Вычисление производной егэ

в условии
в решении
в тексте к заданию
в атрибутах

Категория:

Атрибут:

Всего: 770    1–20 | 21–40 | 41–60 | 61–80 …

Добавить в вариант

Найдите, при каких неотрицательных значениях a функция f левая круглая скобка x правая круглая скобка =3ax в степени 4 минус 8x в кубе плюс 3x в квадрате минус 7 на отрезке [−1; 1] имеет ровно одну точку минимума.

Источник: Избранные задания по математике из последних сборников ФИПИ


Найдите наибольшее значение функции y= дробь: числитель: x в кубе , знаменатель: 3 конец дроби минус 9x минус 7 на отрезке  левая квадратная скобка минус 3;3 правая квадратная скобка .


Найдите точку максимума функции y=5 плюс 9x минус дробь: числитель: x в кубе , знаменатель: 3 конец дроби .


Найдите точку минимума функции y=5 плюс 9x минус дробь: числитель: x в кубе , знаменатель: 3 конец дроби .


Найдите наименьшее значение функции y=5 плюс 9x минус дробь: числитель: x в кубе , знаменатель: 3 конец дроби на отрезке  левая квадратная скобка минус 3;3 правая квадратная скобка .


Найдите наибольшее значение функции y=5 плюс 9x минус дробь: числитель: x в кубе , знаменатель: 3 конец дроби на отрезке  левая квадратная скобка минус 3;3 правая квадратная скобка .


Найдите наименьшее значение функции y= дробь: числитель: 2, знаменатель: 3 конец дроби x в степени левая круглая скобка дробь: числитель: 3, знаменатель: 2 конец дроби правая круглая скобка минус 3x плюс 1 на отрезке  левая квадратная скобка 1;9 правая квадратная скобка .


Найдите наибольшее значение функции y= минус дробь: числитель: 2, знаменатель: 3 конец дроби x в степени левая круглая скобка дробь: числитель: 3, знаменатель: 2 конец дроби правая круглая скобка плюс 3x плюс 1 на отрезке  левая квадратная скобка 1;9 правая квадратная скобка .


Найдите наименьшее значение функции y= дробь: числитель: 2, знаменатель: 3 конец дроби x корень из x минус 3x плюс 1 на отрезке  левая квадратная скобка 1;9 правая квадратная скобка .


Найдите наибольшее значение функции y= минус дробь: числитель: 2, знаменатель: 3 конец дроби x корень из x плюс 3x плюс 1 на отрезке  левая квадратная скобка 1;9 правая квадратная скобка .


Найдите точку минимума функции y=19 плюс 25x минус дробь: числитель: x в кубе , знаменатель: 3 конец дроби .


Найдите наименьшее значение функции y= дробь: числитель: 2, знаменатель: 3 конец дроби x в степени левая круглая скобка дробь: числитель: 3, знаменатель: 2 конец дроби правая круглая скобка минус 6x плюс 9 на отрезке  левая квадратная скобка 27;46 правая квадратная скобка .


Найдите наибольшее значение функции y=42 корень из 3 синус x минус 21 корень из 3x плюс 7 корень из 3 Пи на отрезке  левая квадратная скобка 0; дробь: числитель: Пи , знаменатель: 2 конец дроби правая квадратная скобка .


На рисунке изображены график функции y=f левая круглая скобка x правая круглая скобка и касательная к этому графику, проведённая в точке x0. Найдите значение производной функции g(x)  =  6f(x) − 3x в точке x0.







Всего: 770    1–20 | 21–40 | 41–60 | 61–80 …

Производной функции $y = f(x)$ в данной точке $х_0$ называют предел отношения приращения функции к соответствующему приращению его аргумента при условии, что последнее стремится к нулю:

$f'(x_0)={lim}↙{△x→0}{△f(x_0)}/{△x}$

Дифференцированием называют операцию нахождения производной.

Таблица производных некоторых элементарных функций

Функция Производная
$c$ $0$
$x$ $1$
$x^n$ $nx^{n-1}$
${1}/{x}$ $-{1}/{x^2}$
$√x$ ${1}/{2√x}$
$e^x$ $e^x$
$lnx$ ${1}/{x}$
$sinx$ $cosx$
$cosx$ $-sinx$
$tgx$ ${1}/{cos^2x}$
$ctgx$ $-{1}/{sin^2x}$

Основные правила дифференцирования

1. Производная суммы (разности) равна сумме (разности) производных

$(f(x) ± g(x))’= f'(x)±g'(x)$

Найти производную функции $f(x)=3x^5-cosx+{1}/{x}$

Производная суммы (разности) равна сумме (разности) производных.

$f'(x) = (3x^5 )’-(cos x)’ + ({1}/{x})’ = 15x^4 + sinx — {1}/{x^2}$

2. Производная произведения

$(f(x) · g(x))’= f'(x) · g(x)+ f(x) · g(x)’$

Найти производную $f(x)=4x·cosx$

$f'(x)=(4x)’·cosx+4x·(cosx)’=4·cosx-4x·sinx$

3. Производная частного

$({f(x)}/{g(x)})’={f'(x)·g(x)-f(x)·g(x)’}/{g^2(x)}$

Найти производную $f(x)={5x^5}/{e^x}$

$f'(x)={(5x^5)’·e^x-5x^5·(e^x)’}/{(e^x)^2}={25x^4·e^x-5x^5·e^x}/{(e^x)^2}$

4. Производная сложной функции равна произведению производной внешней функции на производную внутренней функции

$f(g(x))’=f'(g(x))·g'(x)$

$f(x)= cos(5x)$

$f'(x)=cos'(5x)·(5x)’=-sin(5x)·5= -5sin(5x)$

Физический смысл производной

Если материальная точка движется прямолинейно и ее координата изменяется в зависимости от времени по закону $x(t)$, то мгновенная скорость данной точки равна производной функции.

$v(t) = x'(t)$

Точка движется по координатной прямой согласно закону $x(t)= 1,5t^2-3t + 7$, где $x(t)$ — координата в момент времени $t$. В какой момент времени скорость точки будет равна $12$?

Решение:

1. Скорость – это производная от $x(t)$, поэтому найдем производную заданной функции

$v(t) = x'(t) = 1,5·2t -3 = 3t -3$

2. Чтобы найти, в какой момент времени $t$ скорость была равна $12$, составим и решим уравнение:

$3t-3 = 12$

$3t = 15$

$t = 5$

Ответ: $5$

Геометрический смысл производной

Напомним, что уравнение прямой, не параллельной осям координат, можно записать в виде $y = kx + b$, где $k$ – угловой коэффициент прямой. Коэффициент $k$ равен тангенсу угла наклона между прямой и положительным направлением оси $Ох$.

$k = tgα$

Производная функции $f(x)$ в точке $х_0$ равна угловому коэффициенту $k$ касательной к графику в данной точке:

$f'(x_0) = k$

Следовательно, можем составить общее равенство:

$f'(x_0) = k = tgα$

На рисунке касательная к функции $f(x)$ возрастает, следовательно, коэффициент $k > 0$. Так как $k > 0$, то $f'(x_0) = tgα > 0$. Угол $α$ между касательной и положительным направлением $Ох$ острый.

На рисунке касательная к функции $f(x)$ убывает, следовательно, коэффициент $k < 0$, следовательно, $f'(x_0) = tgα < 0$. Угол $α$ между касательной и положительным направлением оси $Ох$ тупой.

На рисунке касательная к функции $f(x)$ параллельна оси $Ох$, следовательно, коэффициент $k = 0$, следовательно, $f'(x_0) = tg α = 0$. Точка $x_0$, в которой $f ‘(x_0) = 0$, называется экстремумом.

На рисунке изображён график функции $y=f(x)$ и касательная к этому графику, проведённая в точке с абсциссой $x_0$. Найдите значение производной функции $f(x)$ в точке $x_0$.

Решение:

Касательная к графику возрастает, следовательно, $f'(x_0) = tg α > 0$

Для того, чтобы найти $f'(x_0)$, найдем тангенс угла наклона между касательной и положительным направлением оси $Ох$. Для этого достроим касательную до треугольника $АВС$.

Найдем тангенс угла $ВАС$. (Тангенсом острого угла в прямоугольном треугольнике называется отношение противолежащего катета к прилежащему катету.)

$tg BAC = {BC}/{AC} = {3}/{12}= {1}/{4}=0,25$

$f'(x_0) = tg ВАС = 0,25$

Ответ: $0,25$

Производная так же применяется для нахождения промежутков возрастания и убывания функции:

Если $f'(x) > 0$ на промежутке, то функция $f(x)$ возрастает на этом промежутке.

Если $f'(x) < 0$ на промежутке, то функция $f(x)$ убывает на этом промежутке.

На рисунке изображен график функции $y = f(x)$. Найдите среди точек $х_1,х_2,х_3…х_7$ те точки, в которых производная функции отрицательна.

В ответ запишите количество данных точек.

Решение:

Отрицательным значениям производной соответствуют интервалы, на которых функция $f (x)$ убывает. Поэтому, выделим на рисунке интервалы, на которых функция убывает.

В выделенных интервалах находятся точки $х_2, х_4$. В ответ напишем их количество $2$.

Ответ: $2$

1. Геометрический смысл производной

На рисунке изображён график функции и касательная к нему в точке с абсциссой . Найдите значение производной функции в точке .

2.1. Прямая параллельна касательной к графику функции . Найдите абсциссу точки касания.

2.2. Прямая параллельна касательной к графику функции . Найдите абсциссу точки касания.

2.3 Прямая параллельна касательной к графику функции . Найдите абсциссу точки касания.

2.4 Прямая параллельна касательной к графику функции . Найдите абсциссу точки касания.

2.5. Прямая является касательной к графику функции

 . Найдите абсциссу точки касания.

2.6 Прямая является касательной к графику функции . Найдите абсциссу точки касания.

2.7. Прямая является касательной к графику функции

. Найдите абсциссу точки касания.

2.8 Прямая является касательной к графику функции . Найдите абсциссу точки касания.

3. 1. На рисунке изображен график производной функции , определенной на интервале . Найдите количество точек, в которых касательная к графику функции параллельна прямой  или совпадает с ней.

3.2. На рисунке изображен график производной функции , определенной на интервале . В какой точке отрезка   принимает наименьшее значение.

4.1. На рисунке изображен график производной функции , определенной на интервале . В какой точке отрезка   принимает наименьшее значение.

4.2. На рисунке изображен график производной функции , определенной на интервале . Найдите промежутки возрастания функции . В ответе укажите сумму целых точек, входящих в эти промежутки.

7.1. На рисунке изображен график функции , определенной на интервале . Определите количество целых точек, в которых производная функции положительна.

7.2. На рисунке изображен график функции , определенной на интервале . Определите количество целых точек, в которых производная функции отрицательна.

7.3. На рисунке изображен график функции , определенной на интервале . Определите количество целых точек, в которых производная функции отрицательна.

7.4. На рисунке изображен график функции , определенной на интервале . Найдите количество точек, в которых касательная к графику функции параллельна прямой .

7.5. На рисунке изображен график производной функции , определенной на интервале . Найдите точку экстремума функции на отрезке .

7.6. На рисунке изображен график производной функции , определенной на интервале . Найдите промежутки убывания функции . В ответе укажите длину наибольшего из них.

7.7. На рисунке изображен график производной функции , определенной на интервале . Найдите точку экстремума функции на отрезке .

7.8. На рисунке изображен график производной функции , определенной на интервале . Найдите точку экстремума функции на отрезке .

7.9. На рисунке изображен график производной функции , определенной на интервале . Найдите точку экстремума функции на отрезке .

7.10. На рисунке изображен график производной функции , определенной на интервале . Найдите промежутки возрастания функции . В ответе укажите сумму целых точек, входящих в эти промежутки.

7.11. На рисунке изображен график производной функции , определенной на интервале . Найдите промежутки возрастания функции . В ответе укажите сумму целых точек, входящих в эти промежутки.

7.12.На рисунке изображен график производной функции , определенной на интервале . Найдите промежутки убывания функции . В ответе укажите сумму целых точек, входящих в эти промежутки.

7.13. На рисунке изображен график производной функции , определенной на интервале . Найдите промежутки возрастания функции . В ответе укажите длину наибольшего из них.

7.15. На рисунке изображен график производной функции , определенной на интервале . В какой точке отрезка принимает наибольшее значение.

7.16. На рисунке изображен график производной функции , определенной на интервале . В какой точке отрезка принимает наибольшее значение.

Ответы

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

2.1

2.2

0,25

-0,75

0,25

0,25

-0,25

1

-0,5

0,25

4,5

-0,5

2.3

2.4

2.5

2.6

2.7

2.8

3.1

3.2

4.1

4.2

4,5

5,5

1

1

-1

-5

2

-2

-4

12

5.1

5.2

5.3

6.1

6.2

6.3

7.1

7.2

7.3

7.4

-1

5

4

-10

3

4

5

3

3

-1

7.5

7.6

7.7

7.8

7.9

7.10

7.11

7.12

7.13

7.14

-1

7

4

-2

-4

18

6

-3

2

7

7.15

7.16

-3

6

Необходимая теория:

Производная функции

Таблица производных

Первообразная функции

Задание 7 Профильного ЕГЭ по математике — это задачи на геометрический и физический смысл производной. Это задачи о том, как производная связана с поведением функции. И еще (правда, очень редко) в этих задачах встречаются вопросы о первообразной.

Геометрический смысл производной 

Вспомним, что производная — это скорость изменения функции.

Производная функции fleft ( x right ) в точке x_0 равна угловому коэффициенту касательной, проведенной к графику функции в этой точке. Производная также равна тангенсу угла наклона касательной.

boldsymbol{f

1. На рисунке изображён график функции y = f(x) и касательная к нему в точке с абсциссой x_0 . Найдите значение производной функции f(x) в точке x_0 .

Производная функции f(x) в точке x_0 равна тангенсу угла наклона касательной, проведенной в точке x_0.

Достроив до прямоугольного треугольника АВС, получим:

f

Ответ: 0,25.

2. На рисунке изображён график функции y = f(x) и касательная к нему в точке с абсциссой x_0.
Найдите значение производной функции y = f(x) в точке x_0.

Начнём с определения знака производной. Мы видим, что в точке x_0 функция убывает, следовательно, её производная отрицательна. Касательная в точке x_0 образует тупой угол alpha с положительным направлением оси X. Поэтому из прямоугольного треугольника мы найдём тангенс угла varphi , смежного с углом alpha.

Мы помним, что тангенс угла в прямоугольном треугольнике равен отношению противолежащего катета к прилежащему: tg varphi = 0, 25. Поскольку alpha + varphi = 180^{circ}, имеем:

tg alpha = tg(180^{circ} -varphi ) = - tg varphi = -0, 25.

Ответ: −0, 25.

Касательная к графику функции

3. Прямая y = - 4x - 11 является касательной к графику функции y = x^3 + 7x^2 + 7x - 6.

Найдите абсциссу точки касания.

Запишем условие касания функции y=fleft(xright) и прямой y=kx+b в точке x_0 .

При x= x_0 значения выражений fleft(xright) и kx+b равны.

При этом производная функции fleft(xright) равна угловому коэффициенту касательной, то есть k.

left{ begin{array}{c}fleft(xright)=kx+b \f^{

left{ begin{array}{c}x^3+{7x}^2+7x-6=-4x-11 \{3x}^2+14x+7=-4 end{array}right..

Из второго уравнения находим x = -1 или x=-frac{11}{3}. Первому уравнению удовлетворяет только x = -1.

Физический смысл производной

Мы помним, что производная — это скорость изменения функции.

Мгновенная скорость — это производная от координаты по времени. Но это не единственное применение производной в физике. Например, cила тока — это производная заряда по времени, то есть скорость изменения заряда. Угловая скорость — производная от угла поворота по времени.

Множество процессов в природе, экономике и технике описывается дифференциальными уравнениями — то есть уравнениями, содержащими не только сами функции, но и их производные.

4. Материальная точка движется прямолинейно по закону x(t) = t^2 - 3t - 29, где x — расстояние от точки отсчета в метрах, t — время в секундах, измеренное с начала движения. Найдите ее скорость (в м/с) в момент времени t = 3 с.

Мгновенная скорость движущегося тела является производной от его координаты по времени. Это физический смысл производной. В условии дан закон изменения координаты материальной точки, то есть расстояния от точки отсчета: xleft(tright)=t^2-3t-29.

Найдем скорость материальной точки как производную от координаты по времени:

vleft(tright)=x В момент времени t=3 получим:

vleft(3right)=2cdot 3-3=3.

Ответ: 3.

Применение производной к исследованию функций

Каждый год в вариантах ЕГЭ встречаются задачи, в которых старшеклассники делают одни и те же ошибки.

Например, на рисунке изображен график функции — а спрашивают о производной. Кто их перепутал, тот задачу не решил.

Или наоборот. Нарисован график производной — а спрашивают о поведении функции.

И значит, надо просто внимательно читать условие. И знать, как же связана производная с поведением функции.

Если f, то функция f (x) возрастает.

Если f, то функция f (x) убывает.

В точке максимума производная равна нулю и меняет знак с «плюса» на «минус».

В точке минимума производная тоже равна нулю и меняет знак с «минуса» на «плюс».

f(x) возрастает точка максимума убывает точка минимума возрастает
f + 0 - 0 +

5. На рисунке изображен график функции y=f(x), определенной на интервале (-3; 9). Найдите количество точек, в которых производная функции f(x) равна 0.

Производная функции f { в точках максимума и минимума функции f(x). Таких точек на графике 5.

Ответ: 5.

6. На рисунке изображён график y = f — производной функции f(x), определённой на интервале (-6; 5). В какой точке отрезка [-1; 3] функция f(x) принимает наибольшее значение?

Не спешим. Зададим себе два вопроса: что изображено на рисунке и о чем спрашивается в этой задаче?

Изображен график производной, а спрашивают о поведении функции. График функции не нарисован. Но мы знаем, как производная связана с поведением функции.

На отрезке [-1;3] производная функции f(x) положительна.

Значит, функция f(x) возрастает на этом отрезке. Большим значениям х соответствует большее значение f(x). Наибольшее значение функции достигается в правом конце отрезка, то есть в точке 3.

Ответ: 3.

7. На рисунке изображён график функции y= f(x), определённой на интервале (-3; 8). Найдите количество точек, в которых касательная к графику функции параллельна прямой y = 1.

Прямая y=1 параллельна оси абсцисс. Найдем на графике функции y = f(x) точки, в которых касательная параллельна оси абсцисс, то есть горизонтальна. Таких точек на графике 7. Это точки максимума и минимума.

Ответ: 7.

8. На рисунке изображен график производной функции f(x), определенной на интервале (-7; 14). Найдите количество точек максимума функции f(x) на отрезке [-6; 9].

Очень внимательно читаем условие задачи. Изображен график производной, а спрашивают о точках максимума функции. В точке максимума производная равна нулю и меняет знак с «плюса» на «минус». На отрезке [-6; 9] такая точка всего одна! Это x=7.

Ответ: 1.

9. На рисунке изображен график производной функции f(x), определенной на интервале (-6; 5). Найдите точку экстремума функции f(x) на отрезке [-5; 4].

Точками экстремума называют точки максимума и минимума функции. Если производная функции в некоторой точке равна нулю и при переходе через эту точку меняет знак, то это точка экстремума. На отрезке [- 5; 4] график производной (а именно он изображен на рисунке) пересекает ось абсцисс в точке x = -2. В этой точке производная меняет знак с минуса на плюс.

Значит, x= -2 является точкой экстремума.

Первообразная и формула Ньютона-Лейбница

Функция F(x), для которой f(x) является производной, называется первообразной функции y = f(x). Функции вида y = F(x) + C образуют множество первообразных функции y = f(x).

10. На рисунке изображён график y = F(x) — одной из первообразных некоторой функции f(x), определённой на интервале (-6; 6). Пользуясь рисунком, определите количество решений уравнения f(x)=0 на отрезке [-4; 4] .

Функция F(x), для которой f(x) является производной, называется первообразной функции y = f(x).

Это значит, что на графике нужно найти такие точки, принадлежащие отрезку [-4; 4] , в которых производная функции F(x) равна нулю. Это точки максимума и минимума функции F(x). На отрезке [-4; 4] таких точек 4.

Ответ: 4.

Больше задач на тему «Первообразная. Площадь под графиком функции» — в этой статье

Первообразная функции. Формула Ньютона-Лейбница.

Благодарим за то, что пользуйтесь нашими статьями.
Информация на странице «Задание №7. Производная. Поведение функции. Первообразная u0026#8212; профильный ЕГЭ по Математике» подготовлена нашими авторами специально, чтобы помочь вам в освоении предмета и подготовке к экзаменам.
Чтобы успешно сдать нужные и поступить в высшее учебное заведение или техникум нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими статьями из данного раздела.

Публикация обновлена:
09.03.2023

Like this post? Please share to your friends:
  • Герой нашего времени в таблицах егэ
  • Выходной перед экзаменом
  • Вятгу вопросы к экзамену
  • Герой нашего времени в оценке критиков сочинение
  • Высшая школа экономики примеры вступительных экзаменов