30 октября 2022
В закладки
Обсудить
Жалоба
Цвета осадков и газов в неорганической химии
Для сдачи ОГЭ необходимо знать и предсказывать по формуле цвет осадка или газа, а также характерные запахи, которыми обладают газы. В данном документе собраны необходимые данные по этому вопросу.
Осадки бывают разных цветов и разной консистенции. Все это является частью описания признака реакции.
Задание 13 ОГЭ по химии.
priznaki-him-r.pdf
Автор: Фрундина Дарья Андреевна, учитель химии.
Задание № 1 (Тестовая часть):
Установите соответствие между названием вещества и реагентами, с каждым из которых оно может взаимодействовать.
А) азот
Б) цинк
В) бром
Г) кальций
Формулы реагентов:
1) O2, HCl, H2SiO4
2) H2, Mg, Ca(OH)2
3) MnCl2, N2, O2
4) O2, Ca, Li
5) NaOH, O2, CuSO4.
Решение:
Данное задание входит в тестовую часть в качестве вопроса № 8, который требует знаний химических свойств простых и сложных веществ в неорганической химии.
Учитывая, что этот урок посвящен теме «Галогены», предлагаю вспомнить и изучить свойства этой группы элементов, которые находятся в VII A группе.
Итак, начнем: первый элемент в списке — азот.
Азот.
N2 — это неметалл, входит в состав воздуха, является бесцветным газом, без запаха, реагирует:
— с литием на воздухе (без нагревания) с образованием азида лития (Li3N);
— с кальцием (при нагревании), в итоге можно получить Ca3N2;
— с кислородом (электрический разряд, около 3000 С) — образуется NO.
Подходит пункт 4.
Цинк.
Далее идет цинк, это переходный металл (его соединения проявляют амфотерные свойства), достаточно хрупкий, в чистом виде имеет серебристо — белый цвет, реагирует:
— с растворами кислот (HCl) — происходит замещение цинка на водород в кислоте. Однако, с кремниевой кислотой реакция не идет;
— с щелочами (NaOH), образуя гидроксоцинкаты;
— с сульфатом меди (выделяется чистая медь и сульфат цинка).
Выбираем пункт 5.
Бром.
Бром — это галоген, который проявляет кислотные свойства, является дымящей красно — коричневой жидкостью, токсичен; реагирует:
— с водородом;
— с металлами (Ca, Mg);
— с щелочами (Ca(OH)2), причем в этой реакции образуются соли брома — CaBr2 и Ca(BrO)2.
Подходит вариант 2.
Кальций.
Последний химический элемент в списке — кальций, это активный металл, который активно реагирует:
— с неметаллами (галогены, O2, H2, N2);
— с водой;
— с кислотами;
— с солями (замещение катиона более слабого металла, по сравнению с кальцием).
Здесь подходит вариант 3.
Ответ: 4523.
Задание № 2 (Тестовая часть):
Установите соответствие между реагирующими веществами и продуктами, которые преимущественно образуются при взаимодействии этих веществ.
РЕАГИРУЮЩИЕ ВЕЩЕСТВА:
А) Cl2 и KOH (хол. р-р)
Б) Cl2 и KOH (гор. р-р)
В) KClO3 → (t C)
Г) KClO3 → (t, MnO2)
ПРОДУКТЫ РЕАКЦИИ:
1) KCl и H2O;
2) KCl, KClO и H2O;
3) KCl, KClO2 и H2O;
4) KCl, KClO3 и H2O;
5) KCl и O2;
6) KCl и KClO4.
Решение:
Это задание № 9 тестовой части ЕГЭ по Химии, в котором нужно установить исходные вещества в соответствии с продуктами реакции.
1) Cl2 и KOH (хол. р-р) → KCl + KClO + H2O (хлорид калия, гипохлорит калия, вода).
2) Cl2 и KOH (гор. р-р) → KCl, KClO3 и H2O (хлорид калия, хлорат калия (бертолетова соль), вода).
3) KClO3 → (t C) → термическое разложение (400 С) бертолетовой соли приводит к образованию KClO4 и KCl (перхлората калия, хлорида калия).
4) KClO3 → (t, MnO2) → термическое каталитическое разложение (200 С) хлората калия образует KCl и O2 (хлорид калия и кислород).
Ответ: 2465.
Задание № 3 (Тестовая часть):
Задана следующая схема превращения веществ:
I2 → (X)→KI→ (Y)→I2
Определите, какие из указанных веществ являются веществами X и Y.
1) KOH;
2) KCl;
3) Cl2;
4) HCl;
5) KClO4.
Решение:
Первая реакция проста на первый взгляд, нам нужно из чистого йода получить йодид калия. Однако, это не простая реакция соединения или замещения, это ОВР — йод меняет свою степень окисления с 0 до -1 в присутствии щелочи:
I2 + 2KOH (разб.) = KI + KIO + H2O (0 C)
Так как это задание достаточно легкое, здесь не указаны условия протекания этой реакции, и не сказано, какие вещества дополнительно образуются в качестве продуктов реакции. Поэтому, первое звено цепочки решено, вещество X = KOH.
Следующая реакция — как из йодида калия получить чистый йод. Эта реакция знакома многим — галогены вытесняют более слабые галогены из сложных веществ (реакция замещения). В данном случае нам нужен галоген, который стоит в 7А подгруппе выше йода; это может быть бром, хлор, фтор; из вариантов ответа подходит хлор. Вещество Y = Cl2.
2KI + Cl2 = 2KCl + I2
Ответ: 13
Задание № 4 (Тестовая часть):
Установите соответствие между реагентами и схемами превращения элемента хлора.
РЕАГЕНТЫ:
А) хлор и аммиак
Б) хлористая кислота и бромоводород
В) хлорноватистая кислота и сернистый ангидрид
Г) хлор и бромоводород
СХЕМЫ ПРЕВРАЩЕНИЯ:
1) Cl0 → Cl+1;
2) Cl0 → Cl-1;
3) Cl+1 → Cl0;
4) Cl+3 → Cl-1;
5) Cl+7 → Cl-1;
6) Cl+1 → Cl-1.
Решение:
Данное задание относится в 21 вопросу в ЕГЭ, для его выполнения необходимо знать химические реакции и изменение степеней окисления.
Итак, первые исходные вещества — хлор и аммиак, эту реакцию я уже писала в теме «Аммиак».
8NH3 + 3Cl2 = N2 + 6NH4Cl — степень окисления хлора: Cl0 → Cl-1
Вторая пара веществ — хлористая кислота и бромоводород;
Хлористая кислота (HClO2) в свободном виде не выделена, существует только в растворах, способна вступать в реакции
— с щелочами,
— с галогеноводородами (HCl, HI, HBr)
Реакция между этими реагентами выглядит так:
HClO2 + 4HBr = HCl + 2Br2 + 2H2O — степень окисления хлора: Cl+3 → Cl-1
Следующие реагенты — хлорноватистая кислота и сернистый ангидрид.
Хлорноватистая кислота (HClO) в свободном виде не выделена, слабая кислота, разлагается на свету, сильный окислитель, реагирует:
— с галогеноводородами;
— с гидратом аммиака (NH3 * H2O);
— с щелочами.
Это нестандартная реакция между кислотой и кислотным оксидом, поэтому ее надо запомнить:
HClO + SO2 + H2O = HCl + H2SO4 — степень окисления хлора: Cl+1 → Cl-1
Четвертая пара продуктов реакции — хлор и бромоводород; это простая реакция замещения, в результате которой хлор вытесняет бром и встает на его место, образуя хлороводород и выделяется бром:
Cl2 + 2HBr = 2HCl + Br2 — степень окисления хлора: Cl0 → Cl-1
Ответ: 2462
Задание № 5 (Тестовая часть):
Установите соответствие между названием вещества и возможным электролитическим способом его получения:
НАЗВАНИЕ ВЕЩЕСТВА:
А) кислород
Б) фтор
В) калий
Г) водород
ПОЛУЧЕНИЕ ЭЛЕКТРОЛИЗОМ:
1) раствора AuCl3
2) раствора CuBr2
3) расплава NaF
4) расплава KCl
5) раствора KF.
Решение:
Для начала хочу акцентировать внимание на некоторых важных особенностях процессов электролиза в растворах и расплавах:
1) Щелочные металлы (K, Na) выделяются в чистом виде в процессе электролиза ТОЛЬКО в расплаве (на катоде);
2) Металлы (в растворе), стоящие в ряду активности
ДО H2 (K, Li, Na, Ca) → выделяется H2,
ДО H2 (Al, Zn, Cr, Fe, Ni, Sn, Pb) → возможно выделение Ме и H2,
ПОСЛЕ H2 (Сu, Ag, Au, Pt, Hg) → выделяется Ме;
3) Галогены в процессе электролиза выделяются на аноде в чистом виде (кроме фтора);
4) Кислородсодержащие анионы и фтор в процессе электролиза выделяют кислород.
Итак, кислород выделяется в результате электролиза раствора KF;
— фтор выделяется в расплаве NaF;
— калий в результате электролиза расплава KCl;
— водород — в процессе электролиза раствора KF.
Ответ: 5345
Задание № 6 (Тестовая часть):
Установите соответствие между формулой соли и типом ее гидролиза.
ФОРМУЛА СОЛИ:
А) FeCl3
Б) BaS
В) KF
Г) ZnSO4
ТИП ГИДРОЛИЗА:
1) по катиону
2) по аниону
3) по катиону и по аниону
4) гидролиз не происходит
Решение:
Вопросы по теме «Гидролиз» являются достаточно легкими, нужно только знать силу кислот и оснований, а также принцип процесса нейтрализации.
Первое вещество — хлорид железа (III), это соль, которая образована слабым основанием и сильной кислотой, гидролиз по катиону, среда кислая;
Второе вещество — сульфид бария, эта соль образована сильным основанием и слабой кислотой, гидролиз по аниону, среда щелочная;
Третье вещество — фторид калия, она образована сильным основанием и слабой кислотой (плавиковая кислота (HF) несмотря на наличие самого электроотрицательного неметалла в составе, сильной кислотой не является), гидролиз по аниону, среда щелочная;
Далее по списку — сульфат цинка, здесь соль образована слабым основанием и сильной кислотой, гидролиз по катиону, среда кислая.
Ответ: 1221
Задание № 7 (Часть 2):
Для выполнения заданий 30, 31 используйте следующий перечень веществ: нитрат калия, йодид калия, хлорид бария, серная кислота, йод, фторид серебра. Допустимо использование водных растворов веществ.
30. Из предложенного перечня веществ выберите вещества, между которыми окислительно — восстановительная реакция протекает с выделением ядовитого газа с неприятным запахом. В этой реакции наблюдается образование осадка темного цвета.
31. Из предложенного перечня веществ выберите среднюю соль и вещество, которое вступает с ней в реакцию ионного обмена с образованием творожистого осадка желтого цвета.
Решение:
30. В условии даны два эффекта реакции ОВР — выделение ядовитого газа с неприятным запахом и образование темного осадка.
Учитывая, что здесь не сказано о цвете газа, у нас есть выбор из двух бесцветных газов — аммиака и сероводорода, но среди веществ в задании нет соединений азота, поэтому берем H2S.
К тому же, выпал осадок темного цвета — темных осадков много, среди них чистый йод, который выделяется при взаимодействии солей йода с сильными кислотами.
В итоге пишем реакцию:
8KI + 5H2SO4 = 4I2↓ + 4K2SO4 + 4H2O + H2S↑ — я сразу уравняла ее и не стану оформлять электронный баланс, так как ученик сдающий ЕГЭ знает, как это делать.
31. В этом задании нужно выбрать среднюю соль и вещество, в итоге должен образоваться творожистый осадок желтого цвета.
Нам даны несколько солей, среди которых
— йодид калия и нитрат калия, которые не дают осадков (так как все соли калия растворимы);
— хлорид бария, который может давать осадки, но не желтого цвета;
— фторид серебра — то вещество, которое нам нужно (соль йодид серебра представляет собой желтый творожистый осадок):
KI + AgF = AgI↓ + KF — осталось оформить ее в ионно — обменном виде и задание готово.
Задание № 8 (Часть 2):
Для выполнения заданий 30, 31 используйте следующий перечень веществ: гидроксид магния, аммиак, хлорид железа (III), фосфат кальция, хлор, бромид калия. Допустимо использование водных растворов веществ.
30. Из предложенного перечня веществ выберите вещества, между которыми протекает окислительно — восстановительная реакция с изменением цвета и выделением газа.
31. Из предложенного перечня веществ выберите среднюю соль и вещество, водный раствор которого вступает с этой солью в реакцию ионного обмена.
Решение:
30. В данном задании есть два газа, которые идеально подходят к параметрам условия — аммиак и хлор; они реагируют друг с другом с выделением чистого азота и хлорида аммония:
3Cl2 + 8NH3 = N2 + 6NH4Cl — в этой реакции происходит изменение цвета (хлор — желто-зеленый газ, азот — бесцветный).
31. Для решения этого задания рассмотрим все вещества:
— гидроксид магния (нерастворимое вещество), не подходит;
— фосфат кальция (нерастворимое вещество), не подходит;
— бромид калия (растворимое вещество), не подходит (все соли калия растворимы!);
— хлорид железа (III) (растворимое вещество), подходит — при взаимодействии с основанием дает осадок в виде гидроксида железа (III).
Но вот вопрос — разве в перечне есть основание? Есть — это гидроксид аммония (NH4OH, или NH3 * H2O).
Если внимательно прочитать условие, то там написано «Допустимо использование водных растворов веществ», этим мы и воспользуемся (водный раствор аммиака это и есть гидроксид аммония):
FeCl3 + 3NH3 * H2O = 3NH4Cl + Fe(OH)3 ↓ — выделяется бурый осадок гидроксида железа (III).
!Не забывай про правильное оформление ионно — обменного процесса
На сегодня все!
1. Взаимодействие простых веществ с водородом
1) Из металлов только щелочные и щелочноземельные металлы реагируют с водородом с образованием гидридов (степень окисления атомов водорода –1):
2Na + H2 → 2NaH (гидрид натрия)
Ca + H2 → CaH2 (гидрид кальция)
Fe + H2 → реакция не идет
Cu + H2 → реакция не идет
2) Все неметаллы реагируют с водородом (кроме P, B, Si и благородных газов), образуя летучие водородные соединения:
H2 + S <=> H2S (нагревание)
3H2 + N2 <=> 2NH3 (t, p, kt)
Примеры водородных соединений:
Валентность: | IV | III | II | I |
Летучее водородное соединение: |
CH4 (метан) |
NH3 (аммиак) | H2O (вода) | HF (фтороводород) |
SiH4 (силан) | PH3 (фосфин) | H2S (сероводород) | HCl (хлороводород) |
CH4 — бесцветный газ без запаха
SiH4 — бесцветный газ с неприятным запахом
NH3 — бесцветный газ с резким характерным запахом
PH3 — бесцветный, ядовитый газ с неприятным запахом (возникающим из-за примесей)
H2S — бесцветный газ с характерным неприятным запахом тухлых яиц
HF — бесцветный, токсичный газ с резким запахом
HCl — бесцветный, ядовитый газ с резким запахом, дымящий во влажном воздухе.
Так как P, B и Si не взаимодействуют с водородом, их водородные соединения получают косвенным способом.
2. Взаимодействие сложных веществ с водородом
1) Необходимо помнить, что такие оксиды, как ZnO, CuO, PbO, FeO, Fe2O3 (и некоторые другие оксиды малоактивных металлов, т.е. стоящих в ряду активностей после Al) взаимодействуют с водородом с восстановлением соответствующего металла:
ZnO + H2 → Zn + H2O
CuO + H2 → Cu + H2O
FeO + H2 → Fe + H2O
Fe2O3 + 3H2 → 2Fe + 3H2O
PbO + H2 → Pb + H2O
2) Оксиды таких неметаллов, как азот и углерод также взаимодействуют с водородом:
2NO + 2H2 → N2 + 2H2O
N2O + H2 → N2 + H2O
NO2 + H2 → NO + H2O
CO + 2H2 <=> CH3OH (t, p, kt)
CO2 + 4H2 → CH4 + 2H2O
SiO2 + H2 → реакция не идет.
Сероводород
Строение молекулы и физические свойства
Сероводород H2S – это бинарное соединение водорода с серой, относится к летучим водородным соединениям. Следовательно, сероводород бесцветный ядовитый газ, с запахом тухлых яиц. Образуется при гниении. В твердом состоянии имеет молекулярную кристаллическую решетку.
Геометрическая форма молекулы сероводорода похожа на структуру воды — уголковая молекула. Но валентный угол H-S-H меньше, чем угол H-O-H в воде и составляет 92,1о.
Способы получения сероводорода
1. В лаборатории сероводород получают действием минеральных кислот на сульфиды металлов, расположенных в ряду напряжений левее железа.
Например, при действии соляной кислоты на сульфид железа (II):
FeS + 2HCl → FeCl2 + H2S↑
Еще один способ получения сероводорода – прямой синтез из водорода и серы:
S + H2 → H2S
Еще один лабораторный способ получения сероводорода – нагревание парафина с серой.
Видеоопыт получения и обнаружения сероводорода можно посмотреть здесь.
2. Также сероводород образуется при взаимодействии растворимых солей хрома (III) и алюминия с растворимыми сульфидами. Сульфиды хрома (III) и алюминия необратимо гидролизуются в водном растворе.
Например: хлорид хрома (III) реагирует с сульфидом натрия с образованием гидроксида хрома (III), сероводорода и хлорида натрия:
2CrCl3 + 3Na2S + 6H2O → 2Cr(OH)3 + 3H2S↑ + 6NaCl
Химические свойства сероводорода
1. В водном растворе сероводород проявляет слабые кислотные свойства. Взаимодействует с сильными основаниями, образуя сульфиды и гидросульфиды:
Например, сероводород реагирует с гидроксидом натрия:
H2S + 2NaOH → Na2S + 2H2O
H2S + NaOH → NaНS + H2O
2. Сероводород H2S – очень сильный восстановитель за счет серы в степени окисления -2. При недостатке кислорода и в растворе H2S окисляется до свободной серы (раствор мутнеет):
2H2S + O2 → 2S + 2H2O
В избытке кислорода:
2H2S + 3O2 → 2SO2 + 2H2O
3. Как сильный восстановитель, сероводород легко окисляется под действием окислителей.
Например, бром и хлор окисляют сероводород до молекулярной серы:
H2S + Br2 → 2HBr + S↓
H2S + Cl2 → 2HCl + S↓
Под действием избытка хлора в водном растворе сероводород окисляется до серной кислоты:
H2S + 4Cl2 + 4H2O → H2SO4 + 8HCl
Например, азотная кислота окисляет сероводород до молекулярной серы:
H2S + 2HNO3(конц.) → S + 2NO2 + 2H2O
При кипячении сера окисляется до серной кислоты:
H2S + 8HNO3(конц.) → H2SO4 + 8NO2 + 4H2O
Прочие окислители окисляют сероводород, как правило, до молекулярной серы.
Например, оксид серы (IV) окисляет сероводород:
2H2S + SO2 → 3S + 2H2O
Соединения железа (III) также окисляют сероводород:
H2S + 2FeCl3 → 2FeCl2 + S + 2HCl
Бихроматы, хроматы и прочие окислители также окисляют сероводород до молекулярной серы:
3H2S + K2Cr2O7 + 4H2SO4 → 3S + Cr2(SO4)3 + K2SO4 + 7H2O
2H2S + 4Ag + O2 → 2Ag2S + 2H2O
Серная кислота окисляет сероводород либо до молекулярной серы:
H2S + H2SO4(конц.) → S + SO2 + 2H2O
Либо до оксида серы (IV):
H2S + 3H2SO4(конц.) → 4SO2 + 4H2O
4. Сероводород в растворе реагирует с растворимыми солями тяжелых металлов: меди, серебра, свинца, ртути, образуя черные сульфиды, нерастворимые ни в воде, ни в минеральных кислотах.
Например, сероводород реагирует в растворе с нитратом свинца (II). при этом образуется темно-коричневый (почти черный) осадок, нерастворимый ни в воде, ни в минеральных кислотах:
H2S + Pb(NO3)2 → PbS + 2HNO3
Взаимодействие с нитратом свинца в растворе – это качественная реакция на сероводород и сульфид-ионы.
Видеоопыт взаимодействия сероводорода с нитратом свинца можно посмотреть здесь.
Данную задачу проверяют не автоматически, а вручную.
Ознакомьтесь с критериями оценки, правильным решением и сами себе поставьте оценку от 0 до 4 баллов.
Даже если вы ошиблись в цифровом ответе, можно получить несколько баллов за правильный ход решения.
Форма для оценки находится внизу страницы.
Критерии оценки вопроса
Содержание верного ответа и указания по оцениванию | Баллы |
---|---|
Правильно записаны четыре уравнения реакций | 4 |
Правильно записаны три уравнения реакций | 3 |
Правильно записаны два уравнения реакций | 2 |
Правильно записано одно уравнение реакции | 1 |
Все элементы ответа записаны неверно | 0 |
Максимальный балл | 4 |
Подробное решение
Взаимодействие серной кислоты с йодидом калия:
5 HX2SOX4+8 KI=4 KX2SOX4+HX2S↑+4 IX2+4 HX2Oce{5H2SO4 + 8KI = 4K2SO4 + H2S ^ + 4I2 +4H2O}
2 IX−−2 eX−→IX2X0 ∣ 4SX+6+8 eX−→SX−2 ∣ 1ce{ 2I^{-} — 2 $e$- -> I2^{0} | 4} \
ce{ S^{+6} +8 $e$- -> S^{-2} | 1}
Газ с неприятным запахом — это сероводород. Его сожгли в недостатке кислорода:
2 HX2S+OX2=2 S↓+2 HX2Oce{2H2S + O2 = 2S v + 2H2O}
SX−2−2 eX−→SX0 ∣ 2OX2X0+4 eX−→2 OX−2 ∣ 1ce{ S^{-2} — 2 $e$- -> S^{0} | 2} \
ce{ O2^{0} +4 $e$- -> 2O^{-2} | 1}
Образовавшееся твёрдое вещество — это сера. Она вступила в реакцию с концентрированной азотной кислотой:
S+6 HNOX3=HX2SOX4+6 NOX2↑+2 HX2Oce{S + 6HNO3 = H2SO4 + 6NO2 ^ + 2H2O}
SX0−6 eX−→SX+6 ∣ 1NX+5+1 eX−→NX+4 ∣ 6ce{ S^{0} — 6 $e$- -> S^{+6} | 1} \
ce{ N^{+5} +1 $e$- -> N^{+4} | 6}
Бурый газ, выделившийся в результате реакции, был поглощен раствором гидроксида калия:
2 NOX2+2 KOH=KNOX3+KNOX2+HX2Oce{2NO2 + 2KOH = KNO3 + KNO2 + H2O}
NX+4−1 eX−→NX+5 ∣ 1NX+4+1 eX−→NX+3 ∣ 1ce{ N^{+4} — 1 $e$- -> N^{+5} | 1} \
ce{ N^{+4} +1 $e$- -> N^{+3} | 1}
Оцените своё решение
0
1
2
3
4
Взаимодействие серной кислоты с йодидом калия:
5 HX2SOX4+8 KI=4 KX2SOX4+HX2S↑+4 IX2+4 HX2Oce{5H2SO4 + 8KI = 4K2SO4 + H2S ^ + 4I2 +4H2O}
2 IX−−2 eX−→IX2X0 ∣ 4SX+6+8 eX−→SX−2 ∣ 1ce{ 2I^{-} — 2 $e$- -> I2^{0} | 4} \
ce{ S^{+6} +8 $e$- -> S^{-2} | 1}
Газ с неприятным запахом — это сероводород. Его сожгли в недостатке кислорода:
2 HX2S+OX2=2 S↓+2 HX2Oce{2H2S + O2 = 2S v + 2H2O}
SX−2−2 eX−→SX0 ∣ 2OX2X0+4 eX−→2 OX−2 ∣ 1ce{ S^{-2} — 2 $e$- -> S^{0} | 2} \
ce{ O2^{0} +4 $e$- -> 2O^{-2} | 1}
Образовавшееся твёрдое вещество — это сера. Она вступила в реакцию с концентрированной азотной кислотой:
S+6 HNOX3=HX2SOX4+6 NOX2↑+2 HX2Oce{S + 6HNO3 = H2SO4 + 6NO2 ^ + 2H2O}
SX0−6 eX−→SX+6 ∣ 1NX+5+1 eX−→NX+4 ∣ 6ce{ S^{0} — 6 $e$- -> S^{+6} | 1} \
ce{ N^{+5} +1 $e$- -> N^{+4} | 6}
Бурый газ, выделившийся в результате реакции, был поглощен раствором гидроксида калия:
2 NOX2+2 KOH=KNOX3+KNOX2+HX2Oce{2NO2 + 2KOH = KNO3 + KNO2 + H2O}
NX+4−1 eX−→NX+5 ∣ 1NX+4+1 eX−→NX+3 ∣ 1ce{ N^{+4} — 1 $e$- -> N^{+5} | 1} \
ce{ N^{+4} +1 $e$- -> N^{+3} | 1}
…
Сероводород
Получение
сероводорода
- Получение из простых веществ:
S + Н2 = H2S
- Взаимодействие минеральных кислот и сульфидов металлов, расположенных в ряду напряжений левее железа:
FeS + 2HCI = H2S↑ + FeCl2
- Действие концентрированной H2SO4 (без избытка) на щелочные и щелочно-земельные металлы:
5H2SO4(конц.) + 8Na = H2S↑ + 4Na2SO4 + 4H2О
- Гидролиз некоторых сульфидов:
AI2S3 + 6Н2О = 3H2S↑ + 2Аl(ОН)3↓
- Нагревание парафина с серой:
C40H82 + 41S = 41Н2S+40С
Видео Получение и обнаружение сероводорода
Физические
свойства и строение сероводорода
Сероводород H2S – это бинарное летучее водородное соединение соединение с серой. H2S — бесцветный ядовитый газ, с неприятным удушливым
запахом тухлых яиц. При концентрации > 3 г/м3 вызывает смертельное отравление.
Сероводород тяжелее воздуха и легко конденсируется в бесцветную жидкость. Растворимость в воде H2S при обычной температуре составляет 2,5.
В твердом состоянии имеет молекулярную кристаллическую решетку.
Геометрическая форма молекулы сероводорода представляет собой сцепленные между собой атомы H-S-H с валентным углом 92,1о.
Качественная реакция для обнаружения сероводорода
Для
обнаружения анионов S2- и сероводорода используют
реакцию газообразного H2S с Pb(NO3)2:
H2S + Pb(NO3)2 = 2HNO3 + PbS↓ черный
осадок.
Влажная бумага, смоченная в растворе Pb(NO3)2 чернеет в присутствии H2S из-за получения черного осадка PbS.
Химические свойства серы
H2S является сильным восстановителем
При взаимодействии H2S с окислителями образуются различные вещества — S, SО2, H2SO4
- Окисление кислородом воздуха:
2H2S + 3О2(избыток) = 2SО2↑ + 2Н2О
2H2S + О2(недостаток) = 2S↓ + 2Н2О
- Окисление галогенами:
H2S + Br2 = S↓ + 2НВr
H2S + Cl2 → 2HCl + S↓
H2S + 4Cl2 + 4H2O → H2SO4 + 8HCl
- Взаимодействие с кислотами-окислителями:
3H2S + 8HNО3(разб.) = 3H2SO4 + 8NO + 4Н2О
H2S + 8HNО3(конц.) = H2SO4 + 8NО2↑ + 4Н2О
H2S + H2SO4(конц.) = S↓ + SО2↑ + 2Н2О
- Взаимодействие со сложными окислителями:
5H2S + 2KMnO4 + 3H2SO4 = 5S↓ + 2MnSO4 + K2SO4 + 8Н2О
5H2S + 6KMnO4 + 9H2SO4 = 5SО2 + 6MnSO4 + 3K2SO4 + 14Н2О
H2S + 2FeCl3 = S↓ + 2FeCl2 + 2HCl
2H2S + SO2 = 2H2O + 3S
3H2S + K2Cr2O7 + 4H2SO4 → 3S + Cr2(SO4)3 + K2SO4 + 7H2O
- Сероводородная кислота H2S двухосновная кислота и диссоциирует по двум ступеням:
1-я ступень:
H2S → Н+ + HS—
2-я ступень:
HS— → Н+ + S2-
H2S очень слабая
кислота, несмотря на это имеет характерные для кислот химические свойства. Взаимодействует:
- с активными металлами
H2S + Mg = Н2↑ + MgS
- с малоактивными металлами (Аg, Си, Нg) при совместном присутствии окислителей:
2H2S + 4Аg + O2 = 2Ag2S↓ + 2Н2O
- с основными оксидами:
H2S + ВаО = BaS + Н2O
- со щелочами:
H2S + NaOH(недостаток) = NaHS + Н2O
H2S + 2NaOH(избыток) → Na2S + 2H2O
- с аммиаком:
H2S + 2NH3(избыток) = (NH4)2S
- с некоторыми солями сильных кислот, если образующийся сульфид металла нерастворим в воде и в сильных кислотах:
CuSO4 + H2S = CuS↓ + H2SO4
H2S + Pb(NO3)2 → PbS↓ + 2HNO3
Реакция
с нитратом свинца в растворе – это качественная реакция на сероводород и сульфид-ионы.
Видео Взаимодействие сероводорода с нитратом свинца
Сульфиды
Получение сульфидов
- Непосредственно из простых веществ:
S + Fe → FeS
S + Mg → MgS
S + Ca → CaS
- Взаимодействие H2S с растворами щелочей:
H2S + 2NaOH = 2H2O + Na2S
H2S + NaOH = H2O + NaHS
- Взаимодействие H2S или (NH4)2S с растворами солей:
H2S + CuSO4 = CuS↓ + H2SO4
H2S + 2AgNO3 = Ag2S↓ + 2HNO3
Pb(NO3)2 + Н2S → PbS↓ + 2НNO3
ZnSO4 + Na2S → ZnS↓ + Na2SO4
- Восстановление сульфатов при прокаливании с углем:
Na2SO4 + 4С = Na2S + 4СО
Физические свойства сульфидов
Сульфиды – это бинарные соединения серы с элементами с меньшей электроотрицательностью, в том числе с некоторыми неметаллами (С, Si, Р, As и др.).
По растворимости
в воде и кислотах сульфиды классифицируют
на:
- растворимые в воде — сульфиды щелочных металлов и аммония;
- нерастворимые в воде, но растворимые в минеральных кислотах — сульфиды металлов, расположенных до железа в ряду активности (белые и цветные сульфиды ZnS, MnS, FeS, CdS);
- нерастворимые ни в воде, ни в минеральных кислотах — черные сульфиды (CuS, HgS, PbS, Ag2S, NiS, CoS)
- гидролизуемые водой — сульфиды трехвалентных металлов (алюминия и хрома (III))
По цвету сульфиды можно разделить на:
- Чёрные – HgS, Ag2S, PbS, CuS, FeS,
NiS; - Коричневые – SnS, Bi2S3;
- Оранжевые – Sb2S3, Sb2S5;
- Жёлтые – As2S3, As2S5,
SnS2, CdS; - Розовые — MnS
- Белые – ZnS, Al2S3, BaS,
CaS;
Химические свойства сульфидов
Обратимый гидролиз сульфидов
- Хорошо растворимыми в воде являются сульфиды щелочных металлов и аммония, но в водных растворах они в значительной степени подвергаются гидролизу. Реакция среды — сильнощелочная:
K2S + H2O ⇄ KHS + KOH
S2- + H2O → HS— + ОН—
- Сульфиды щелочно-земельных металлов и Mg, при взаимодействии с водой подвергаются полному гидролизу и переходят в растворимые кислые соли — гидросульфиды:
2CaS + 2НОН
= Ca(HS)2 + Са(ОН)2
При нагревании растворов сульфидов гидролиз протекает и по 2-й ступени:
HS— + H2O → H2S↑ + ОН—
Необратимый
гидролиз сульфидов
- Сульфиды некоторых металлов (Cr2S3, Fe2S3, Al2S3) подвергаются необратимому гидролизу, полностью разлагаясь в водных растворах:
Al2S3 + 6H2O = 3H2S↑ + 2AI(OH)3↓
Нерастворимые
сульфиды гидролизу не подвергаются
NiS + HСl ≠
- Некоторые из сульфидов растворяются в сильных кислотах:
FeS + 2HCI =
FeCl2 + H2S↑
ZnS + 2HCI =
ZnCl2 + H2S↑
CuS + 8HNO3 → CuSO4 + 8NO2 + 4H2O
CuS + 4H2SO4(конц. гор.) → CuSO4 + 4SO2 + 4H2O
MnS + 3HNO3 = MnSO4 + 8NO2 + 4H2O
- Сульфиды Ag2S, HgS, Hg2S, PbS, CuS не pacтворяются не только в воде, но и во многих кислотах.
- Сульфиды обладают восстановительными свойствами и вступают в реакции с окислителями:
PbS + 4H2O2 → PbSO4 + 4H2O
СuS + Cl2 → CuCl2 + S
- Окислительный обжиг сульфидов является
важной стадией переработки сульфидного сырья в различных производствах
2ZnS + 3O2 = 2ZnO + 2SO2
4FeS2 + 11O2 = 2Fe2O3 + 8SO2↑
2CuS + 3O2 → 2CuO + 2SO2
2Cr2S3 + 9O2 → 2Cr2O3 + 6SO2
Взаимодействия
сульфидов с растворимыми солями свинца, серебра, меди являются качественными на ион S2−:
Na2S + Pb(NO3)2 → PbS↓ + 2NaNO3
Na2S + 2AgNO3 → Ag2S↓ + 2NaNO3
Na2S + Cu(NO3)2 → CuS↓ + 2NaNO3
Оксид серы
(IV), диоксид серы, сернистый газ, сернистый ангидрид (SO2)
Способы получения сернистого газа
- Окисление серы, сероводорода и сульфидов кислородом воздуха:
S + O2 → SO2
2H2S + 3O2 → 2SO2 + 2H2O
2CuS + 3O2 → 2SO2 + 2CuO
- Действие высокой температуры на сульфиты (термическое разложение):
CaSO3 = СаО + SO2↑
- Действие сильных кислот на сульфиты:
Na2SO3 + 2HCl = SO2 + Н2O + 2NaCI
- Взаимодействие концентрированной H2SO4 с восстановителями, например с неактивными металлами:
2H2SO4 + Сu = SO2↑ + CuSO4 + 2Н2O
Физические
свойства сернистого газа
При обычной температуре SO2 — газ с резким запахом без цвета. В воде растворим хорошо — при 20°С в 1 л воды растворяется 40 л SO2.
Химические свойства сернистого газа
SO2 – типичный кислотный оксид. За счет того, что сера находится в промежуточной степени окисления (+4) SO2 может проявлять свойства как окислителя так и восстановителя.
- При растворении в воде SO2 частично соединяется с молекулами воды с образованием слабой сернистой кислоты.
SO2 + H2O ↔ H2SO3
- Как
кислотный оксид, SO2 вступает
в реакции с щелочами и оксидами щелочных и щелочноземельных металлов:
SO2 + СаО = CaSO3
SO2 + Na2O → Na2SO3
SO2 + NaOH = NaHSO3
SO2 + 2NaOH = Н2O + Na2SO3
- При взаимодействии с окислителями SO2 проявляет восстановительные свойства. При этом степень окисления серы повышается:
2SO2 + O2 ↔ 2SO3
SO2 + Br2 + 2H2O → H2SO4 + 2HBr
SO2 + 2HNO3 → H2SO4 + 2NO2
SO2 + O3 → SO3 + O2
SO2 + PbO2 → PbSO4
5SO2 + 2H2O + 2KMnO4 → 2H2SO4 + 2MnSO4 + K2SO4
Обесцвечивание раствора перманганата калия KMnO4 является качественной реакцией для обнаружения сернистого газа и сульфит-иона
- SO2 проявляет окислительные свойства при взаимодействии с сильными восстановителями, восстанавливаясь чаще всего до свободной серы:
SO2 + 2Н2S → 3S↓ + 2H2O
SO2 + 2CO → S↓ +2СО2
SO2 + С → S↓ + СO2
Оксид серы (VI), триоксид серы, серный ангидрид (SO3)
Способы получения серного ангидрида
- SO3 можно получить из SO2 путем каталитического окисления последнего кислородом:
2SO2 + O2 ↔ 2SO3
- Окислением SO2 другими окислителями:
SO2 + O3 → SO3 + O2
SO2 + NO2 → SO3 + NO
- Разложением сульфата железа (III):
Fe2(SO4)3 → Fe2O3 + 3SO3
Физические
свойства серного ангидрида
При обычных условиях SO3 представляет собой бесцветную жидкость с характерным резким
запахом. На воздухе SO3 «дымит» и сильно
поглощает влагу.
SO3 – тяжелее
воздуха, хорошо растворим в воде.
SO3 ядовит!
Химические свойства серного
ангидрида
Оксид серы (VI) – это кислотный оксид.
- Хорошо поглощает влагу и реагирует с водой образуя серную кислоту:
SO3 + H2O → H2SO4
- Как кислотный оксид, SO3 взаимодействует с щелочами и
основными оксидами, образуются средние или кислые соли:
SO3 + 2NaOH(избыток) → Na2SO4 + H2O
SO3 + NaOH(избыток) → NaHSO4
SO3 + MgO → MgSO4 (при сплавлении):
SO3 + ZnO = ZnSO4
- SO3 проявляет сильные окислительные свойства, так
как сера в находится в максимальной степени окисления (+6).
Вступает в реакции с восстановителями:
SO3 + 2KI → I2 + K2SO3
3SO3 + H2S → 4SO2 + H2O
5SO3 + 2P → P2O5 + 5SO2
- При растворении в концентрированной
серной кислоте образует олеум (раствор
SO3 в H2SO4).
Сернистая кислота (H2SO3)
Способы
получения сернистой кислоты
При растворении в воде SO2 образует слабую сернистую кислоту, которая сразу частично разлагается:
SO2 + H2O ↔ H2SO3
Физические
свойства сернистой кислоты
Сернистая кислота H2SO3 – двухосновная кислородсодержащая кислота. При обычных условиях неустойчива.
Валентность серы
в сернистой кислоте равна IV, а степень окисления +4.
Химические свойства сернистой кислоты
Общие свойства
кислот
- Сернистая кислота – слабая кислота, диссоциирует в две стадии. Образует два типа солей:
- кислые – гидросульфиты
H2SO3 ↔ HSO3— + H+
- средние – сульфиты
HSO3—↔ SO32- + H+
- Сернистая кислота самопроизвольно распадается на SO2 и H2O:
H2SO3 ↔ SO2 + H2O
Соли сернистой кислоты, сульфиты и гидросульфиты
Способы
получения сульфитов
Соли сернистой кислоты получаются при взаимодействии SO2 с щелочами и оксидами щелочных и щелочноземельных металлов:
SO2 + СаО = CaSO3
SO2 + Na2O → Na2SO3
SO2 + NaOH = NaHSO3
SO2 + 2NaOH = Н2O + Na2SO3
Физические
свойства сульфитов
Сульфиты
щелочных металлов и аммония растворимы в воде, сульфиты остальных металлов — нерастворимы
или не существуют.
Гидросульфиты
металлов хорошо растворимы в Н2O, а некоторые из
них, такие как Ca(HSO3)2 существуют
только в растворе.
Химические свойства сульфитов
Cернистая кислота – двухосновная, образует нормальные (средние) соли — сульфиты Mex(SO3)y и кислые соли — гидросульфиты Me(HSO3)x.
- Водные растворы сульфитов подвергаются гидролизу. Реакция среды – щелочная (окрашивают лакмус в синий цвет):
SO3— + Н2O = HSO3— + ОН—
Na2SO3 + Н2O = NaHSO3 + NaOH
Реакции, протекающие без изменения степени окисления:
- Реакция с сильными кислотами:
Na2SO3 + 2HCl = 2NaCl +
SO2↑ + Н2O
NaHSO3 + HCl = NaCl + SO2↑ + Н2O
- Термическое разложение сульфитов:
CaSO3 = СаО + SO2↑
- Нормальные сульфиты в водных растворах, при избытке SO2, переходят в гидросульфиты:
CaSO3 + SO2 + Н2O = Ca(HSO3)2
- Ионно-обменные реакции с другими солями, протекающие с образованием нерастворимых сульфитов:
Na2SO3 + ZnCl2 = ZnSO3↓ + 2NaCl
Окислительно-восстановительные реакции
Сульфиты, также как и SO2, могут быть как восстановителями, так и окислителями, т.к. атомы серы в анионах находятся в промежуточной степени окисления +4
- Окисление водных растворов сульфитов, и гидросульфитов до сульфатов:
Na2SO3 + Вr2 + Н2O = Na2SO4 + 2НВr
5K2SO3 + 2КМnO4 + 3H2SO4 = 6K2SO4 + 2MnSO4 + 3Н2O
Na2SO3 + HNO3 = 2NaNO3 + SO2 + H2O
- Твердые сульфиты при хранении на воздухе также медленно окисляются до сульфатов:
2Na2SO3 + O2 = 2Na2SO4
- При нагревании сухих сульфитов с активными восстановителями (С, Mg, Al, Zn) сульфиты превращаются в сульфиды:
Na2SO3 + ЗС = Na2S + ЗСО
- При нагревании сухих сульфитов до высоких температур сульфиты диспропорционируют, превращаются в смесь сульфатов и сульфидов:
4K2SO3 = 3K2SO4 + K2S
Серная кислота (H2SO4)
Способы
получения серной кислоты
В промышленности серную кислоту производят из серы, сульфидов
металлов, сероводорода и др.
Наиболее часто серную кислоту получают из пирита FeS2.
Основные стадии получения серной кислоты включают:
1.Обжиг пирита в кислороде в печи для обжига с получением сернистого газа:
4FeS2 +
11O2 → 2Fe2O3 +
8SO2 + Q
2. Очистка полученного сернистого газа от примесей в циклоне, электрофильтре.
3. Осушка сернистого газа в сушильной башне
4. Нагрев очищенного газа в теплообменнике.
5. Окисление сернистого газа в серный ангидрид в контактном аппарате:
2SO2 + O2 ↔ 2SO3 + Q
6. Поглощение серного ангидрида серной кислотой в поглотительной башне – получение олеума.
Физические
свойства, строение серной кислоты
При обычных условиях серная кислота – тяжелая бесцветная маслянистая жидкость, хорошо растворимая в воде. Максимальная плотность равна 1,84 г/мл
При растворении серной кислоты в воде выделяется большое количество теплоты. Поэтому, по правилам безопасности в лаборатории при приготовлении разбавленного раствора серной кислоты во избежание разбрызгивания необходимо наливать серную кислоту в воду тонкой струйкой по стеклянной палочке при постоянном перемешивании. Но не наоборот!
Валентность серы в серной кислоте равна VI.
Качественные
реакции для обнаружения серной кислоты и сульфат ионов
Для обнаружения сульфат-ионов используют реакцию с растворимыми солями бария. В результате взаимодействия, образуется белый кристаллический осадок сульфата бария:
BaCl2 + Na2SO4 → BaSO4↓ + 2NaCl
Видео Взаимодействие хлорида бария и сульфата натрия в растворе (качественная реакция на сульфат-ион).
Химические свойства серной кислоты
Серная кислота — сильная двухосновная кислота, образует два типа солей: средние – сульфаты, кислые – гидросульфаты.
- Серная кислота практически полностью диссоциирует в разбавленном в растворе по первой ступени и достаточно по второй ступени:
H2SO4 ⇄ H+ + HSO4–
HSO4– ⇄ H+ + SO42–
Характерны все свойства кислот:
- Реагирует с основными оксидами, основаниями, амфотерными оксидами, амфотерными гидроксидами и аммиаком:
H2SO4 + MgO → MgSO4 + H2O
H2SO4 + КОН → KHSО4 + H2O
H2SO4 + 2КОН → К2SО4 + 2H2O
3H2SO4 + 2Al(OH)3 → Al2(SO4)3 + 6H2O
H2SO4 + NH3 → NH4HSO4
- Вытесняет более слабые кислоты из их солей в растворе (карбонаты, сульфиды и др.) и летучие кислоты из их солей (кроме солей HBr и HI):
Н2SO4 + 2NaHCO3 → Na2SO4 + CO2 + H2O
H2SO4 + Na2SiO3 → Na2SO4 + H2SiO3
- Концентрированная серная кислота реагирует с твердыми солями, например нитратом натрия, хлорида натрия.
NaNO3(тв.) + H2SO4 → NaHSO4 + HNO3
NaCl(тв.) + H2SO4 → NaHSO4 + HCl
- Вступает в обменные реакции с солями:
H2SO4 + BaCl2 → BaSO4 + 2HCl
- Взаимодействует с металлами:
Разбавленная серная кислота взаимодействует с металлами, расположенными в ряду напряжения металлов до водорода. В результате реакции образуются соль и водород:
H2SO4(разб.) + Fe → FeSO4 + H2
H2SO4 + Zn = ZnSO4 + H2
Концентрированная серная кислота — сильный окислитель. Реакция с металлами протекает без вытеснения водорода из кислоты. В зависимости от активности металла образуются различные продукты реакции:
- Активные металлы и цинк при обычной температуре с концентрированной серной кислотой образуют соль, сероводород (или серу) и воду:
H2SO4 + Na = Na2SO4 + Н2S↑ + H2O
5H2SO4(конц.) + 4Zn → 4ZnSO4 + H2S↑ + 4H2O
- Металлы средней активности с концентрированной H2SO4 образуют соль, серу и воду:
4H2SO4 + 3Mg → 3MgSO4 + S + 4H2O
- Такие металлы, как железо Fe,
алюминий Al, хром Cr пассивируются концентрированной
серной кислотой на холоде. При нагревании,
при удалении оксидной пленки реакция возможна.
6H2SO4(конц.) + 2Fe → Fe2(SO4)3 + 3SO2 + 6H2O
6H2SO4(конц.) + 2Al → Al2 (SO4)3 + Н2S↑ + 6H2O
- Неактивные металлы восстанавливают концентрированную серную кислоту до сернистого газа:
2H2SO4(конц.) + Cu → CuSO4 + SO2 ↑ + 2H2O
2H2SO4(конц.) + Hg → HgSO4 + SO2 ↑ + 2H2O
2H2SO4(конц.) + 2Ag → Ag2SO4 + SO2↑+ 2H2O
- В реакциях с неметаллами концентрированная серная кислота также проявляет окислительные свойства:
5H2SO4(конц.) + 2P → 2H3PO4 + 5SO2↑ + 2H2O
2H2SO4(конц.) + С → СО2↑ + 2SO2↑ + 2H2O
2H2SO4(конц.) + S → 3SO2 ↑ + 2H2O
3H2SO4(конц.) + 2KBr → Br2↓ + SO2↑ + 2KHSO4 + 2H2O
5H2SO4(конц.) + 8KI → 4I2↓ + H2S↑ + K2SO4 + 4H2O
H2SO4(конц.) + 3H2S → 4S↓ + 4H2O (комнатная температура)
H2SO4(конц.) + H2S = S↓ + SО2↑ + 2Н2О (при нагревании)
H2SO4(конц.) + 2HBr = Br2 + SO2 + 2H2O
- Концентрированная серная кислота широко используется в химических процессах как водоотнимающий агент, т.к. проявляет сильное водоотнимающее действие. В органической химии ее используют при получении спиртов, простых и сложных эфиров, альдегидов и т.д.
Соли серной кислоты, сульфаты, гидросульфаты
Способы
получения солей серной кислоты
Сульфаты можно получить при взаимодействии серной кислоты с металлами,
оксидами, гидроксидами (см. Химические свойства серной кислоты). А также при
взаимодействии с другими солями, если продуктом реакции является нерастворимое
соединение.
Физические
свойства солей серной кислоты
Кристаллы разного цвета. Многие средние и кислые сульфаты растворимы
в воде. Плохо растворяются или не растворяются в воде сульфаты многозарядных
щёлочноземельных металлов (BaSO4, RaSO4), сульфаты лёгких
щёлочноземельных металлов (CaSO4, SrSO4) и сульфат свинца.
Средние сульфаты щелочных металлов термически устойчивы. Кислые
сульфаты щелочных металлов при нагревании разлагаются.
Многие средние сульфаты образуют устойчивые кристаллогидраты:
Na2SO4 ∙ 10H2O − глауберова
соль
CaSO4 ∙ 2H2O − гипс
2CaSO4 xH2O –
алебастр
CuSO4 ∙ 5H2O − медный купорос
FeSO4 ∙ 7H2O − железный купорос
ZnSO4 ∙ 7H2O − цинковый купорос
Na2CO3 ∙ 10H2O −
кристаллическая сода
KАl(SO4)2 x 12H2O
– алюмокалиевые квасцы.
Химические свойства солей серной кислоты
Разложение сульфатов на различные классы соединений в зависимости от металла, входящего в состав соли.
- Сульфаты щелочных металлов плавятся без разложения.
- Кислые сульфаты щелочных металлов разлагаются с отщеплением воды:
2KHSO4 → K2S2O7 + H2O↑.
- Сульфаты металлов средней активности разлагаются на соответствующие оксиды:
ZnSO4 = ZnO + SO3
FeSO4 = 2Fe2O3 + 4SO2 + O2
2CuSO4 → 2CuO + SO2 + O2 (SO3)
2Al2(SO4)3 → 2Al2O3 + 6SO2 + 3O2
2Cr2(SO4)3 → 2Cr2O3 + 6SO2 + 3O2
- Сульфаты тяжёлых или малоактивных металлов разлагаются с образованием металла и кислорода:
HgSO4 = Hg + SO2 + O2
- Некоторые сульфаты проявляют окислительные свойства и вступают в реакции с простыми веществами:
CaSO4 +
C = CaO + SO2 + CO
BaSO4 +
4C = BaS + 4CO