности операции имеет вид
A | B | A ∨ B |
истина | ложь | истина |
ложь | истина | истина |
ложь | ложь | ложь |
истина | истина | истина |
или
A | B | A ∨ B |
1 | 0 | 1 |
0 | 1 | 1 |
0 | 0 | 0 |
1 | 1 | 1 |
Высказывание А ∨ В ложно только тогда, когда оба высказывания — А и В ложны.
Геометрически логическое сложение можно представить следующим образом: если А, В — это некоторые множества точек, то А ∨ В — это объединение множеств А и В, т. е. фигура, объединяющая и квадрат, и круг.
4. Дизъюнкция строго-разделительная, сложение по модулю два — логическая операция, соединяющая два высказывания при помощи связки «или», употребленной в исключающем смысле, которая символически обозначается с помощью знаков ∨ ∨ или ⊕ (А ∨ ∨ В, А ⊕ В) и читается: «либо А, либо В». Пример сложения по модулю два — высказывание «Этот треугольник тупоугольный или остроугольный». Высказывание истинно, если выполняется какое-то одно из условий.
Таблица истинности операции имеет вид
А | В | А ⊕ B |
истина | ложь | истина |
ложь | истина | истина |
ложь | ложь | ложь |
истина | истина | ложь |
или
А | В | А ⊕ B |
1 | 0 | 1 |
0 | 1 | 1 |
0 | 0 | 0 |
1 | 1 | 0 |
Высказывание А ⊕ В истинно только тогда, когда высказывания А и В имеют различные значения.
5. Импликация (лат. implisito — тесно связываю) — логическая операция, соединяющая два высказывания при помощи связки «если…, то» в сложное высказывание, которое символически обозначается с помощью знака → (А → В) и читается: «если А, то В», «А влечет В», «из А следует В», «А имплицирует В». Для обозначения импликации применяется также знак ⊃ (A ⊃ B). Пример импликации: «Если полученный четырехугольник квадрат, то около него можно описать окружность». Эта операция связывает два простых логических выражения, из которых первое является условием, а второе — следствием. Результат операции ложен только тогда, когда предпосылка есть истина, а следствие — ложь. Например, «Если 3 * 3 = 9 (А), то Солнце — планета (В)», результат импликации А → В — ложь.
Таблица истинности операции имеет вид
А | В | А → В |
истина | ложь | ложь |
ложь | истина | истина |
ложь | ложь | истина |
истина | истина | истина |
или
А | В | А → В |
1 | 0 | 0 |
0 | 1 | 1 |
0 | 0 | 1 |
1 | 1 | 1 |
Для операции импликации справедливо утверждение, что из лжи может следовать все что угодно, а из истины — только истина.
6. Эквивалентность, двойная импликация, равнозначность (лат. aequalis — равный и valentis — имеющий силу) — логическая операция, позволяющая из двух высказываний А и В получить новое высказывание А ≡ В, которое читается: «А эквивалентно B». Для обозначения эквивалентности применяются также следующие знаки: ⇔, ∼. Эта операция может быть выражена связками «тогда и только тогда», «необходимо и достаточно», «равносильно». Примером эквивалентности является высказывание: «Треугольник будет прямоугольным тогда и только тогда, когда один из углов равен 90 градусам».
Таблица истинности операции эквивалентности имеет вид
А | В | А ∼ В |
истина | ложь | ложь |
ложь | истина | ложь |
ложь | ложь | истина |
истина | истина | истина |
или
А | В | А ∼ В |
1 | 0 | 0 |
0 | 1 | 0 |
0 | 0 | 1 |
1 | 1 | 1 |
Операция эквивалентности противоположна сложению по модулю два и имеет результат «истина» тогда и только тогда, когда значения переменных совпадают.
Зная значения простых высказываний, можно на основании таблиц истинности определить значения сложных высказываний. При этом важно знать, что для представления любой функции алгебры логики достаточно трех операций: конъюнкции, дизъюнкции и отрицания.
Сложение по модулю два | А ⊕ В | $(A↖{-} ∧B) ∧ (A ∧ B↖{-})$ |
Импликация | А → В | $A↖{-} ∨ B$ |
Эквивалентность | А ∼ В | $(A↖{-} ∧ B↖{-}) ∨ (A ∧ B)$ |
Приоритет выполнения логических операций следующий: отрицание («не») имеет самый высокий приоритет, затем выполняется конъюнкция («и»), после конъюнкции — дизъюнкция («или»).
С помощью логических переменных и логических операций любое логическое высказывание можно формализовать, т. е. заменить логической формулой. При этом элементарные высказывания, образующие составное высказывание, могут быть абсолютно не связаны по смыслу, но это не мешает определять истинность или ложность составного высказывания. Например, высказывание «Если пять больше двух (А), то вторник всегда наступает после понедельника (В)» — импликация А → В, и результат операции в данном случае — «истина». В логических операциях смысл высказываний не учитывается, рассматривается только их истинность или ложность.
Рассмотрим, например, построение составного высказывания из высказываний А и В, которое было бы ложно тогда и только тогда, когда оба высказывания истинны. В таблице истинности для операции сложения по модулю два находим: 1 ⊕ 1 = 0. А высказывание может быть, например, таким: «Этот мяч полностью красный или полностью синий». Следовательно, если утверждение А «Этот мяч полностью красный» — истина, и утверждение В «Этот мяч полностью синий» — истина, то составное утверждение — ложь, т. к. одновременно и красным, и синим мяч быть не может.
Примеры решения задач
Пример 1. Определить для указанных значений X значение логического высказывания ((X > 3) ∨ (X < 3)) → (X < 4) :
1) X = 1; 2) X = 12; 3) X = 3.
Решение. Последовательность выполнения операций следующая: сначала выполняются операции сравнения в скобках, затем дизъюнкция, и последней выполняется операция импликации. Операция дизъюнкции ∨ ложна тогда и только тогда, когда оба операнда ложны. Таблица истинности для импликации имеет вид
A | B | A → B |
1 | 0 | 0 |
0 | 1 | 1 |
0 | 0 | 1 |
1 | 1 | 1 |
Отсюда получаем:
1) для X = 1:
((1 > 3) ∨ (1 < 3)) → (1 < 4) = ложь ∨ истина → истина = истина → истина = истина;
2) для X = 12:
((12 > 3) ∨ (12 < 3) → (12 < 4) = истина ∨ ложь → ложь = истина → ложь = ложь;
3) для X = 3:
((3 > 3) ∨ (3 < 3)) → (3<4) = ложь ∨ ложь → истина = ложь → истина = истина.
Пример 2. Указать множество целых значений X, для которых истинно выражение ¬((X > 2) → (X > 5)) .
Решение. Операция отрицания применена ко всему выражению ((X > 2) → (X > 5)) , следовательно, когда выражение ¬((X > 2) → (X > 5)) истинно, выражение ((X > 2) →(X > 5)) ложно. Поэтому необходимо определить, для каких значений X выражение ((X > 2) → (X > 5)) ложно. Операция импликации принимает значение «ложь» только в одном случае: когда из истины следует ложь. А это выполняется только для X = 3; X = 4; X = 5.
Пример 3. Для каких из приведенных слов ложно высказывание ¬(первая буква гласная ∧ третья буква гласная) ⇔ строка из 4 символов? 1) асса; 2) куку; 3) кукуруза; 4) ошибка; 5) силач.
Решение. Рассмотрим последовательно все предложенные слова:
1) для слова асса получим: ¬(1 ∧ 0) ⇔ 1, 1 ⇔ 1 — высказывание истинно;
2) для слова куку получим: ¬ (0 ∧ 0) ⇔ 1, 1 ⇔ 1 — высказывание истинно;
3) для слова кукуруза получим: ¬ (0 ∧ 0) ⇔ 0, 1 ⇔ 0 — высказывание ложно;
4) для слова ошибка получим: ¬ (1 ∧ 1) ⇔ 0, 0 ⇔ 0 — высказывание истинно;
5) для слова силач получим: ¬ (0 ∧ 0) ⇔ 1, 1 ⇔ 0 — высказывание ложно.
Логические выражения и их преобразование
Под логическим выражением следует понимать такую запись, которая может принимать логическое значение «истина» или «ложь». При таком определении среди логических выражений необходимо различать:
- выражения, которые используют операции сравнения («больше», «меньше», «равно», «не равно» и т. п.) и принимают логические значения (например, выражение а > b , где а = 5 и b = 7, равно значению «ложь»);
- непосредственные логические выражения, связанные с логическими величинами и логическими операциями (например, A ∨ В ∧ С, где А = истина, B = ложь и C = истина).
Логические выражения могут включать в себя функции, алгебраические операции, операции сравнения и логические операции. В этом случае приоритет выполнения действий следующий:
- вычисление существующих функциональных зависимостей;
- выполнение алгебраических операций (вначале умножение и деление, затем вычитание и сложение);
- выполнение операций сравнения (в произвольном порядке);
- выполнение логических операций (вначале операции отрицания, затем операции логического умножения, логического сложения, последними выполняются операции импликации и эквивалентности).
В логическом выражении могут использоваться скобки, которые изменяют порядок выполнения операций.
Пример. Найти значение выражения:
$1 ≤ a ∨ A ∨ sin(π/a — π/b) < 1 ∧ ¬B ∧ ¬(b^a + a^b > a + b ∨ A ∧ B)$ для а = 2, b = 3, A = истина, В = ложь.
Решение. Порядок подсчета значений:
1) ba + ab > a + b, после подстановки получим: 32 + 23 > 2 + 3, т. е. 17 > 2 + 3 = истина;
2) A ∧ B = истина ∧ ложь = ложь.
Следовательно, выражение в скобках равно (ba + ab > a + b ∨ A ∧ B) = истина ∨ ложь = истина;
3) 1≤ a = 1 ≤ 2 = истина;
4) sin(π/a — π/b) < 1 = sin(π/2 — π/3) < 1 = истина.
После этих вычислений окончательно получим: истина ∨ А ∧ истина ∧ ¬В ∧ ¬истина.
Теперь должны быть выполнены операции отрицания, затем логического умножения и сложения:
5) ¬В = ¬ложь = истина; ¬истина = ложь;
6) A ∧ истина ∧ истина ∧ ложь = истина ∧ истина ∧ истина ∧ ложь = ложь;
7) истина ∨ ложь = истина.
Таким образом, результат логического выражения при заданных значениях— «истина».
Примечание. Учитывая, что исходное выражение есть, в конечном итоге, сумма двух слагаемых, и значение одного из них 1 ≤ a = 1 ≤ 2 = истина, без дальнейших вычислений можно сказать, что результат для всего выражения тоже «истина».
Тождественные преобразования логических выражений
В алгебре логики выполняются основные законы, позволяющие производить тождественные преобразования логических выражений.
Закон | Для ∨ | Для ∧ |
Переместительный | A ∨ B = B ∨ A | A ∧ B = B ∧ A |
Сочетательный | A ∨ (B ∨ C) = (B ∨ A) ∨ C | A ∧ (B ∧ C) = (A ∧ B) ∧ C |
Распределительный | A ∧ (B ∨ C) = (A ∧ B) ∨ (A ∧ C) | A ∨ B ∧ C = (A ∨ B) ∧ (A ∨ C) |
Правила де Моргана | ${A ∨ B}↖{-}$ = $A↖{-} ∧ B↖{-}$ | ${A ∧ B}↖{-}$ = $A↖{-} ∨ B↖{-}$ |
Идемпотенции | A ∨ A = A | A ∧ A = A |
Поглощения | A ∨ A ∧ B = A | A ∧ (A ∨ B) = A |
Склеивания | (A ∧ B) ∨ (A↖{-} ∧ B) = B | (A ∨ B) ∧ (A↖{-} ∨ B) = B |
Операция переменной с ее инверсией | $A ∨ A↖{-}$ = 1 | $A ∧ A↖{-}$ = 0 |
Операция с константами | A ∨ 0 = A A ∨ 1 = 1 |
A ∧ 1 = A A ∧ 0 = 0 |
Двойного отрицания | $A↖{=}$ = A |
Доказательства этих утверждений производят на основании построения таблиц истинности для соответствующих записей.
Равносильные преобразования логических формул имеют то же назначение, что и преобразования формул в обычной алгебре. Они служат для упрощения формул или приведения их к определенному виду путем использования основных законов алгебры логики. Под упрощением формулы, не содержащей операций импликации и эквивалентности, понимают равносильное преобразование, приводящее к формуле, которая содержит либо меньшее по сравнению с исходной число операций, либо меньшее число переменных.
Некоторые преобразования логических формул похожи на преобразования формул в обычной алгебре (вынесение общего множителя за скобки, использование переместительного и сочетательного законов и т. п.), тогда как другие преобразования основаны на свойствах, которыми не обладают операции обычной алгебры (использование распределительного закона для конъюнкции, законов поглощения, склеивания, де Моргана и др.).
Рассмотрим на примерах некоторые приемы и способы, применяемые при упрощении логических формул:
1) X1 ∧ X2 ∨ X1 ∧ X2 ∪ ¬X1 ∧ X2 = X1 ∧ X2 ∨ ¬X1 ∧ X2 = (X1 ∨ ¬X1) ∧ X2 = 1 ∧ X2 = X2 .
Для преобразования здесь можно применить закон идемпотенции, распределительный закон; операцию переменной с инверсией и операцию с константой.
2) X1 ∨ X1 ∧ X2 = X1 ∨ (1 ∨ 1 ∧ X2) = X1 ∨ (1 ∨ X2) = X1 .
Здесь для упрощения применяется закон поглощения.
3) ¬(X1 ∧ X2) ∨ X2 = (¬X1 ∨ ¬X2) ∨ X2 = ¬X1 ∨ ¬X2 ∨ X2 = ¬X1 ∨ 1 = 1 .
При преобразовании применяются правило де Моргана, операция переменной с ее инверсией, операция с константой
Примеры решения задач
Пример 1. Найти логическое выражение, равносильное выражению A ∧ ¬(¬B ∨ C) .
Решение. Применяем правило де Моргана для В и С: ¬(¬B ∨ C) = B ∧ ¬C .
Получаем выражение, равносильное исходному: A ∧ ¬(¬B ∨ C) = A ∧ B ∧ ¬C .
Ответ: A ∧ B ∧ ¬C.
Пример 2. Указать значение логических переменных А, В, С, для которых значение логического выражения (A ∨ B) → (B ∨ ¬C ∨ B) ложно.
Решение. Операция импликации ложна только в случае, когд а из истинной посылки следует ложь. Следовательно, для заданного выражения посылка A ∨ B должна принимать значение «истина», а следствие, т. е. выражение B ∨ ¬C ∨ B , — «ложь».
1) A ∨ B — результат дизъюнкции — «истина», если хотя бы один из операндов — «истина»;
2) B ∨ ¬C ∨ B — выражение ложно, если все слагаемые имеют значение «ложь», т. е. В — «ложь»; ¬C — «ложь», а следовательно, переменная С имеет значение «истина»;
3) если рассмотреть посылку и учесть, что В — «ложь», то получим, что значение А — «истина».
Ответ: А — истина, В — ложь, С — истина.
Пример 3. Каково наибольшее целое число X, при котором истинно высказывание (35 < X · X) → (X < (X — 3)) ?
Решение. Запишем таблицу истинности для операции импликации:
A | B | A → B |
1 | 0 | 0 |
0 | 1 | 1 |
0 | 0 | 1 |
1 | 1 | 1 |
Выражение X < (X — 3) ложно при любых положительных значениях X. Следовательно, для того чтобы результатом импликации была «истина», необходимо и достаточно, чтобы выражение 35 < X · X также было ложно. Максимальное целое значение X, для которого 35 < X · X ложно, равно 5.
Ответ: X = 5.
Использование логических выражений для описания геометрических областей
Логические выражения могут быть использованы для описания геометрических областей. В этом случае задача формулируется так: записать для заданной геометрической области такое логическое выражение, которое принимает значение «истина» для значений x, y тогда и только тогда, когда любая точка с координатами (x; y) принадлежит геометрической области.
Рассмотрим описание геометрической области с помощью логического выражения на примерах.
Пример 1. Задано изображение геометрической области. Записать логическое выражение, описывающее множество точек, принадлежащих ей.
1) .
Решение. Заданную геометрическую область можно представить в виде набора следующих областей: первая область — D1 — полуплоскость ${x}/{-1} +{y}/{1} ≤ 1$, вторая — D2 — круг с центром в начале координат $x^2 + y^2 ≤ 1$. Их пересечение D1 $∩$ D2 представляет собой искомую область.
Результат: логическое выражение ${x}/{-1}+{y}/{1} ≤ 1 ∧ x^2 + y^2 ≤ 1$.
2)
Эту область можно записать так: |x| ≤ 1 ∧ y ≤ 0 ∧ y ≥ -1 .
Примечание. При построении логического выражения используются нестрогие неравенства, а это значит, что границы фигур также принадлежат заштрихованной области. Если использовать строгие неравенства, то границы учитываться не будут. Границы, не принадлежащие области, обычно изображаются пунктиром.
Можно решить обратную задачу, а именно: нарисовать область для заданного логического выражнения.
Пример 2. Нарисовать и заштриховать область, для точек которой выполняется логическое условие y ≥ x ∧ y + x ≥ 0 ∧ y < 2 .
Решение. Искомая область представляет собой пересечение трех полуплоскостей. Строим на плоскости (x, y) прямые y = x; y = –x; y = 2. Это границы области, причем последняя граница y = 2 не принадлежит области, поэтому ее наносим пунктирной линией. Для выполнения неравенства y ≥ x нужно, чтобы точки находились слева от прямой y = x, а неравенство y = –x выполняется для точек, которые находятся справа от прямой y = –x. Условие y < 2 выполняется для точек, лежащих ниже прямой y = 2. В результате получим область, которая изображена на рис.:
Использование логических функций для описания электрических схем
Логические функции очень удобны для описания работы электрических схем. Так, для схемы, представленной на рис., где значение переменной X — это состояние выключателя (если он включен, значение X — «истина», а если выключен — «ложь»), это значение Y — это состояние лампочки (если она горит — значение «истина», а если нет — «ложь»), логическая функция запишется так: Y = X . Функцию Y называют функцией проводимости.
Для схемы, представленной на рис., логическая функция Y имеет вид: Y = X1 ∪ X2, т. к. достаточно одного включенного выключателя, чтобы горела лампочка. В схеме на рис., для того чтобы горела лампочка, должны быть включены оба выключателя, следовательно, функция проводимости имеет вид: Y = X1 ∧ X2 .
Для более сложной схемы функция проводимости будет иметь вид: Y = (X11 ∨ (X12 ∧ X13)) ∧ X2 ∧ (X31 ∨ X32).
Схема также может содержать контакты на замыкание. В этом случае размыкаемый контакт как выключатель обеспечивает загорание лампочки, когда кнопка отпущена, а не нажата. Для таких схем размыкающий выключатель описывается отрицанием.
Две схемы называются равносильными, если через одну из них ток проходит тогда, когда он проходит и через другую. Из двух равносильных схем более простой считается схема, функция проводимости которой содержит меньшее число элементов. Задача нахождения наиболее простых схем среди равносильных очень важна.
Использование аппарата алгебры логики при проектировании логических схем
Математический аппарат алгебры логики очень удобен для описания того, как функционируют аппаратные средства компьютера. Любая информация при обработке на компьютере представляется в двоичной форме, т. е. кодируется некоторой последовательностью 0 и 1. Обработку двоичных сигналов, соответствующих 0 и 1, выполняют в компьютере логические элементы. Логические элементы, которые выполняют основные логические операции И, ИЛИ, НЕ, представлены на рис.
Условные обозначения логических элементов являются стандартными и используются при составлении логических схем компьютера. С помощью этих схем можно реализовать любую логическую функцию, описывающую работу компьютера.
Технически компьютерный логический элемент реализуется в виде электрической схемы, которая представляет собой соединение различных деталей: диодов, транзисторов, резисторов, конденсаторов. На вход логического элемента, который называют также вентилем, поступают электрические сигналы высокого и низкого уровней напряжения, на выход выдается один выходной сигнал также либо высокого, либо низкого уровня. Эти уровни соответствуют одному из состояний двоичной системы: 1 — 0; ИСТИНА — ЛОЖЬ. Каждый логический элемент имеет свое условное обозначение, которое выражает его логическую функцию, но не указывает на то, какая именно электронная схема в нем реализована. Это упрощает запись и понимание сложных логических схем. Работу логических схем описывают с помощью таблиц истинности. Условное обозначение на схеме ИЛИ знак «1» — от устаревшего обозначения дизъюнкции как «>=1» (значение дизъюнкции равно 1, если сумма двух операндов больше или равна 1). Знак «&» на схеме И является сокращенной записью английского слова and.
Из логических элементов составляются электронные логические схемы, выполняющие более сложные логические операции. Набор логических элементов, состоящий из элементов НЕ, ИЛИ, И, с помощью которых можно построить логическую структуру любой сложности, называется функционально полным.
Построение таблиц истинности логических выражений
Для логической формулы всегда можно записать таблицу истинности, т. е. представить заданную логическую функцию в табличном виде. В этом случае таблица должна содержать все возможные комбинации аргументов функции (формулы) и соответствующие значения функции (результаты формулы на заданном наборе значений).
Удобной формой записи при нахождении значений функции является таблица, содержащая, кроме значений переменных и значений функции, также значения промежуточных вычислений. Рассмотрим пример построения таблицы истинности для формулы ${X1}↖{-} ∧ X2 ∨ {X1 ∨ X2}↖{-} ∨ X1$.
X1 | X2 | ${X1}↖{-}$ | ${X1}↖{-}$ X2 | X1 ∧ X2 | ${X1 ∨ X2}↖{-}$ | ${X1}↖{-}$ ∧ X2 ∨ ${X1 ∨ X2}↖{-}$ | ${X1}↖{-}$ ∧ X2 ∨ ${X1 ∨ X2}↖{-}$ ∨ X1 |
1 | 1 | 0 | 0 | 1 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 1 | 0 | 0 | 1 |
0 | 1 | 1 | 1 | 1 | 0 | 1 | 1 |
0 | 0 | 1 | 0 | 0 | 1 | 1 | 1 |
Если функция принимает значение 1 при всех наборах значений переменных, она является тождественно-истинной; если при всех наборах входных значений функция принимает значение 0, она является тождественно-ложной; если набор выходных значений содержит как 0, так и 1, функция называется выполнимой. Приведенный выше пример является примером тождественно-истинной функции.
Зная аналитическую форму логической функции, всегда можно перейти к табличной форме логических функций. С помощью заданной таблицы истинности можно решить обратную задачу, а именно: для заданной таблицы построить аналитическую формулу логической функции. Различают две формы построения аналитической зависимости логической функции по таблично заданной функции.
1. Дизъюнктивно нормальная форма (ДНФ) — сумма произведений, образованных из переменных и их отрицаний для ложных значений.
Алгоритм построения ДНФ следующий:
- в таблице истинности функции выбирают наборы аргументов, для которых логические формы равны 1 («истина»);
- все выбранные логические наборы как логические произведения аргументов записывают, последовательно соединив их между собой операцией логической суммы (дизъюнкции);
- для аргументов, которые являются ложными, в построенной записи проставляют операцию отрицания.
Пример. Построить функцию, определяющую, что первое число равно второму, используя метод ДНФ. Таблица истинности функции имеет вид
X1 | X2 | F(X1, X2) |
1 | 1 | 1 |
0 | 1 | 0 |
1 | 0 | 0 |
0 | 0 | 1 |
Решение. Выбираем наборы значений аргументов, в которых функция равна 1. Это первая и четвертая строки таблицы (строку заголовка при нумерации не учитываем).
Записываем логические произведения аргументов этих наборов, объединив их логической суммой: X1 ∧ X2 ∨ X1 ∧ X2 .
Записываем отрицание относительно аргументов выбранных наборов, имеющих ложное значение (четвертая строка таблицы; второй набор в формуле; первый и второй элементы): X1 ∧ X2 ∨ ${X1}↖{-}$ ∧ ${X2}↖{-}$.
Ответ: F(X1, X2) = X1 ∧ X2 ∨ ${X1}↖{-}$ ∧ ${X2}↖{-}$.
2. Конъюнктивно нормальная форма (КНФ) — произведение сумм, образованных из переменных и их отрицаний для истинных значений.
Алгоритм построения КНФ следующий:
- в таблице истинности выбирают наборы аргументов, для которых логические формы равны 0 («ложь»);
- все выбранные логические наборы как логические суммы аргументов записывают последовательно, соединив их между собой операцией логического произведения (конъюнкции);
- для аргументов, которые являются истинными, в построенной записи проставляют операцию отрицания.
Примеры решения задач
Пример 1. Рассмотрим предыдущий пример, т. е. построим функцию, определяющую, что первое число равно второму, используя метод КНФ. Для заданной функции ее таблица истинности имеет вид
X1 | X2 | F(X1, X2) |
1 | 1 | 1 |
0 | 1 | 0 |
1 | 0 | 0 |
0 | 0 | 1 |
Решение. Выбираем наборы значений аргументов, в которых функция равна 0. Это вторая и третья строки (строку заголовка при нумерации не учитываем).
Записываем логические суммы аргументов этих наборов, объединив их логическим произведением: X1 ∨ X2 ∧ X1 ∨ X2 .
Записываем отрицание относительно аргументов выбранных наборов, имеющих истинное значение (вторая строка таблицы, первый набор формулы, второй элемент; для третьей строки, а это второй набор формулы, первый элемент): X1 ∨ ${X2}↖{-}$ ∧ ${X1}↖{-}$ ∨ X2.
Таким образом, получена запись логической функции в КНФ.
Ответ: X1 ∨ ${X2}↖{-}$ ∧ ${X1}↖{-}$ ∨ X2.
Полученные двумя методами значения функций являются эквивалентными. Для доказательства этого утверждения используем правила логики: F(X1, X2) = X1 ∨ ${X2}↖{-}$ ∧ ${X1}↖{-}$ ∨ X2 = X1 ∧ ${X1}↖{-}$ ∨ X1 ∧ X2 ∨ ${X2}↖{-}$ ∧ ${X1}↖{-}$ ∨ ${X2}↖{-}$ ∧ X2 = 0 ∨ X1 ∨ X2 ∨ ${X2}↖{-}$ ∧ ${X1}↖{-}$ ∨ 0 = X1 ∧ X2 ∨ ${X1}↖{-}$ ∧ ${X2}↖{-}$.
Пример 2. Построить логическую функцию для заданной таблицы истинности:
X1 | X2 | F(X1, X2) |
1 | 1 | 1 |
1 | 0 | 0 |
0 | 1 | 1 |
0 | 0 | 0 |
Решение. Используем алгоритм ДНФ для построения исходной функции:
X1 | X2 | F(X1, X2) | ||
1 | 1 | 1 | • | X1 ∧ X2 |
1 | 0 | 0 | ||
0 | 1 | 1 | • | ${X1}↖{-}$ ∧ X2 |
0 | 0 | 0 |
Искомая формула: X1 ∧ X2 ∨ ${X1}↖{-}$ ∧ X2 .
Ее можно упростить: X1 ∧ X2 ∨ ${X1}↖{-}$ ∧ X2 = X2 ∧ (X1 ∨ ${X1}↖{-}$) = X2 ∧ 1 = X2.
Пример 3. Для приведенной таблицы истинности построить логическую функцию, используя метод ДНФ.
X1 | X2 | X3 | F(X1, X2, X3) | ||
1 | 1 | 1 | 1 | • | X1 ∧ X2 ∧ X3 |
1 | 0 | 1 | 0 | ||
0 | 1 | 1 | 1 | • | ${X1}↖{-}$ ∧ X2 ∧ X3 |
0 | 0 | 1 | 0 | ||
1 | 1 | 0 | 1 | • | X1 ∧ X2 ∧ ${X3}↖{-}$ |
1 | 0 | 0 | 1 | • | X1 ∧ ${X2}↖{-}$ ∧ ${X3}↖{-}$ |
0 | 1 | 0 | 0 | ||
0 | 0 | 0 | 0 |
Искомая формула: X1 ∧ X2 ∧ X ∨ ${X1}↖{-}$ ∧ X2 ∧ X3 ∨ X1 ∧ X2 ∧ ${X3}↖{-}$ ∪ X1 ∧ ${X2}↖{-}$ ∧ ${X3}↖{-}$.
Формула достаточно громоздка, и ее следует упростить:
X1 ∧ X2 ∧ X3 ∨ ${X1}↖{-}$ ∧ X2 ∧ X3 ∨ X1 ∧ X2 ∧ ${X3}↖{-}$ ∨ X1 ∧ ${X2}↖{-}$ ∧ ${X3}↖{-}$ = X2 ∧ X3 ∧ (X1 ∨ ${X1}↖{-}$) ∨ X1 ∧ ${X3}↖{-}$ ∧ (X2 ∨ ${X2}↖{-}$) = X2 ∧ X3 ∨ X1 ∧ ${X3}↖{-}$.
Таблицы истинности для решения логических задач
Составление таблиц истинности — один из способов решения логических задач. При использовании такого способа решения, условия, которые содержит задача, фиксируются с помощью специально составленных таблиц.
Примеры решения задач
Пример 1. Составить таблицу истинности для охранного устройства, которое использует три датчика и срабатывает при замыкании только двух из них.
Решение. Очевидно, что результатом решения будет таблица, в которой искомая функция Y(X1, X2, X3) будет иметь значение «истина», если какие-либо две переменные имеют значение «истина».
X1 | X2 | X3 | Y(X1, X2, X3) |
1 | 1 | 1 | 0 |
1 | 1 | 0 | 1 |
1 | 0 | 1 | 1 |
1 | 0 | 0 | 0 |
0 | 1 | 1 | 1 |
0 | 1 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 |
Пример 2. Составить расписание уроков на день, учитывая, что урок информатики может быть только первым или вторым, урок математики — первым или третьим, а физики — вторым или третьим. Возможно ли составить расписание, удовлетворив всем требованиям? Сколько существует вариантов расписания?
Решение. Задача легко решается, если составить соответствующую таблицу:
1-й урок | 2-й урок | 3-й урок | |
Информатика | 1 | 1 | 0 |
Математика | 1 | 0 | 1 |
Физика | 0 | 1 | 1 |
Из таблицы видно, что существуют два варианта искомого расписания:
- математика, информатика, физика;
- информатика, физика, математика.
Пример 3. В спортивный лагерь приехали трое друзей — Петр, Борис и Алексей. Каждый из них увлекается двумя видами спорта. Известно, что таких видов спорта шесть: футбол, хоккей, лыжи, плавание, теннис, бадминтон. Также известно, что:
- Борис — самый старший;
- играющий в футбол младше играющего в хоккей;
- играющие в футбол и хоккей и Петр живут в одном доме;
- когда между лыжником и теннисистом возникает ссора, Борис мирит их;
- Петр не умеет играть ни в теннис, ни в бадминтон.
Какими видами спорта увлекается каждый из мальчиков?
Решение. Составим таблицу и отразим в ней условия задачи, заполнив соответствующие клетки цифрами 0 и 1 в зависимости от того, ложно или истинно соответствующее высказывание.
Так как видов спорта шесть, получается, что все мальчики увлекаются разными видами спорта.
Из условия 4 следует, что Борис не увлекается ни лыжами, ни теннисом, а из условий 3 и 5, что Петр не умеет играть в футбол, хоккей, теннис и бадминтон. Следовательно, любимые виды спорта Петра — лыжи и плавание. Занесем это в таблицу, а оставшиеся клетки столбцов «Лыжи» и «Плавание» заполним нулями.
Футбол | Хоккей | Лыжи | Плавание | Бадминтон | Теннис | |
Петр | 0 | 0 | 1 | 1 | 0 | 0 |
Борис | 0 | 0 | 0 | |||
Алексей | 0 | 0 |
Из таблицы видно, что в теннис может играть только Алексей.
Из условий 1 и 2 следует, что Борис не футболист. Таким образом, в футбол играет Алексей. Продолжим заполнять таблицу. Внесем в пустые ячейки строки «Алексей» нули.
Футбол | Хоккей | Лыжи | Плавание | Бадминтон | Теннис | |
Петр | 0 | 0 | 1 | 1 | 0 | 0 |
Борис | 0 | 0 | 0 | 0 | ||
Алексей | 1 | 0 | 0 | 0 | 0 | 1 |
Окончательно получаем, что Борис увлекается хоккеем и бадминтоном. Итоговая таблица будет выглядеть следующим образом:
Футбол | Хоккей | Лыжи | Плавание | Бадминтон | Теннис | |
Петр | 0 | 0 | 1 | 1 | 0 | 0 |
Борис | 0 | 1 | 0 | 0 | 1 | 0 |
Алексей | 1 | 0 | 0 | 0 | 0 | 1 |
Ответ: Петр увлекается лыжами и плаванием, Борис играет в хоккей и бадминтон, а Алексей занимается футболом и теннисом.
Инфоурок
›
Информатика
›Другие методич. материалы›Обозначения логических операций. Теория для решения задания №2 ЕГЭ по информатике
Скачать материал
Скачать материал
- Сейчас обучается 117 человек из 41 региона
- Сейчас обучается 41 человек из 22 регионов
- Сейчас обучается 33 человека из 18 регионов
Найдите материал к любому уроку, указав свой предмет (категорию), класс, учебник и тему:
6 153 389 материалов в базе
- Выберите категорию:
- Выберите учебник и тему
- Выберите класс:
-
Тип материала:
-
Все материалы
-
Статьи
-
Научные работы
-
Видеоуроки
-
Презентации
-
Конспекты
-
Тесты
-
Рабочие программы
-
Другие методич. материалы
-
Найти материалы
Другие материалы
- 08.11.2019
- 118
- 0
- 08.11.2019
- 122
- 0
Вам будут интересны эти курсы:
-
Курс повышения квалификации «Информационные технологии в деятельности учителя физики»
-
Курс повышения квалификации «Внедрение системы компьютерной математики в процесс обучения математике в старших классах в рамках реализации ФГОС»
-
Курс повышения квалификации «Организация работы по формированию медиаграмотности и повышению уровня информационных компетенций всех участников образовательного процесса»
-
Курс повышения квалификации «Облачные технологии в образовании»
-
Курс повышения квалификации «Развитие информационно-коммуникационных компетенций учителя в процессе внедрения ФГОС: работа в Московской электронной школе»
-
Курс повышения квалификации «Использование компьютерных технологий в процессе обучения в условиях реализации ФГОС»
-
Курс повышения квалификации «Применение MS Word, Excel в финансовых расчетах»
-
Курс повышения квалификации «Введение в программирование на языке С (СИ)»
-
Курс профессиональной переподготовки «Управление в сфере информационных технологий в образовательной организации»
-
Курс профессиональной переподготовки «Математика и информатика: теория и методика преподавания в образовательной организации»
-
Курс повышения квалификации «Применение интерактивных образовательных платформ на примере платформы Moodle»
-
Настоящий материал опубликован пользователем Аминтазаева Патимат Гитиномагомедовна. Инфоурок является
информационным посредником и предоставляет пользователям возможность размещать на сайте
методические материалы. Всю ответственность за опубликованные материалы, содержащиеся в них
сведения, а также за соблюдение авторских прав несут пользователи, загрузившие материал на сайтЕсли Вы считаете, что материал нарушает авторские права либо по каким-то другим причинам должен быть удален с
сайта, Вы можете оставить жалобу на материал.Удалить материал
-
- На сайте: 4 года и 5 месяцев
- Подписчики: 3
- Всего просмотров: 438904
-
Всего материалов:
182
Файлы
Рабочий лист подходит для учеников 7 класса, работающих по учебнику «Информатика. ФГОС», автор Л….
За это задание ты можешь получить 1 балл. На решение дается около 3 минут. Уровень сложности: базовый.
Средний процент выполнения: 65.9%
Ответом к заданию 2 по информатике может быть цифра (число) или слово.
Задача 1
Дано логическое выражение, зависящее от 6 логических переменных:
¬(A → F) ∧ B ∧ ¬C ∧ (D → E).
Сколько существует различных наборов значений переменных, при которых выражение ложно?
Решение
Заметим, что все скобки и выражения связаны конъюнкцией, для которой сложно получить единицу. Поэтому будет решать от обратного. Посчитаем количество наборов, когда выражение истинно, тогда:
¬(A → F) = 1, тогда $A → F = 0$, следовательно, A = 1, F = 0.
B = 1.
¬C = 1, значит C = 0.
(D → E) = 1, тогда возможно 3 варианта: D = 0, E = 0; D = 0, E = 1; D = 1, E = 1.
Перемножим количество подходящих значений для каждой переменной: A, B, C, F — по одному набору, D и E — 3 набора. Итого:
1 х 3 = 3 набора, для которых вся функция истинна. Но нам нужно, чтобы функция была ложна. Найдём общее количество наборов по формуле $k = 2^N$, где N — количество переменных. У нас 6 переменных, значит всего наборов 64. Из них 3 нам не подходят. Тогда количество подходящих (ложных) наборов:
64 — 3 = 61.
Или при помощи программы на С++:
#include <iostream>
#include <algorithm>
#include <fstream>using namespace std;
bool f(int A, int B, int C, int D, int E, int F){
return (!(!A || F) && B && !C && (!D || E));
}int main() {
int count = 0;
for (int A = 0; A <= 1; ++A)
for (int B = 0; B <= 1; ++B)
for (int C = 0; C <= 1; ++C)
for (int D = 0; D <= 1; ++D)
for (int E = 0; E <= 1; ++E)
for (int F = 0; F <= 1; ++F)
if (f(A, B, C, D, E, F) == false)
count++;
cout << count;
return 0;
}
Ответ: 61.
Ответ: 61
Задача 2
Дано логическое выражение, зависящее от 5 логических переменных:
$(A ∨ ¬B) ∧ (¬C ∨ D ∨ ¬E)$.
Сколько существует различных наборов значений переменных, при которых выражение ложно?
Решение
В первой скобке 2 переменных, значит для неё будет 4 набора. Поскольку переменные соединяются дизъюнкцией, выражение ложно ровно в одном случае, а в трёх оставшихся — истинно.
Во второй скобке 3 переменных, значит для неё будет 8 наборов. Поскольку переменные соединяются дизъюнкцией, выражение ложно ровно в одном случае, а в семи оставшихся — истинно.
Конъюнкция ложна, когда хотя бы одна скобка ложна. Рассмотрим 3 случая:
Первая скобка ложна, вторая истинна. Первая скобка ложна в 1 случае из 4, вторая истинна в 7 случаях из 8. Итого 7 · 1 = 7.
Первая скобка истинна, вторая ложна. Первая скобка истинна в 3 случаях из 4, вторая ложна в 1 случае из 4. Итого 1 · 3 = 3.
Первая скобка ложна, вторая ложна. Первая скобка ложна в 1 случае из 4, вторая ложна в 1 случае из 8. Итого 1 · 1 = 1.
Суммарно: 7 + 3 + 1 = 11.
Ответ: 11.
Ответ: 11
Задача 3
Дано логическое выражение, зависящее от 5 логических переменных:
(¬A ∧ B ∧ C) ∨ (¬D ∧ ¬E).
Сколько существует различных наборов значений переменных, при которых выражение истинно?
Решение
В первой скобке 3 переменных, значит для неё будет 8 наборов. Поскольку переменные соединяются конъюнкцией, выражение истинно ровно в одном случае, а в семи оставшихся — ложно.
Во второй скобке 2 переменных, значит для неё будет 4 набора. Поскольку переменные соединяются конъюнкцией, выражение истинно ровно в одном случае, а в трёх оставшихся — ложно.
Дизъюнкция истинна, когда хотя бы одна скобка истинна. Рассмотрим 3 случая:
Первая скобка ложна, вторая истинна. Первая скобка ложна в 7 случаях из 8, вторая истинна в 1 случае из 4. Итого 7 · 1 = 7.
Первая скобка истинна, вторая ложна. Первая скобка истинна в 1 случае из 8, вторая ложна в 3 случаях из 4. Итого 1 · 3 = 3.
Первая скобка истинна, вторая истинна. Первая скобка истинна в 1 случае из 8, вторая истинна в 1 случае из 4. Итого 1 · 1 = 1.
Суммарно: 7 + 3 + 1 = 11.
Ответ: 11.
Ответ: 11
Задача 4
Логическая функция F задаётся выражением ((x∧z)∨¬x)∧¬w∧y. Во фрагменте таблицы истинности приведены все строки, при которых значение функции F является истиной. Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных x, y, z, w.
F | ||||
1 | 0 | 0 | 0 | 1 |
1 | 1 | 0 | 0 | 1 |
1 | 1 | 1 | 0 | 1 |
В ответе напишите буквы x, y, z, w в том порядке, в котором идут соответствующие им столбцы (сначала букву, соответствующую 1-му столбцу; затем букву, соответствующую 2-му столбцу; затем букву, соответствующую 3-му столбцу; затем букву, соответствующую последнему столбцу). Буквы в ответе пишите подряд, никаких разделителей между буквами ставить не нужно.
Решение
Строим таблицу истинности для логической функции любым способом и находим наборы, при которых функция ложна. Например, при помощи программы:
bool f(int x, int y, int z, int w){
return (((x && z) || !x) && !w && y);
}int main() {
cout << "x y z w F" << endl;
for (int x = 0; x <= 1; ++x)
for (int y = 0; y <= 1; ++y)
for (int z = 0; z <= 1; ++z)
for (int w = 0; w <= 1; ++w)
if (f(x, y, z, w) == true)
cout << x << " " << y << " "
<< z << " " << w << " " << f(x, y, z, w) << endl;
return 0;
}
Получили наборы:
x y z w F
0 1 0 0 1
0 1 1 0 1
1 1 1 0 1
Начинаем сопоставление с исходной тбалицей:
1) столбец без единиц четвёртый в таблице из условия — это W
2) столбец с одной единицей третий в исходной таблице — это X
3) столбей с тремя единицами — это Y
4) столбец с двумя единицами — это Z
Результат: YZXW
Ответ: yzxw
Задача 5
Логическая функция F задаётся выражением (y → w) ∨ (¬x ∧ z). Во фрагменте таблицы истинности приведены все строки, при которых значение функции F ложно. Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных x, y, z, w.
F | ||||
0 | 0 | 0 | 1 | 0 |
1 | 0 | 0 | 1 | 0 |
1 | 0 | 1 | 1 | 0 |
В ответе напишите буквы w, x, y, z в том порядке, в котором идут соответствующие им столбцы (сначала букву, соответствующую 1-му столбцу; затем букву, соответствующую 2-му столбцу; затем букву, соответствующую 3-му столбцу; затем букву, соответствующую последнему столбцу). Буквы в ответе пишите подряд, никаких разделителей между буквами ставить не нужно.
Решение
Строим таблицу истинности для логической функции любым способом и находим наборы, при которых функция ложна. Например, при помощи программы:
bool f(int x, int y, int z, int w){
return ((!y || w) || (!x && z));
}int main() {
cout << "x y z w F" << endl;
for (int x = 0; x <= 1; ++x)
for (int y = 0; y <= 1; ++y)
for (int z = 0; z <= 1; ++z)
for (int w = 0; w <= 1; ++w)
if (f(x, y, z, w) == false)
cout << x << " " << y << " "
<< z << " " << w << " " << f(x, y, z, w) << endl;
return 0;
}
Получили наборы:
x y z w F
0 1 0 0 0
1 1 0 0 0
1 1 1 0 0
Начинаем сопоставление с исходной тбалицей:
1) столбец без единиц второй в таблице из условия — это W
2) столбец с одной единицей третий в исходной таблице — это Z
3) столбей с тремя единицами — это Y
4) столбец с двумя единицами — это X
Результат: xwzy
Ответ: xwzy
Задача 6
Дан фрагмент таблицы истинности выражения F:
x1 | x2 | x3 | x4 | x5 | x6 | x7 | x8 | F |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 |
0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 1 |
0 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 0 |
1 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 |
1 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 1 |
1 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 |
1 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 1 |
1 | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 1 |
1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 |
Сколько строк таблицы удовлетворяют выражению: F = (x1 ∨ x2 ∨ x3) ∧ x4 ∧ (x5 ∨ x6 ∨ x7) ∧ x8?
Решение
Данное выражение является конъюнкцией четырёх выражений. Конъюнкция нескольких высказываний истинна тогда и только тогда, когда истинными являются все входящие в неё высказывания. Следовательно, x4 = 1, x8 = 1 и в наборах значений переменных (x1, x2, x3), (x5, x6, x7) должна быть хотя бы одна 1.
Этим условиям удовлетворяют три последние строки таблицы. В каждой из этих строк значение функции F = 1. Следовательно, эти строки удовлетворяют заданному логическому выражению.
Чтобы остальные строки удовлетворяли заданному выражению, значение F должно быть равно 0. В таблице количество таких строк равно 5.
Всего значения 8 строк таблицы удовлетворяют заданному выражению.
Ответ: 8
Задача 7
Логическая функция F задаётся выражением (¬x → y) ∧ (z → y). Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных x, y, z.
Переменная 1 ??? |
Переменная 2 ??? |
Переменная 3 ??? |
Функция F |
0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 |
0 | 0 | 1 | 1 |
1 | 0 | 1 | 1 |
0 | 1 | 0 | 1 |
1 | 1 | 0 | 0 |
0 | 1 | 1 | 1 |
1 | 1 | 1 | 1 |
В ответе напишите буквы x, y, z в том порядке, в котором идут соответствующие им столбцы (сначала — буква, соответствующая 1-му столбцу; затем — буква, соответствующая 2-му столбцу; затем — буква, соответствующая 3-му столбцу). Буквы в ответе пишите подряд, никаких разделителей между буквами ставить не нужно.
Пример. Пусть задано выражение x ∨ ¬y, зависящее от двух переменных x и y, и таблица истинности:
Переменная 1 ??? |
Переменная 2 ??? |
Функция F |
1 | 0 | 0 |
0 | 1 | 1 |
0 | 0 | 1 |
0 | 1 | 1 |
Тогда 1-му столбцу соответствует переменная y, а 2-му столбцу соответствует переменная x. В ответе нужно написать: yx.
Решение
Преобразуем исходное выражение.
(¬x → y) ∧ (z → y) = (x ∨ y) ∧ (¬z ∨ y) = y ∨ (x ∧ ¬z).
Так как дизъюнкция ложна только в том случае, когда ложны оба высказывания, входящие в неё, то переменной y должен соответствовать тот столбец, в котором значение 0 стоит в тех же строках, что и в столбце F. Следовательно, переменной y соответствует третий столбец.
Рассмотрим строку, в которой значение функции отличается от значения переменной y. Такой строкой является четвёртая снизу. Здесь переменная y = 0, а значение функции F = 1. Это означает, что x ∧ ¬z = 1. В рассматриваемой строке значение первого столбца 0, а второго 1. Пусть x = 0, z = 1. При этих значениях логическое выражение x ∧ ¬z ложно, что не соответствует табличному значению функции F = 1. Следовательно, x = 1, z = 0. Значит, первый столбец соответствует переменной z, а второй—x.
Или при помощи программы на С++:
Выводим только ложные наборы, потому что их меньше
#include <iostream>
#include <algorithm>
#include <fstream>using namespace std;
bool f(int x, int y, int z){
return ((x || y) && (!z || y));
}int main() {
cout << "x y z F" << endl;
for (int x = 0; x <= 1; ++x)
for (int y = 0; y <= 1; ++y)
for (int z = 0; z <= 1; ++z)
if (f(x, y, z) == false)
cout << x << " " << y << " "
<< z << " " << f(x, y, z) << endl;
return 0;
}
Ответ: zxy
Задача 8
Логическая функция F задаётся выражением ((¬z∨¬x)∧z)∨w∨¬y. Во фрагменте таблицы истинности приведены все строки, при которых значение функции F ложно. Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных x, y, z, w.
F | ||||
1 | 0 | 0 | 0 | 0 |
1 | 1 | 0 | 0 | 0 |
1 | 1 | 1 | 0 | 0 |
В ответе напишите буквы x, y, z, w в том порядке, в котором идут соответствующие им столбцы (сначала букву, соответствующую 1-му столбцу; затем букву, соответствующую 2-му столбцу; затем букву, соответствующую 3-му столбцу; затем букву, соответствующую последнему столбцу). Буквы в ответе пишите подряд, никаких разделителей между буквами ставить не нужно.
Пример. Пусть задано выражение x∨¬y, зависящее от двух переменных x и y, и таблица истинности
F | ||
1 | 0 | 0 |
0 | 1 | 1 |
0 | 0 | 1 |
1 | 1 | 1 |
тогда 1-му столбцу соответствует переменная y, а 2-му столбцу соответствует переменная x. В ответе нужно написать: yx.
Задача 9
Логическая функция F задаётся выражением (y ∧ (w → x)) → g. Во фрагменте таблицы истинности приведены все строки, при которых значение функции F ложно. Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных x, y, w, g.
F | ||||
0 | 0 | 0 | 1 | 0 |
1 | 0 | 0 | 1 | 0 |
1 | 0 | 1 | 1 | 0 |
В ответе напишите буквы x, y, w, g в том порядке, в котором идут соответствующие им столбцы (сначала букву, соответствующую 1-му столбцу; затем букву, соответствующую 2-му столбцу; затем букву, соответствующую 3-му столбцу; затем букву, соответствующую последнему столбцу). Буквы в ответе пишите подряд, никаких разделителей между буквами ставить не нужно.
Пример. Пусть задано выражение x∨¬y, зависящее от двух переменных x и y, и таблица истинности
F | ||
1 | 0 | 0 |
0 | 1 | 1 |
0 | 0 | 1 |
1 | 1 | 1 |
тогда 1-му столбцу соответствует переменная y, а 2-му столбцу соответствует переменная x. В ответе нужно написать: yx.
Задача 10
Логическая функция F задаётся выражением (x → y) → (w → g). Во фрагменте таблицы истинности приведены все строки, при которых значение функции F ложно. Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных x, y, w, g.
F | ||||
0 | 1 | 0 | 0 | 0 |
0 | 1 | 0 | 1 | 0 |
0 | 1 | 1 | 1 | 0 |
В ответе напишите буквы x, y, w, g в том порядке, в котором идут соответствующие им столбцы (сначала букву, соответствующую 1-му столбцу; затем букву, соответствующую 2-му столбцу; затем букву, соответствующую 3-му столбцу; затем букву, соответствующую последнему столбцу). Буквы в ответе пишите подряд, никаких разделителей между буквами ставить не нужно.
Пример. Пусть задано выражение x∨¬y, зависящее от двух переменных x и y, и таблица истинности
F | ||
1 | 0 | 0 |
0 | 1 | 1 |
0 | 0 | 1 |
1 | 1 | 1 |
тогда 1-му столбцу соответствует переменная y, а 2-му столбцу соответствует переменная x. В ответе нужно написать: yx.
Задача 11
Логическая функция F задаётся выражением (x = y) ∨ ¬(y → w) ∨ z. Ниже приведён частично заполненный фрагмент таблицы истинности функции F, содержащий неповторяющиеся строки.
Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных w, x, y, z.
F | ||||
1 | 1 | 0 | 0 | |
1 | 1 | 0 | ||
0 | 1 | 0 |
В ответе напишите буквы w, x, y, z в том порядке, в котором идут соответствующие им столбцы (сначала букву, соответствующую 1-му столбцу; затем букву, соответствующую 2-му столбцу; затем букву, соответствующую 3-му столбцу; затем букву, соответствующую последнему столбцу). Буквы в ответе пишите подряд, никаких разделителей между буквами ставить не нужно.
Пример. Если бы функция F была задана выражением x ∨ ¬y, зависящим от двух переменных x и y, а фрагмент таблицы истинности имел бы вид:
тогда 1-му столбцу соответствовала бы переменная y, а 2-му столбцу — переменная x. В ответе следовало бы написать: yx.
Задача 12
Логическая функция F задаётся выражением (x = y)∨(x∧w)∨¬z. Ниже приведён частично заполненный фрагмент таблицы истинности функции F, содержащий неповторяющиеся строки.
Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных w, x, y, z.
F | ||||
1 | 0 | 0 | ||
0 | 0 | 0 | ||
0 | 1 | 0 |
В ответе напишите буквы w, x, y, z в том порядке, в котором идут соответствующие им столбцы (сначала букву, соответствующую 1-му столбцу; затем букву, соответствующую 2-му столбцу; затем букву, соответствующую 3-му столбцу; затем букву, соответствующую последнему столбцу). Буквы в ответе пишите подряд, никаких разделителей между буквами ставить не нужно.
Пример. Если бы функция F была задана выражением x ∨ ¬y, зависящим от двух переменных x и y, а фрагмент таблицы истинности имел бы вид:
тогда 1-му столбцу соответствовала бы переменная y, а 2-му столбцу — переменная x. В ответе следовало бы написать: yx.
Автор материалов — Лада Борисовна Есакова.
В компьютере вся информация представлена в двоичной системе счисления, в которой используется две цифры – 0 и 1. Собственно, и цифр как таковых у компьютера нет, а есть электрический сигнал, проходящий по электронным схемам и соединительным проводникам (шинам) компьютера, который может принимать значения “высокий уровень электрического напряжения” (принимаемый нами за 1) и “низкий уровень электрического напряжения” (принимаемый за 0). Для различных действий над этими нулями и единичками нам необходимы специальные операции, которые работают с двоичными переменными. Такие операции называются логическими операциями.
Логические операции и их аргументы принимают только два значения: 1 (“истина”) и 0 (“ложь”).
Таблица истинности выражения определяет его значения при всех возможных комбинациях исходных данных.
Количество строк в таблице истинности выражения от N переменных равно 2N.
Основные логические операции:
1). Логическое умножение (конъюнкция, логическое И). Обозначается: AND, &, /.
Таблица истинности:
A |
B |
А&В |
1 |
1 |
1 |
1 |
0 |
0 |
0 |
1 |
0 |
0 |
0 |
0 |
2). Логическое сложение (дизъюнкция, логическое ИЛИ). Обозначается: OR, |, /.
Таблица истинности:
A |
B |
A / B |
1 |
1 |
1 |
1 |
0 |
1 |
0 |
1 |
1 |
0 |
0 |
0 |
3). Логическое отрицание (инверсия, логическое НЕ). Обозначается: NOT, ¬, .
Таблица истинности:
4). Логическое следование (импликация). Обозначается: →.
Таблица истинности:
A |
B |
A → B |
1 |
1 |
1 |
1 |
0 |
0 |
0 |
1 |
1 |
0 |
0 |
1 |
5). Логическое равенство (эквивалентность). Обозначается: ↔, ~.
Таблица истинности:
A |
B |
A ~ B |
1 |
1 |
1 |
1 |
0 |
0 |
0 |
1 |
0 |
0 |
0 |
1 |
Порядок (приоритет) выполнения логических операций:
Если в выражении нет скобок, то операции выполняются в следующем порядке:
— Логическое отрицание (инверсия, логическое НЕ);
— Логическое умножение (конъюнкция, логическое И);
— Логическое сложение (дизъюнкция, логическое ИЛИ);
— Логическое следование (импликация);
— Логическое равенство (эквивалентность).
Выбор выражения по таблице истинности
Пример 1.
Дан фрагмент таблицы истинности выражения F:
x1 |
x2 |
x3 |
x4 |
x5 |
x6 |
F |
1 |
1 |
0 |
0 |
0 |
0 |
0 |
1 |
0 |
1 |
0 |
0 |
1 |
0 |
1 |
0 |
0 |
1 |
0 |
0 |
0 |
Каким выражением может быть F?
1) (x1 ∧ x2) ∨ (x3 ∧ x4) ∨ (x5 ∧ x6)
2) (x1 ∧ x3) ∨ (x3 ∧ x5) ∨ (x5 ∧ x1)
3) (x2 ∧ x4) ∨ (x4 ∧ x6) ∨ (x6 ∧ x2)
4) (x1 ∧ x4) ∨ (x2 ∧ x5) ∨ (x3 ∧ x6)
Решение:
Все представленные варианты ответа — дизъюнкции трёх конъюнкций. Все значения F в таблице равны нулю. Дизъюнкция равна нулю, когда все слагаемые равны нулю.
Рассмотри поочерёдно все четыре выражения.
1) В первой строке таблицы x1=1 и x2=1, значит x1∧x2=1. Выражение не подходит.
2) Во второй строке таблицы x1=1 и x3=1, значит x1∧x3=1. Выражение не подходит.
3) Подставим в третье выражение поочередно значения всех строк таблицы:
Первая строка
(x2 ∧ x4) ∨ (x4 ∧ x6) ∨ (x6 ∧ x2) = (1 ∧ 0) ∨ (0 ∧ 0) ∨ (0 ∧ 1) = 0 ∨ 0 ∨ 0 = 0
Вторая строка
(x2 ∧ x4) ∨ (x4 ∧ x6) ∨ (x6 ∧ x2) = (0 ∧ 0) ∨ (0 ∧ 1) ∨ (1 ∧ 0) = 0 ∨ 0 ∨ 0 = 0
Третья строка
(x2 ∧ x4) ∨ (x4 ∧ x6) ∨ (x6 ∧ x2) = (0 ∧ 1) ∨ (1 ∧ 0) ∨ (0 ∧ 0) = 0 ∨ 0 ∨ 0 = 0
Выражение подходит.
4) В третьей строке таблицы x1=1 и x4=1, значит x1∧x4=1. Выражение не подходит.
Ответ:3
Пример 2.
Для таблицы истинности функции F известны значения только некоторых ячеек:
x1 |
x2 |
x3 |
x4 |
x5 |
x6 |
x7 |
F |
1 |
0 |
1 |
|||||
0 |
0 |
1 |
|||||
0 |
1 |
0 |
Каким выражением может быть F?
1) x1 ∧ x2 ∧ x3 ∧ ¬x4 ∧ x5 ∧ x6 ∧ ¬x7
2) x1 ∨ ¬x2 ∨ x3 ∨ ¬x4 ∨ ¬x5 ∨ x6 ∨ ¬x7
3) ¬x1 ∧ x2 ∧ ¬x3 ∧ x4 ∧ x5 ∧ x6 ∧ x7
4) x1 ∨ x2 ∨ ¬ x3 ∨ x4 ∨ x5 ∨ ¬x6 ∨ x7
Решение:
Рассмотри поочерёдно все четыре выражения.
1) Выражение является конъюнкцией переменных и их отрицаний. Конъюнкция равна единице, когда все операнды равны единице. В первой строке x6 = 0, а значит и все выражение F равно нулю, что не соответствует таблице истинности.
2) Выражение является дизъюнкцией переменных и их отрицаний. Дизъюнкция равна единице, когда хотя бы один операнд равен единице. Подставим во второе выражение поочередно значения всех строк таблицы:
Первая строка
x1 ∨ ¬x2 ∨ x3 ∨ ¬x4 ∨ ¬x5 ∨ x6 ∨ ¬x7 = x1 ∨ ¬x2 ∨ x3 ∨ 0 ∨ ¬x5 ∨ 0 ∨ ¬x7 может принимать значение 1, если хотя бы один из операндов равен 1.
Вторая строка
x1 ∨ ¬x2 ∨ x3 ∨ ¬x4 ∨ ¬x5 ∨ x6 ∨ ¬x7 = x1 ∨ ¬x2 ∨ x3 ∨ 1 ∨ ¬x5 ∨ x6 ∨ 1 = 1
Третья строка
x1 ∨ ¬x2 ∨ x3 ∨ ¬x4 ∨ ¬x5 ∨ x6 ∨ ¬x7 = 0 ∨ ¬x2 ∨ x3 ∨ 0 ∨ ¬x5 ∨ x6 ∨ ¬x7 может принимать значение 0, если все остальные операнды равны 0.
3) Выражение является конъюнкцией переменных и их отрицаний. Конъюнкция равна единице, когда все операнды равны единице. Во второй строке x4 = 0, а значит и все выражение F равно нулю, что не соответствует таблице истинности.
4) Выражение является дизъюнкцией переменных и их отрицаний. Дизъюнкция равна единице, когда хотя бы один операнд равен единице. В третьей строке x4 = 1, значит и все выражение F равно 1, что не соответствует таблице истинности.
Ответ:2
Пример 3.
Логическая функция F задаётся выражением (¬z) ∧ x ∨ x ∧ y. Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных x, y, z.
Перем. 1 |
Перем. 2 |
Перем. 3 |
Функция |
??? |
??? |
??? |
F |
0 |
0 |
0 |
0 |
0 |
0 |
1 |
1 |
0 |
1 |
0 |
0 |
0 |
1 |
1 |
1 |
1 |
0 |
0 |
0 |
1 |
0 |
1 |
0 |
1 |
1 |
0 |
0 |
1 |
1 |
1 |
1 |
В ответе напишите буквы x, y, z в том порядке, в котором идут соответствующие им столбцы (сначала – буква, соответствующая 1-му столбцу; затем – буква, соответствующая 2-му столбцу; затем – буква, соответствующая 3-му столбцу). Буквы в ответе пишите подряд, никаких разделителей между буквами ставить не нужно.
Решение:
Выражение (¬z) ∧ x ∨ x ∧ y является дизъюнкцией двух конъюнкций:
((¬z) ∧ x) ∨ (x ∧ y) . В обеих конъюнкциях присутствует x. Т. е. при x = 0 все выражение равно 0. Это выполняется только при Перем.3 = x.
Выражение равно 1, если x =1 и выполняется хотя бы одно из условий: y = 1 или z = 0. Из четвертой строки следует, что Перем.1 = z, а Перем.2 = y.
Ответ: zyx
Спасибо за то, что пользуйтесь нашими публикациями.
Информация на странице «Задача №2. Построение таблиц истинности логических выражений. Выбор выражения, соответствующего условию.» подготовлена нашими редакторами специально, чтобы помочь вам в освоении предмета и подготовке к ЕГЭ и ОГЭ.
Чтобы успешно сдать нужные и поступить в высшее учебное заведение или колледж нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими материалами из данного раздела.
Публикация обновлена:
08.03.2023
Пройти тестирование по этим заданиям
Вернуться к каталогу заданий
Версия для печати и копирования в MS Word
1
Логическая функция F задаётся выражением (x ∨ y) → (z ≡ x).
Дан частично заполненный фрагмент, содержащий неповторяющиеся строки таблицы истинности функции F.
Определите, какому столбцу таблицы истинности соответствует каждая из переменных x, y, z.
Переменная 1 | Переменная 2 | Переменная 3 | Функция |
---|---|---|---|
??? | ??? | ??? | F |
0 | 0 | 0 | |
0 | 0 |
В ответе напишите буквы x, y, z в том порядке, в котором идут соответствующие им столбцы (сначала – буква, соответствующая первому столбцу; затем – буква, соответствующая второму столбцу, и т. д.). Буквы в ответе пишите подряд, никаких разделителей между буквами ставить не нужно.
Пример. Пусть задано выражение x → y, зависящее от двух переменных x и y, и фрагмент таблицы истинности:
Переменная 1 | Переменная 2 | Функция |
---|---|---|
??? | ??? | F |
0 | 1 | 0 |
Тогда первому столбцу соответствует переменная y, а второму столбцу соответствует переменная x. В ответе нужно написать: yx.
Источник: СтатГрад: Тренировочная работа 28.11.2017 ИН10203
2
Логическая функция F задаётся выражением (x ≡ z ) ∨ (x → (y ∧ z)).
Дан частично заполненный фрагмент, содержащий неповторяющиеся строки таблицы истинности функции F.
Определите, какому столбцу таблицы истинности соответствует каждая из переменных x, y, z.
Переменная 1 | Переменная 2 | Переменная 3 | Функция |
---|---|---|---|
??? | ??? | ??? | F |
0 | 0 | 0 | |
1 | 0 |
В ответе напишите буквы x, y, z в том порядке, в котором идут соответствующие им столбцы (сначала — буква, соответствующая первому столбцу; затем — буква, соответствующая второму столбцу, и т. д.). Буквы в ответе пишите подряд, никаких разделителей между буквами ставить не нужно.
Пример. Пусть задано выражение x → y, зависящее от двух переменных x и y, и фрагмент таблицы истинности:
Переменная 1 | Переменная 2 | Функция |
---|---|---|
??? | ??? | F |
0 | 1 | 0 |
Тогда первому столбцу соответствует переменная y, а второму столбцу соответствует переменная x. В ответе нужно написать: yx.
3
Логическая функция F задаётся выражением (x ≡ y ) ∨ ((y ∨ z) → x).
Дан частично заполненный фрагмент, содержащий неповторяющиеся строки таблицы истинности функции F.
Определите, какому столбцу таблицы истинности соответствует каждая из переменных x, y, z.
Переменная 1 | Переменная 2 | Переменная 3 | Функция |
---|---|---|---|
??? | ??? | ??? | F |
1 | 1 | 0 | |
1 | 0 |
В ответе напишите буквы x, y, z в том порядке, в котором идут соответствующие им столбцы (сначала — буква, соответствующая первому столбцу; затем — буква, соответствующая второму столбцу, и т. д.). Буквы в ответе пишите подряд, никаких разделителей между буквами ставить не нужно.
Пример. Пусть задано выражение x → y, зависящее от двух переменных x и y, и фрагмент таблицы истинности:
Переменная 1 | Переменная 1 | Функция |
---|---|---|
??? | ??? | F |
0 | 1 | 0 |
Тогда первому столбцу соответствует переменная y, а второму столбцу соответствует переменная x. В ответе нужно написать: yx.
4
Логическая функция F задаётся выражением (x ∧ ¬y) ∨ (y ≡ z) ∨ ¬w. На рисунке приведён фрагмент таблицы истинности функции F, содержащий все наборы аргументов, при которых функция F ложна. Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных w, x, y, z. Все строки в представленном фрагменте разные.
Перем.1 | Перем.2 | Перем.3 | Перем.4 |
---|---|---|---|
??? | ??? | ??? | ??? |
0 | |||
1 | 0 | 0 | |
1 | 0 | 0 |
В ответе напишите буквы w, x, y, z в том порядке, в котором идут соответствующие им столбцы (без разделителей).
Источник: ЕГЭ — 2018. Досрочная волна. Вариант 1., ЕГЭ — 2018. Досрочная волна. Вариант 2.
5
Логическая функция F задаётся выражением ((x → y ) ∧ (y → w)) ∨ (z ≡ ( x ∨ y)).
Дан частично заполненный фрагмент, содержащий неповторяющиеся строки таблицы истинности функции F.
Определите, какому столбцу таблицы истинности соответствует каждая из переменных x, y, z, w.
Переменная 1 | Переменная 2 | Переменная 3 | Переменная 4 | Функция |
---|---|---|---|---|
??? | ??? | ??? | ??? | F |
1 | 1 | 0 | ||
1 | 0 | |||
1 | 1 | 0 |
В ответе напишите буквы x, y, z, w в том порядке, в котором идут соответствующие им столбцы (сначала — буква, соответствующая первому столбцу; затем — буква, соответствующая второму столбцу, и т. д.). Буквы в ответе пишите подряд, никаких разделителей между буквами ставить не нужно.
Пример. Пусть задано выражение x → y, зависящее от двух переменных x и y, и фрагмент таблицы истинности:
Переменная 1 | Переменная 2 | Функция |
---|---|---|
??? | ??? | F |
0 | 1 | 0 |
Тогда первому столбцу соответствует переменная y, а второму столбцу соответствует переменная x. В ответе нужно написать: yx.
Пройти тестирование по этим заданиям