Взаимосвязь неорганических веществ таблица егэ

Инфоурок


Химия

Другие методич. материалыМатериал для подготовки в ОГЭ, ЕГЭ по химии. Таблица «Взаимодействие неорганических веществ»

Материал для подготовки в ОГЭ, ЕГЭ по химии. Таблица «Взаимодействие неорганических веществ»



Скачать материал



Скачать материал

  • Сейчас обучается 338 человек из 68 регионов

  • Сейчас обучается 30 человек из 23 регионов

Найдите материал к любому уроку, указав свой предмет (категорию), класс, учебник и тему:

6 153 318 материалов в базе

  • Выберите категорию:

  • Выберите учебник и тему

  • Выберите класс:

  • Тип материала:

    • Все материалы

    • Статьи

    • Научные работы

    • Видеоуроки

    • Презентации

    • Конспекты

    • Тесты

    • Рабочие программы

    • Другие методич. материалы

Найти материалы

Другие материалы

  • 10.12.2022
  • 290
  • 0

«Химия (базовый уровень)», Рудзитис Г.Е.,Фельдман Ф.Г.

«Химия», Габриелян О.С.

«Химия (базовый уровень)», Рудзитис Г.Е.,Фельдман Ф.Г.

«Химия (базовый уровень)», Рудзитис Г.Е.,Фельдман Ф.Г.

«Химия. Профильный уровень», Габриелян О.С., Лысова Г.Г.

  • 10.12.2022
  • 36
  • 3

«Химия», Габриелян О.С.

  • 10.12.2022
  • 49
  • 1

«Химия», Габриелян О.С.

Вам будут интересны эти курсы:

  • Курс повышения квалификации «Химия окружающей среды»

  • Курс профессиональной переподготовки «Химия: теория и методика преподавания в образовательной организации»

  • Курс повышения квалификации «Основы управления проектами в условиях реализации ФГОС»

  • Курс повышения квалификации «Нанотехнологии и наноматериалы в биологии. Нанобиотехнологическая продукция»

  • Курс повышения квалификации «Управление финансами: как уйти от банкротства»

  • Курс профессиональной переподготовки «Логистика: теория и методика преподавания в образовательной организации»

  • Курс повышения квалификации «Особенности подготовки к сдаче ОГЭ по химии в условиях реализации ФГОС ООО»

  • Курс профессиональной переподготовки «Биология и химия: теория и методика преподавания в образовательной организации»

  • Курс повышения квалификации «Современные образовательные технологии в преподавании химии с учетом ФГОС»

  • Курс профессиональной переподготовки «Метрология, стандартизация и сертификация»

  • Курс профессиональной переподготовки «Техническая диагностика и контроль технического состояния автотранспортных средств»

  • Курс профессиональной переподготовки «Техническое сопровождение технологических процессов переработки нефти и газа»

  • Курс профессиональной переподготовки «Организация и управление службой рекламы и PR»

  • Курс профессиональной переподготовки «Организация системы учета и мониторинга обращения с отходами производства и потребления»

  • Настоящий материал опубликован пользователем Филиппова Мария Александровна. Инфоурок является
    информационным посредником и предоставляет пользователям возможность размещать на сайте
    методические материалы. Всю ответственность за опубликованные материалы, содержащиеся в них
    сведения, а также за соблюдение авторских прав несут пользователи, загрузившие материал на сайт

    Если Вы считаете, что материал нарушает авторские права либо по каким-то другим причинам должен быть удален с
    сайта, Вы можете оставить жалобу на материал.

    Удалить материал

  • Филиппова Мария Александровна

    • На сайте: 6 лет и 11 месяцев
    • Подписчики: 4
    • Всего просмотров: 5439
    • Всего материалов:

      10

Материальный мир, в котором мы живем и крохотной частичкой которого мы являемся, един и в то же время бесконечно разнообразен. Единство и многообразие химических веществ этого мира наиболее ярко проявляется в генетической связи веществ, которая отражается в так называемых генетических рядах. Выделим наиболее характерные признаки таких рядов:

1. Все вещества этого ряда должны быть образованы одним химическим элементом. Например, ряд, записанный с помощью следующих формул:

$Br_2 → HBr → NaBr → NaNO_3$,

нельзя считать генетическим, т.к. в последнем звене элемент бром отсутствует, хотя реакция для перехода от $NaBr$ к $NaNO_3$ легко осуществима:

$NaBr + AgNO_3 = AgBr↓+ NaNO_3$.

Этот ряд мог бы считаться генетическим рядом элемента брома, если бы его завершили, например, так:

$Br_2 → HBr → NaBr → AgBr$.

2. Вещества, образованные одним и тем же элементом, должны принадлежать к различным классам, т.е. отражать разные формы его существования.

3. Вещества, образующие генетический ряд одного элемента, должны быть связаны взаимопревращениями. По этому признаку можно различать полные и неполные генетические ряды.

Например, приведенный выше генетический ряд брома будет неполным, незавершенным. А вот следующий ряд:

$Br_2 → HBr → NaBr → AgBr → Br_2$

уже можно рассматривать как полный: он начинался простым веществом — бромом и им же закончился. Обобщая сказанное выше, можно дать следующее определение генетического ряда.

Генетическим называется ряд веществ — представителей разных классов, являющихся соединениями одного химического элемента, связанных взаимопревращениями и отражающих общность происхождения этих веществ или их генезис.

Генетическая связь — понятие более общее, чем генетический ряд, который является пусть и ярким, но частным проявлением этой связи, реализующейся при любых взаимных превращениях веществ. Тогда, очевидно, под это определение подходит и первый приведенный в тексте ряд веществ.

Для характеристики генетической связи неорганических веществ мы рассмотрим три разновидности генетических рядов.

Генетический ряд металла.

Наиболее богат ряд металла, у которого проявляются разные степени окисления. В качестве примера рассмотрим генетический ряд железа со степенями окисления $+2$ и $+3$:

${Fe}↙{text»металл»}→{FeCl_2}↙{text»соль — хлорид железа(II)»}$ $→{Fe(OH)_2}↙{text»основание — гидроксид железа(II)»}$ $→{FeO}↙{text»основный оксид — оксид железа(II)»}$ $→{Fe}↙{text»металл»}$ $→{FeCl_3}↙{text»соль — хлорид железа(III)»}$ $→{Fe(OH)_3}↙{text»гидроксид железа (III) — амфотерное соединение с преобладанием основных свойств»}$ $→{Fe_2O_3}↙{text»оксид железа(III), аналогичен по свойствам соответствующему гидроксиду»}$ $→{Fe}↙{text»металл»}$

Напомним, что для окисления железа в хлорид железа (II) нужно взять более слабый окислитель, чем для получения хлорида железа (III):

Генетический ряд неметалла.

Аналогично ряду металла более богат связями ряд неметалла с разными степенями окисления, например, генетический ряд серы со степенями окисления $+4$ и $+6$:

${S}↙{text»неметалл»} → {SO_2}↙{text»кислотный оксид — оксид серы (IV)»}$ $ → {H_SO_3}↙{text»сернистая кислота»}$ $ → {Na_SO_3}↙{text»соль — сульфит натрия»}$ $ → {SO_2}↙{text»кислотный оксид — оксид серы (IV)»}$ $ → {SO_3}↙{text»кислотный оксид — оксид серы (VI)»} $ $ → {H_SO_4}↙{text»серная кислота»}$ $ → {SO_2}↙{text»кислотный оксид — оксид серы (IV)»} $ $→ {S}↙{text»неметалл»}$

Затруднение может вызвать лишь последний переход. Руководствуйтесь правилом: чтобы получить простое вещество из окисленного соединения элемента, нужно взять для этой цели самое восстановленное его соединение, например, летучее водородное соединение неметалла. В нашем случае:

${SO_2}↖{+4}+2H_2{S}↖{-2}=2H_2O+S↖{0}↓.$

По этой реакции в природе из вулканических газов образуется сера.

Аналогично для хлора:

$K{Cl}↖{+5}O_3+6H{Cl}↖{-1}=K{Cl}↖{-1}+3{Cl_2}↖{0}↑+H_2O.$

Генетический ряд металла, которому соответствуют амфотерные оксид и гидроксид, очень богат связями, т.к. они проявляют в зависимости от условий то кислотные, то основные свойства.

Например, рассмотрим генетический ряд цинка:

В уроке 42 «Взаимосвязь между классами неорганических веществ» из курса «Химия для чайников» мы подведём итоги проделанной работы, повторим пройденное и выясним, как связаны классы неорганических веществ.

Вы уже знаете, что многие простые вещества — металлы и неметаллы — соединяются с кислородом, образуя основные и кислотные оксиды. Например, металл кальций при этом окисляется до основного оксида CaO, а неметалл фосфор — до кислотного оксида P2O5. Вам также известно, что основные и кислотные оксиды, присоединяя воду, превращаются в гидраты оксидов, или гидроксиды, которые делятся на основания и кислородсодержащие кислоты. Так, вышеуказанный оксид кальция в результате гидратации образует гидроксид — основание Ca(OH)2, а оксид фосфора(V) превращается в гидроксид, являющийся кислотой H3PO4. Гидроксиды же, реагируя с другими веществами, образуют соли. Последовательность всех перечисленных превращений можно изобразить в виде общей схемы, в которой переходы от веществ одних классов к веществам других классов условно изображены стрелками:

Из этой схемы видно, что простые вещества, оксиды, гидроксиды и соли последовательно, «порождая» друг друга, образуют ряд взаимосвязанных между собой веществ.

Известны два типа таких рядов — ряды металлов и их соединений и ряды неметаллов и их соединений.

Ряды металлов и их соединений

Каждый такой ряд состоит из металла, его основного оксида, основания и любой соли этого же металла:

Для перехода от металлов к основным оксидам во всех этих рядах используются реакции соединения с кислородом, например:

Переход от основных оксидов к основаниям в первых двух рядах осуществляется путем известной вам реакции гидратации, например:

Что касается последних двух рядов, то содержащиеся в них оксиды MgO и FeO с водой не реагируют. В таких случаях для получения оснований эти оксиды сначала превращают в соли, а уже их — в основания. Поэтому, например, для осуществления перехода от оксида MgO к гидроксиду Mg(OH)2 используют последовательные реакции:

Переходы от оснований к солям осуществляются уже известными вам реакциями. Так, растворимые основания (щелочи), находящиеся в первых двух рядах, превращаются в соли под действием кислот, кислотных оксидов или солей.

Нерастворимые основания из последних двух рядов образуют соли под действием кислот.

Ряды неметаллов и их соединений

Каждый такой ряд состоит из неметалла, кислотного оксида, соответствующей кислоты и соли, содержащей остаток этой кислоты:

Для перехода от неметаллов к кислотным оксидам во всех этих рядах используются реакции соединения с кислородом, например:

Переход от кислотных оксидов к кислотам в первых трех рядах осуществляется путем известной вам реакции гидратации, например:

Однако вы знаете, что содержащийся в последнем ряду оксид SiO2 с водой не реагирует. В этом случае его сначала превращают в соответствующую соль, из которой затем получают нужную кислоту:

Переходы от кислот к солям могут осуществляться известными вам реакциями с основными оксидами, основаниями или солями.

Запомните:

  1. Вещества одного и того же ряда друг с другом не реагируют.
  2. Если одно вещество принадлежит к ряду металлов и их соединений, а другое — к ряду неметаллов и их соединений, то эти вещества реагируют друг с другом с образованием солей (рис. 126).

Эта схема отображает взаимосвязь между различными классами неорганических соединений и объясняет многообразие химических реакций между ними. Они постоянно происходят в природе и широко используются в практической деятельности людей.

Краткие выводы урока:

  1. Простые вещества, оксиды, гидроксиды и соли взаимосвязаны между собой.
  2. 1) металл → основный оксид → основание → соль; 2) неметалл → кислотный оксид → кислота → соль.
  3. Вещества, принадлежащие к одному ряду, друг с другом не реагируют.
  4. Вещества, принадлежащие к рядам разных типов, реагируют между собой с образованием солей.

Надеюсь урок 42 «Взаимосвязь между классами неорганических веществ» был понятным и познавательным. Если у вас возникли вопросы, пишите их в комментарии.

Урок 42. Взаимосвязь между классами неорганических веществ

В уроке 42 «Взаимосвязь между классами неорганических веществ» из курса «Химия для чайников» мы подведём итоги проделанной работы, повторим пройденное и выясним, как связаны классы неорганических веществ.

Вы уже знаете, что многие простые вещества — металлы и неметаллы — соединяются с кислородом, образуя основные и кислотные оксиды. Например, металл кальций при этом окисляется до основного оксида CaO, а неметалл фосфор — до кислотного оксида P2O5. Вам также известно, что основные и кислотные оксиды, присоединяя воду, превращаются в гидраты оксидов, или гидроксиды, которые делятся на основания и кислородсодержащие кислоты. Так, вышеуказанный оксид кальция в результате гидратации образует гидроксид — основание Ca(OH)2, а оксид фосфора(V) превращается в гидроксид, являющийся кислотой H3PO4. Гидроксиды же, реагируя с другими веществами, образуют соли. Последовательность всех перечисленных превращений можно изобразить в виде общей схемы, в которой переходы от веществ одних классов к веществам других классов условно изображены стрелками:

Из этой схемы видно, что простые вещества, оксиды, гидроксиды и соли последовательно, «порождая» друг друга, образуют ряд взаимосвязанных между собой веществ.

Известны два типа таких рядов — ряды металлов и их соединений и ряды неметаллов и их соединений.

Ряды металлов и их соединений

Каждый такой ряд состоит из металла, его основного оксида, основания и любой соли этого же металла:

Для перехода от металлов к основным оксидам во всех этих рядах используются реакции соединения с кислородом, например:

Переход от основных оксидов к основаниям в первых двух рядах осуществляется путем известной вам реакции гидратации, например:

Что касается последних двух рядов, то содержащиеся в них оксиды MgO и FeO с водой не реагируют. В таких случаях для получения оснований эти оксиды сначала превращают в соли, а уже их — в основания. Поэтому, например, для осуществления перехода от оксида MgO к гидроксиду Mg(OH)2 используют последовательные реакции:

Переходы от оснований к солям осуществляются уже известными вам реакциями. Так, растворимые основания (щелочи), находящиеся в первых двух рядах, превращаются в соли под действием кислот, кислотных оксидов или солей.

Нерастворимые основания из последних двух рядов образуют соли под действием кислот.

Ряды неметаллов и их соединений

Каждый такой ряд состоит из неметалла, кислотного оксида, соответствующей кислоты и соли, содержащей остаток этой кислоты:

Для перехода от неметаллов к кислотным оксидам во всех этих рядах используются реакции соединения с кислородом, например:

Переход от кислотных оксидов к кислотам в первых трех рядах осуществляется путем известной вам реакции гидратации, например:

Однако вы знаете, что содержащийся в последнем ряду оксид SiO2 с водой не реагирует. В этом случае его сначала превращают в соответствующую соль, из которой затем получают нужную кислоту:

Переходы от кислот к солям могут осуществляться известными вам реакциями с основными оксидами, основаниями или солями.

  1. Вещества одного и того же ряда друг с другом не реагируют.
  2. Если одно вещество принадлежит к ряду металлов и их соединений, а другое — к ряду неметаллов и их соединений, то эти вещества реагируют друг с другом с образованием солей (рис. 126).

Эта схема отображает взаимосвязь между различными классами неорганических соединений и объясняет многообразие химических реакций между ними. Они постоянно происходят в природе и широко используются в практической деятельности людей.

Краткие выводы урока:

  1. Простые вещества, оксиды, гидроксиды и соли взаимосвязаны между собой.
  2. 1) металл → основный оксид → основание → соль; 2) неметалл → кислотный оксид → кислота → соль.
  3. Вещества, принадлежащие к одному ряду, друг с другом не реагируют.
  4. Вещества, принадлежащие к рядам разных типов, реагируют между собой с образованием солей.

Надеюсь урок 42 «Взаимосвязь между классами неорганических веществ» был понятным и познавательным. Если у вас возникли вопросы, пишите их в комментарии.

Урок №51. Генетическая связь между основными клас­сами неорганических соединений

Генетические связи — это связи между разными классами, основанные на их взаимопревращениях.

Зная классы неорганических веществ, можно составить генетические ряды металлов и неметаллов. В основу этих рядов положен один и тот же элемент.

Среди металлов можно выделить две разновидности рядов:

1 . Генетический ряд, в котором в качестве основания выступает щёлочь. Этот ряд можно представить с помощью следующих превращений:

металл→основный оксид→щёлочь→соль

Например, K→K 2 O→KOH→KCl

2 . Генетический ряд, где в качестве основания выступает нерастворимое основание, тогда ряд можно представить цепочкой превращений:

металл→основный оксид→соль→нерастворимое основание→основный оксид→металл

Например, Cu→CuO→CuCl 2 →Cu(OH) 2 →CuO→Cu

Среди неметаллов также можно выделить две разновидности рядов:

1 . Генетический ряд неметаллов, где в качестве звена ряда выступает растворимая кислота. Цепочку превращений можно представить в следующем виде:

неметалл→кислотный оксид→растворимая кислота→соль

Например, P→P 2 O 5 →H 3 PO 4 →Na 3 PO 4

2 . Генетический ряд неметаллов, где в качестве звена ряда выступает нерастворимая кислота:

неметалл→кислотный оксид→соль→кислота→кислотный оксид→неметалл

Например, Si→SiO 2 →Na 2 SiO 3 →H 2 SiO 3 →SiO 2 →Si

Взаимосвязь неорганических веществ

Теория к заданию 10 из ЕГЭ по химии

Взаимосвязь различных классов неорганических веществ

Материальный мир, в котором мы живем и крохотной частичкой которого мы являемся, един и в то же время бесконечно разнообразен. Единство и многообразие химических веществ этого мира наиболее ярко проявляется в генетической связи веществ, которая отражается в так называемых генетических рядах. Выделим наиболее характерные признаки таких рядов:

1. Все вещества этого ряда должны быть образованы одним химическим элементом. Например, ряд, записанный с помощью следующих формул:

$Br_2 → HBr → NaBr → NaNO_3$,

нельзя считать генетическим, т.к. в последнем звене элемент бром отсутствует, хотя реакция для перехода от $NaBr$ к $NaNO_3$ легко осуществима:

$NaBr + AgNO_3 = AgBr↓+ NaNO_3$.

Этот ряд мог бы считаться генетическим рядом элемента брома, если бы его завершили, например, так:

$Br_2 → HBr → NaBr → AgBr$.

2. Вещества, образованные одним и тем же элементом, должны принадлежать к различным классам, т.е. отражать разные формы его существования.

3. Вещества, образующие генетический ряд одного элемента, должны быть связаны взаимопревращениями. По этому признаку можно различать полные и неполные генетические ряды.

Например, приведенный выше генетический ряд брома будет неполным, незавершенным. А вот следующий ряд:

$Br_2 → HBr → NaBr → AgBr → Br_2$

уже можно рассматривать как полный: он начинался простым веществом — бромом и им же закончился. Обобщая сказанное выше, можно дать следующее определение генетического ряда.

Генетическим называется ряд веществ — представителей разных классов, являющихся соединениями одного химического элемента, связанных взаимопревращениями и отражающих общность происхождения этих веществ или их генезис.

Генетическая связь — понятие более общее, чем генетический ряд, который является пусть и ярким, но частным проявлением этой связи, реализующейся при любых взаимных превращениях веществ. Тогда, очевидно, под это определение подходит и первый приведенный в тексте ряд веществ.

Для характеристики генетической связи неорганических веществ мы рассмотрим три разновидности генетических рядов.

Генетический ряд металла.

Наиболее богат ряд металла, у которого проявляются разные степени окисления. В качестве примера рассмотрим генетический ряд железа со степенями окисления $+2$ и $+3$:

Напомним, что для окисления железа в хлорид железа (II) нужно взять более слабый окислитель, чем для получения хлорида железа (III):

Генетический ряд неметалла.

Аналогично ряду металла более богат связями ряд неметалла с разными степенями окисления, например, генетический ряд серы со степенями окисления $+4$ и $+6$:

Затруднение может вызвать лишь последний переход. Руководствуйтесь правилом: чтобы получить простое вещество из окисленного соединения элемента, нужно взять для этой цели самое восстановленное его соединение, например, летучее водородное соединение неметалла. В нашем случае:

По этой реакции в природе из вулканических газов образуется сера.

Аналогично для хлора:

Генетический ряд металла, которому соответствуют амфотерные оксид и гидроксид, очень богат связями, т.к. они проявляют в зависимости от условий то кислотные, то основные свойства.

Например, рассмотрим генетический ряд цинка:

источники:

http://www.sites.google.com/site/himulacom/%D0%B7%D0%B2%D0%BE%D0%BD%D0%BE%D0%BA-%D0%BD%D0%B0-%D1%83%D1%80%D0%BE%D0%BA/8-%D0%BA%D0%BB%D0%B0%D1%81%D1%81-%D0%BF%D0%B5%D1%80%D0%B2%D1%8B%D0%B9-%D0%B3%D0%BE%D0%B4-%D0%BE%D0%B1%D1%83%D1%87%D0%B5%D0%BD%D0%B8%D1%8F/%D1%83%D1%80%D0%BE%D0%BA-51-%D0%B3%D0%B5%D0%BD%D0%B5%D1%82%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%B0%D1%8F-%D1%81%D0%B2%D1%8F%D0%B7%D1%8C-%D0%BC%D0%B5%D0%B6%D0%B4%D1%83-%D0%BE%D1%81%D0%BD%D0%BE%D0%B2%D0%BD%D1%8B%D0%BC%D0%B8-%D0%BA%D0%BB%D0%B0%D1%81%D1%81%D0%B0%D0%BC%D0%B8-%D0%BD%D0%B5%D0%BE%D1%80%D0%B3%D0%B0%D0%BD%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%B8%D1%85-%D1%81%D0%BE%D0%B5%D0%B4%D0%B8%D0%BD%D0%B5%D0%BD%D0%B8%D0%B9

http://examer.ru/ege_po_himii/teoriya/vzaimosvyaz_neorganicheskix_veshhestv

Оксиды

Основные (Ме)

CuO

Кислотные (Неме)

CO2

Амфотерные

ZnO/BeO

AL2O3/Fe2O3/Cr2O3 

Несолеобразующие

CO/NO/N2O

Химические свойства

Основные

Кислотные

С водой

Первые пять в ряду напряжений металлов

Все, кроме SiO2 (песок)

Получаем щелочь

Na2O+H2O=NaOH

Получаем кислоту

CO2+H2O=H2CO3

С кислотными оксидами

С основными оксидами

Получаем соль

Na2O+CO2=Na2CO3

С кислотами

С щелочами

Получаем соль

Na2O+2HCL=2NaCL+H2O

NaOH+CO2=Na2CO3+ H2O

Оксиды не вступают в реакции обмена, на ионы не диссоциируют!

Основания

Растворимые

Нерастворимые

Щелочи

Химические свойства

  1. С неметаллами

NaOH+CL2= NaCL+NaCLO3+H2O

Три продукта

  1. С оксидами неметаллов

NaOH+CO2=Na2CO3+ H2O

Соль +вода

  1. С кислотами

NaOH+HCL=NaCL+H2O

Соль +вода

  1. С солями

2NaOH+CuCL2=2NaCL+Cu(OH)2

Соль+ гидроксид

  1. Разложение (только нерастворимые!!)

Cu(OH)2=CuO+H2O

Оксид +вода

Одноосновные

Двухосновные

Трехосновные

HCL

H2SO4

H3PO4

HNO3

H2SO3

HNO2

H2S

HI

H2CO3

HBr

H2SiO3

HF

Кислоты

Бескислородные

Кислородсодержащие

HF

H2SiO3

HBr

H2CO3

HCL

H2SO3

HI

H2SO4

H2S

H3PO4

HNO3

HNO2

Сильные

Слабые

H2SO4

HF

HNO3

H2SiO3

HBr

H2CO3=СО2+H2O

HCL

H2SO3=SO2+H2O

HI

H2S

H3PO4

HNO2

Химические свойства

С металлами

Стоящими до Н в ряду напряжений металлов

2НCL+Zn=ZnCL2+H2

HCL+Cu= нельзя!

Металл растворяется, образуется соль и водород (шипение)!

С оксидами металлов

Со всеми

2НCL+ZnO=ZnCL2+H2O

Оксид растворяется, газ не выделяется!

С гидроксидами металлов

Со всеми

2НCL+Zn(OH)2=ZnCL2+2H2O

Реакция нейтрализации

С солями

Более сильная кислота вытесняет менее сильную из ее соли

2HCL+CaCO3=CaCL2+H2O+CO2

CaCL2+H2CO3= нельзя!

Концентрированная серная кислота и азотная кислота любой концентрации образуют с металлами : соль, воду и третий продукт в зависимости от активности металла!!!

Соли

Средние (нормальные)

Кислые

Основные

Комплексные

Гидраты

Двойные

Na2CO3

NaHCO3

(CuOH)2CO3

Na[AL(OH)4]

CuSO4*5H2O

NaCL*KCL

Химические свойства

Большинство реакций солей проходят в растворах!!

С кислотами

2HCL+CaCO3=CaCL2+H2O+CO2

CaCL2+H2CO3= нельзя!

Более сильная кислота вытесняет менее сильную из ее соли!

С щелочами

2NaOH+CuCL2=2NaCL+Cu(OH)2

С нерастворимыми гидроксидами реакция не идет!

С металлами

Zn+CuSO4=ZnSO4+Cu

Cu+ZnSO4= нельзя!

Более активный металл вытесняет менее активный из раствора ее соли!

С неметаллами

ZnBr2+CL2=ZnCL2+Br2

Более активный галоген вытесняет менее активный

Разложение

Нитраты

Активных металлов= нитрит, кислород

Металлов средней активности (включая медь!)= оксид, NO2,кислород

Неактивных металлов= металл, NO2, кислород

Соли аммония

Разлагаются без твердого остатка

Карбонаты

Разлагаются с выделением СО2

Амфотерные соединения

Растворяются и в кислотах, и в щелочах!

Металл

Оксиды и гидроксиды металлов

В растворах (+Н2О)

Al+NaOH=Na[AL(OH)4]+H2

Zn+NaOH=Na2[Zn(OH)4]+H2

Водород выделяется

Al2O3+NaOH=Na[AL(OH)4]

Zn(OH)2+NaOH=Na2[Zn(OH)4]

Водород не выделяется

В расплавах (при температуре)

Образуются соли

Al+NaOH=NaALO2+H2

Zn+NaOH=Na2ZnO2+H2

Al2O3+NaOH=NaALO2+H2O

Zn(OH)2+NaOH=Na2ZnO2+H2O

Неорганическая химия — раздел химии, изучающий строение и химические свойства неорганических веществ.

Среди простых веществ выделяют металлы и неметаллы. Среди сложных: оксиды, основания, кислоты и соли.
Классификация неорганических веществ построена следующим образом:

Классификация неорганических веществ

Большинство химических свойств мы изучим по мере продвижения по периодической таблице Д.И. Менделеева. В
этой статье мне хотелось бы подчеркнуть ряд принципиальных деталей, которые помогут в дальнейшем при изучении
химии.

Оксиды

Все оксиды подразделяются на солеобразующие и несолеобразующие. Солеобразующие имеют соответствующие им основания и кислоты
(в той же степени окисления (СО)!) и охотно вступают в реакции солеобразования. К ним относятся, например:

  • CuO — соответствует основанию Cu(OH)2
  • Li2O — соответствует основанию LiOH
  • FeO — соответствует основанию Fe(OH)2 (сохраняем ту же СО = +2)
  • Fe2O3 — соответствует основанию Fe(OH)3 (сохраняем ту же СО = +3)
  • P2O5 — соответствует кислоты H3PO4

Солеобразующие оксиды, в свою очередь, делятся на основные, амфотерные и кислотные.

Основные, амфотерные и кислотные оксиды

  • Основные
  • Основным оксидам соответствуют основания в той же СО. В химических реакциях основные оксиды проявляют основные свойства, образуются
    исключительно металлами. Примеры: Li2O, Na2O, K2O, Rb2O CaO, FeO, CrO, MnO.

    Основные оксиды взаимодействуют с водой с образованием соответствующего основания (реакцию идет, если основание растворимо) и с кислотными
    оксидами и кислотами с образованием солей. Между собой основные оксиды не взаимодействуют.

    Li2O + H2O → LiOH (основный оксид + вода → основание)

    Li2O + P2O5 → Li3PO4 (осн. оксид + кисл. оксид = соль)

    Li2O + H3PO4 → Li3PO4 + H2O (осн. оксид + кислота = соль + вода)

    Здесь не происходит окисления/восстановления, поэтому сохраняйте исходные степени окисления атомов.

  • Амфотерные (греч. ἀμφότεροι — двойственный)
  • Эти оксиды действительно имеют двойственный характер: они проявляют как кислотные, так и основные свойства. Примеры: BeO, ZnO, Al2O3,
    Fe2O3, Cr2O3, MnO2, PbO, PbO2, Ga2O3.

    С водой они не взаимодействуют, так как продукт реакции, основание, получается нерастворимым. Амфотерные оксиды реагируют как с кислотами и
    кислотными оксидами, так и с основаниями и основными оксидами.

    Fe2O3 + K2O → (t) KFeO2 (амф. оксид + осн. оксид = соль)

    ZnO + KOH + H2O → K2[Zn(OH)4] (амф. оксид + основание = комплексная соль)

    ZnO + N2O5 → Zn(NO3)2 (амф. оксид + кисл. оксид = соль; СО азота сохраняется в ходе реакции)

    Fe2O3 + HCl → FeCl3 + H2O (амф. оксид + кислота = соль + вода; обратите внимание на то, что
    СО Fe = +3 не меняется в ходе реакции)

    Амфотерные оксиды

  • Кислотные
  • Проявляют в ходе химических реакций кислотные свойства. Образованы металлами и неметаллами, чаще всего в высокой СО. Примеры: SO2,
    SO3, P2O5, N2O3, NO2, N2O5, SiO2,
    MnO3, Mn2O7.

    Каждому кислотному оксиду соответствует своя кислота. Это особенно важно помнить при написании продуктов реакции: следует сохранять
    степени окисления. Некоторым кислотным оксидам соответствует сразу две кислоты.

    • SO2 — H2SO3
    • SO3 — H2SO4
    • P2O5 — H3PO4
    • N2O5 — HNO3
    • NO2 — HNO2, HNO3

    Кислотные оксиды вступают в реакцию с основными и амфотерными, реагируют с основаниями. Реакции между кислотными оксидами не характерны.

    SO2 + Na2O → Na2SO3 (кисл. оксид + осн. оксид = соль; сохраняем СО S = +4)

    SO3 + Li2O → Li2SO4 (кисл. оксид + осн. оксид = соль; сохраняем СО S = +6)

    P2O5 + NaOH → Na3PO4 + H2O (кисл. оксид + основание = соль + вода)

    При реакции с водой кислотный оксид превращается в соответствующую ему кислоту. Исключение SiO2 — не реагирует с водой,
    так как продукт реакции — H2SiO3 является нерастворимой кислотой.

    Mn2O7 + H2O → HMnO4 (сохраняем СО марганца +7)

    SO3 + H2O → H2SO4 (сохраняем СО серы +6)

    SO2 + H2O → H2SO3 (сохраняем СО серы +4)

    Основные и кислотные оксиды

Несолеобразующие оксиды — оксиды неметаллов, которые не имеют соответствующих им гидроксидов и не вступают в реакции солеобразования.
К таким оксидам относят:

  • CO
  • N2O
  • NO
  • SiO
  • S2O

Реакции несолеобразующих оксидов с основаниями, кислотами и солеобразующими оксидов редки и не приводят к образованию солей.
Некоторые из несолеобразующих оксидов используют в качестве восстановителей:

FeO + CO → Fe + CO2 (восстановление железа из его оксида)

Оксид железа II

Основания

Основания — химические соединения, обычно характеризуются диссоциацией в водном растворе с образованием гидроксид-анионов.
Растворимые основания называются щелочами: NaOH, LiOH, Ca(OH)2, Ba(OH)2.

Гидроксиды щелочных металлов (Ia группа) называются едкими: едкий натр — NaOH, едкое кали — KOH.

Основания растворимые и нерастворимые

Основания классифицируются по количеству гидроксид-ионов в молекуле на одно-, двух- и трехкислотные.

Однокислотные, двухкислотные и трехкислотные основания

Так же, как и оксиды, основания различаются по свойствам. Все основания хорошо реагируют с кислотами, даже нерастворимые основания
способны растворяться в кислотах. Также нерастворимые основания при нагревании легко разлагаются на воду и соответствующий оксид.

NaOH + HCl → NaCl + H2O (основание + кислота = соль + вода — реакция нейтрализации)

Mg(OH)2 → (t) MgO + H2O (при нагревании нерастворимые основания легко разлагаются)

Если в ходе реакции основания с солью выделяется газ, выпадает осадок или образуется слабый электролит (вода), то такая реакция идет.
Нерастворимые основания с солями почти не реагируют.

Ba(OH)2 + NH4Cl → BaCl2 + NH3 + H2O (в ходе реакции образуется нестойкое основание NH4OH,
которое распадается на NH3 и H2O)

LiOH + MgCl2 → LiCl2 + Mg(OH)2

KOH + BaCl2 ↛ реакция не идет, так как в продуктах нет газа/осадка/слабого электролита (воды)

В растворах щелочей pH > 7, поэтому лакмус окрашивает их в синий цвет.

Лакмус в щелочной среде

Амфотерные оксиды соответствуют амфотерным гидроксидам. Их свойства такие же двойственные: они реагирую как с кислотами — с образованием соли
и воды, так и с основаниями — с образованием комплексных солей.

Al(OH)3 + HCl → AlCl3 + H2O (амф. гидроксид + кислота = соль + вода)

Al(OH)3 + KOH → K[Al(OH)4] (амф. гидроксид + основание = комплексная соль)

При нагревании до высоких температур комплексные соли не образуются.

Al(OH)3 + KOH → (t) KAlO2 + H2O (амф. гидроксид + основание = (прокаливание) соль + вода — при высоких
температурах вода испаряется, и комплексная соль образоваться не может)

Гидроксид алюминия

Кислоты

Кислота — химическое соединение обычно кислого вкуса, содержащее водород, способный замещаться металлом при образовании соли. По классификации
кислоты подразделяются на одно-, двух- и трехосновные.

Основность кислоты определяется числом атомов водорода, которое способна отдать молекула кислоты, реагируя с основанием. Определять основность кислоты по числу атомов водорода в ней — часто верный способ, но не всегда: например, борная кислота H3BO3 является слабой одноосновной кислотой, фосфористая кислота H3PO3 — двухосновной кислотой.

Одно-, двух- и трехосновные кислоты

Кислоты отлично реагируют с основными оксидами, основаниями, растворяя даже те, которые выпали в осадок (реакция нейтрализации). Также кислоты способны вступать в реакцию
с теми металлами, которые стоят в ряду напряжений до водорода (то есть способны вытеснить его из кислоты).

H3PO4 + LiOH → Li3PO4 + H2O (кислота + основание = соль + вода — реакция нейтрализации)

Zn + HCl → ZnCl2 + H2↑ (реакция идет, так как цинк стоил в ряду активности левее водорода и способен вытеснить его из кислоты)

Cu + HCl ↛ (реакция не идет, так как медь расположена в ряду активности правее водорода, менее активна и не способна вытеснить его из кислоты)

Существуют нестойкие кислоты, которые в водном растворе разлагаются на кислотный оксид (газ) и воду — угольная и сернистая кислоты:

  • H2CO3 → H2O + CO2
  • H2SO3 → H2O + SO2

Записать эти кислоты в растворе в виде «H2CO3 или H2SO3» — будет считаться ошибкой. Пишите угольную
и сернистую кислоты в разложившемся виде — виде газа и воды.

Выделение углекислого газа из раствора

Все кислоты подразделяются на сильные и слабые. Напомню, что мы составили подробную таблицу сильных и слабых кислот (и оснований!) в теме гидролиз.
В реакции из сильной кислоты (соляной) можно получить более слабую, например, сероводородную или угольную кислоту.

Однако невозможно (и противоречит законам логики) получить из более слабой кислоты сильную, например из уксусной — серную кислоту. Природу не
обманешь :)

K2S + HCl → H2S + KCl (из сильной — соляной кислоты — получили более слабую — сероводородную)

K2SO4 + CH3COOH ↛ (реакция не идет, так как из слабой кислоты нельзя получить сильную: из уксусной — серную)

Подчеркну важную деталь: гидроксиды это не только привычные нам NaOH, Ca(OH)2 и т.д., некоторые кислоты также считаются кислотными
гидроксидами, например серная кислота — H2SO4. С полным правом ее можно записать как кислотный гидроксид: SO2(OH)2

В завершении подтемы кислот предлагаю вам вспомнить названия основных кислот и их кислотных остатков.

Названия кислот и их кислотных остатков

Соли

Соль — ионное соединение, образующееся вместе с водой при нейтрализации кислоты основанием (не единственный способ). Водород кислоты замещается
металлом или ионом аммония (NH4). Наиболее известной солью является поваренная соль — NaCl.

По классификации соли бывают:

  • Средние — продукт полного замещения атомов водорода в кислоте на металл: KNO3, NaCl, BaSO4, Li3PO4
  • Кислые — продукт неполного замещения атомов водорода: LiHSO4, NaH2PO4 и Na2HPO4 (гидросульфат
    лития, дигидрофосфат и гидрофосфат натрия)
  • Основные — продукт неполного замещения гидроксогрупп на кислотный остаток: CrOHCl (хлорид гидроксохрома II)
  • Двойные — содержат два разных металла и один кислотный остаток (NaCr(SO4)2
  • Смешанные — содержат один металл и два кислотных остатка MgClBr (хлорид-бромид магния
  • Комплексные — содержат комплексный катион или анион — атом металла, связанный с несколькими лигандами: Na[Cr(OH)4]
    (тетрагидроксохромат натрия)

Растворы или расплавы солей могут вступать в реакцию с металлом, который расположен левее металла, входящего в состав соли. В этом случае более
активный металл вытеснит менее активный из раствора соли. Например, железо способно вытеснить медь из ее солей:

Fe + CuSO4 → FeSO4 + Cu (железо стоит левее меди в ряду активности и способно вытеснить медь из ее солей)

Железо вытесняет медь из раствора

Замечу важную деталь: исход реакции основание + кислота иногда определяет соотношение. Запомните, что если двух- или трехосновная кислота дана в
избытке — получается кислая соль, если же в избытке дано основание — средняя соль.

NaOH + H2SO4 → NaHSO4 (кислота дана в избытке)

2NaOH + H2SO4 → Na2SO4 + H2O (основание дано в избытке)

Если в ходе реакции соли с кислотой, основанием или другой солью выпадает осадок, выделяется газ или образуется слабый электролит (вода),
то такая реакция идет. Кислую соль также можно получить в реакции соли с соответствующей двух-, трехосновной кислотой.

Na2CO3 + HCl → NaCl + H2O + CO2↑ (сильная кислота — соляная, вытесняет слабую — угольную)

MgCl2 + LiOH → Mg(OH)2↓ + LiCl

K2SO4 + H2SO4 → KHSO4 (средняя соль + кислота = кислая соль)

Чтобы сделать из кислой соли — среднюю соль, нужно добавить соответствующее основание:

KHSO4 + KOH → K2SO4 + H2O (кислая соль + основание = средняя соль)

Гидроксид калия

© Беллевич Юрий Сергеевич 2018-2023

Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение
(в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов
без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования,
обратитесь, пожалуйста, к Беллевичу Юрию.

Классификация и взаимосвязь неорганических веществ. ЕГЭ по химии: теория и практика

23.03.2014

Публикуем теоретические и практические задания, которые необходимы при подготовке к ЕГЭ по химии.

Тема: Классификация и взаимосвязь неорганических веществ

Весь материал соответствует кодификатору ЕГЭ по химии. В конце каждого теоретического блока публикуются практические задания с правильными ответами. Вы можете сразу же проверять качество пройденного материала.

Смотреть в PDF:

Или прямо сейчас: Скачайте в pdf файле.

Понравилась статья? Поделить с друзьями:
  • Взаимопонимание сочинение аргументы огэ
  • Взаимопонимание с мамой сочинение
  • Взаимопонимание произведения для сочинения
  • Взаимопонимание поколений сочинение егэ
  • Взаимопонимание основа отношений в семье в дурном обществе сочинение