Ядовитый газ с неприятным запахом егэ химия

30 октября 2022

В закладки

Обсудить

Жалоба

Цвета осадков и газов в неорганической химии

Для сдачи ОГЭ необходимо знать и предсказывать по формуле цвет осадка или газа, а также характерные запахи, которыми обладают газы. В данном документе собраны необходимые данные по этому вопросу.

Осадки бывают разных цветов и разной консистенции. Все это является частью описания признака реакции.

Задание 13 ОГЭ по химии.

priznaki-him-r.pdf

Цвета осадков и газов в неорганической химии

Автор: Фрундина Дарья Андреевна, учитель химии.

Галогены. Задания из ЕГЭ 2021 по Химии с объяснениями

Задание № 1 (Тестовая часть):

Установите соответствие между названием вещества и реагентами, с каждым из которых оно может взаимодействовать.

А) азот
Б) цинк
В) бром
Г) кальций

Формулы реагентов:

1) O2, HCl, H2SiO4
2) H2, Mg, Ca(OH)2
3) MnCl2, N2, O2
4) O2, Ca, Li
5) NaOH, O2, CuSO4.

Решение:

Данное задание входит в тестовую часть в качестве вопроса № 8, который требует знаний химических свойств простых и сложных веществ в неорганической химии.

Учитывая, что этот урок посвящен теме «Галогены», предлагаю вспомнить и изучить свойства этой группы элементов, которые находятся в VII A группе.

Итак, начнем: первый элемент в списке — азот.

Азот.

N2 — это неметалл, входит в состав воздуха, является бесцветным газом, без запаха, реагирует:
— с литием на воздухе (без нагревания) с образованием азида лития (Li3N);
— с кальцием (при нагревании), в итоге можно получить Ca3N2;
— с кислородом (электрический разряд, около 3000 С) — образуется NO.

Подходит пункт 4.

Цинк.

Далее идет цинк, это переходный металл (его соединения проявляют амфотерные свойства), достаточно хрупкий, в чистом виде имеет серебристо — белый цвет, реагирует:
— с растворами кислот (HCl) — происходит замещение цинка на водород в кислоте. Однако, с кремниевой кислотой реакция не идет;
— с щелочами (NaOH), образуя гидроксоцинкаты;
— с сульфатом меди (выделяется чистая медь и сульфат цинка).

Выбираем пункт 5.

Бром.

Бром — это галоген, который проявляет кислотные свойства, является дымящей красно — коричневой жидкостью, токсичен; реагирует:
— с водородом;
— с металлами (Ca, Mg);
— с щелочами (Ca(OH)2), причем в этой реакции образуются соли брома — CaBr2 и Ca(BrO)2.

Подходит вариант 2.

Кальций.

Последний химический элемент в списке — кальций, это активный металл, который активно реагирует:
— с неметаллами (галогены, O2, H2, N2);
— с водой;
— с кислотами;
— с солями (замещение катиона более слабого металла, по сравнению с кальцием).

Здесь подходит вариант 3.

Ответ: 4523.

Задание № 2 (Тестовая часть):

Установите соответствие между реагирующими веществами и продуктами, которые преимущественно образуются при взаимодействии этих веществ.

РЕАГИРУЮЩИЕ ВЕЩЕСТВА:

А) Cl2 и KOH (хол. р-р)
Б) Cl2 и KOH (гор. р-р)
В) KClO3 → (t C)
Г) KClO3 → (t, MnO2)

ПРОДУКТЫ РЕАКЦИИ:

1) KCl и H2O;
2) KCl, KClO и H2O;
3) KCl, KClO2 и H2O;
4) KCl, KClO3 и H2O;
5) KCl и O2;
6) KCl и KClO4.

Решение:

Это задание № 9 тестовой части ЕГЭ по Химии, в котором нужно установить исходные вещества в соответствии с продуктами реакции.

1) Cl2 и KOH (хол. р-р) → KCl + KClO + H2O (хлорид калия, гипохлорит калия, вода).
2) Cl2 и KOH (гор. р-р) KCl, KClO3 и H2O (хлорид калия, хлорат калия (бертолетова соль), вода).
3) KClO3 → (t C) термическое разложение (400 С) бертолетовой соли приводит к образованию KClO4 и KCl (перхлората калия, хлорида калия).
4) KClO3 → (t, MnO2) термическое каталитическое разложение (200 С) хлората калия образует KCl и O2 (хлорид калия и кислород).

Ответ: 2465.

Задание № 3 (Тестовая часть):

Задана следующая схема превращения веществ:

I2 → (X)→KI→ (Y)→I2

Определите, какие из указанных веществ являются веществами X и Y.

1) KOH;
2) KCl;
3) Cl2;
4) HCl;
5) KClO4.

Решение:

Первая реакция проста на первый взгляд, нам нужно из чистого йода получить йодид калия. Однако, это не простая реакция соединения или замещения, это ОВР — йод меняет свою степень окисления с 0 до -1 в присутствии щелочи:

I2 + 2KOH (разб.) = KI + KIO + H2O (0 C)

Так как это задание достаточно легкое, здесь не указаны условия протекания этой реакции, и не сказано, какие вещества дополнительно образуются в качестве продуктов реакции. Поэтому, первое звено цепочки решено, вещество X = KOH.

Следующая реакция — как из йодида калия получить чистый йод. Эта реакция знакома многим — галогены вытесняют более слабые галогены из сложных веществ (реакция замещения). В данном случае нам нужен галоген, который стоит в 7А подгруппе выше йода; это может быть бром, хлор, фтор; из вариантов ответа подходит хлор. Вещество Y = Cl2.

2KI + Cl2 = 2KCl + I2

Ответ: 13

Задание № 4 (Тестовая часть):

Установите соответствие между реагентами и схемами превращения элемента хлора.

РЕАГЕНТЫ:

А) хлор и аммиак
Б) хлористая кислота и бромоводород
В) хлорноватистая кислота и сернистый ангидрид
Г) хлор и бромоводород

СХЕМЫ ПРЕВРАЩЕНИЯ:

1) Cl0 → Cl+1;
2) Cl0 → Cl-1;
3) Cl+1 → Cl0;
4) Cl+3 → Cl-1;
5) Cl+7 → Cl-1;
6)
Cl+1 → Cl-1.

Решение:

Данное задание относится в 21 вопросу в ЕГЭ, для его выполнения необходимо знать химические реакции и изменение степеней окисления.

Итак, первые исходные вещества — хлор и аммиак, эту реакцию я уже писала в теме «Аммиак».
8NH3 + 3Cl2 = N2 + 6NH4Cl
— степень окисления хлора: Cl0 → Cl-1

Вторая пара веществ — хлористая кислота и бромоводород;
Хлористая кислота
(HClO2) в свободном виде не выделена, существует только в растворах, способна вступать в реакции
— с щелочами,
— с галогеноводородами (HCl, HI, HBr)

Реакция между этими реагентами выглядит так:

HClO2 + 4HBr = HCl + 2Br2 + 2H2O — степень окисления хлора: Cl+3 → Cl-1

Следующие реагенты — хлорноватистая кислота и сернистый ангидрид.
Хлорноватистая кислота
(HClO) в свободном виде не выделена, слабая кислота, разлагается на свету, сильный окислитель, реагирует:

— с галогеноводородами;

— с гидратом аммиака (NH3 * H2O);

— с щелочами.

Это нестандартная реакция между кислотой и кислотным оксидом, поэтому ее надо запомнить:

HClO + SO2 + H2O = HCl + H2SO4 — степень окисления хлора: Cl+1 → Cl-1

Четвертая пара продуктов реакции — хлор и бромоводород; это простая реакция замещения, в результате которой хлор вытесняет бром и встает на его место, образуя хлороводород и выделяется бром:
Cl2 + 2HBr = 2HCl + Br2 — степень окисления хлора:
Cl0 → Cl-1

Ответ: 2462

Задание № 5 (Тестовая часть):

Установите соответствие между названием вещества и возможным электролитическим способом его получения:

НАЗВАНИЕ ВЕЩЕСТВА:

А) кислород
Б) фтор
В) калий
Г) водород

ПОЛУЧЕНИЕ ЭЛЕКТРОЛИЗОМ:

1) раствора AuCl3
2) раствора CuBr2
3) расплава NaF
4) расплава KCl
5) раствора KF.

Решение:

Для начала хочу акцентировать внимание на некоторых важных особенностях процессов электролиза в растворах и расплавах:

1) Щелочные металлы (K, Na) выделяются в чистом виде в процессе электролиза ТОЛЬКО в расплаве (на катоде);
2) Металлы (в растворе), стоящие в ряду активности
ДО H2 (K, Li, Na, Ca) → выделяется H2,
ДО H2 (Al, Zn, Cr, Fe, Ni, Sn, Pb) возможно выделение Ме и H2,
ПОСЛЕ H2 (Сu, Ag, Au, Pt, Hg) выделяется Ме;
3) Галогены в процессе электролиза выделяются на аноде в чистом виде (кроме фтора);
4) Кислородсодержащие анионы и фтор в процессе электролиза выделяют кислород.

Итак, кислород выделяется в результате электролиза раствора KF;
— фтор выделяется в расплаве NaF;
— калий в результате электролиза расплава KCl;
— водород — в процессе электролиза раствора KF.

Ответ: 5345

Задание № 6 (Тестовая часть):

Установите соответствие между формулой соли и типом ее гидролиза.

ФОРМУЛА СОЛИ:

А) FeCl3
Б) BaS
В) KF
Г) ZnSO4

ТИП ГИДРОЛИЗА:

1) по катиону
2) по аниону
3) по катиону и по аниону
4) гидролиз не происходит

Решение:

Вопросы по теме «Гидролиз» являются достаточно легкими, нужно только знать силу кислот и оснований, а также принцип процесса нейтрализации.

Первое вещество — хлорид железа (III), это соль, которая образована слабым основанием и сильной кислотой, гидролиз по катиону, среда кислая;

Второе вещество — сульфид бария, эта соль образована сильным основанием и слабой кислотой, гидролиз по аниону, среда щелочная;

Третье вещество — фторид калия, она образована сильным основанием и слабой кислотой (плавиковая кислота (HF) несмотря на наличие самого электроотрицательного неметалла в составе, сильной кислотой не является), гидролиз по аниону, среда щелочная;

Далее по списку — сульфат цинка, здесь соль образована слабым основанием и сильной кислотой, гидролиз по катиону, среда кислая.

Ответ: 1221

Задание № 7 (Часть 2):

Для выполнения заданий 30, 31 используйте следующий перечень веществ: нитрат калия, йодид калия, хлорид бария, серная кислота, йод, фторид серебра. Допустимо использование водных растворов веществ.

30. Из предложенного перечня веществ выберите вещества, между которыми окислительно — восстановительная реакция протекает с выделением ядовитого газа с неприятным запахом. В этой реакции наблюдается образование осадка темного цвета.

31. Из предложенного перечня веществ выберите среднюю соль и вещество, которое вступает с ней в реакцию ионного обмена с образованием творожистого осадка желтого цвета.

Решение:

30. В условии даны два эффекта реакции ОВР — выделение ядовитого газа с неприятным запахом и образование темного осадка.
Учитывая, что здесь не сказано о цвете газа, у нас есть выбор из двух бесцветных газов — аммиака и сероводорода, но среди веществ в задании нет соединений азота, поэтому берем H2S.
К тому же, выпал осадок темного цвета — темных осадков много, среди них чистый йод, который выделяется при взаимодействии солей йода с сильными кислотами.
В итоге пишем реакцию:
8KI + 5H2SO4 = 4I2↓ + 4K2SO4 + 4H2O + H2S↑ — я сразу уравняла ее и не стану оформлять электронный баланс, так как ученик сдающий ЕГЭ знает, как это делать.

31. В этом задании нужно выбрать среднюю соль и вещество, в итоге должен образоваться творожистый осадок желтого цвета.
Нам даны несколько солей, среди которых
— йодид калия и нитрат калия, которые не дают осадков (так как все соли калия растворимы);
— хлорид бария, который может давать осадки, но не желтого цвета;
— фторид серебра — то вещество, которое нам нужно (соль йодид серебра представляет собой желтый творожистый осадок):
KI + AgF = AgI↓ + KF — осталось оформить ее в ионно — обменном виде и задание готово.

Задание № 8 (Часть 2):

Для выполнения заданий 30, 31 используйте следующий перечень веществ: гидроксид магния, аммиак, хлорид железа (III), фосфат кальция, хлор, бромид калия. Допустимо использование водных растворов веществ.

30. Из предложенного перечня веществ выберите вещества, между которыми протекает окислительно — восстановительная реакция с изменением цвета и выделением газа.

31. Из предложенного перечня веществ выберите среднюю соль и вещество, водный раствор которого вступает с этой солью в реакцию ионного обмена.

Решение:

30. В данном задании есть два газа, которые идеально подходят к параметрам условия — аммиак и хлор; они реагируют друг с другом с выделением чистого азота и хлорида аммония:
3Cl2 + 8NH3 = N2 + 6NH4Cl — в этой реакции происходит изменение цвета (хлор — желто-зеленый газ, азот — бесцветный).

31. Для решения этого задания рассмотрим все вещества:
— гидроксид магния (нерастворимое вещество), не подходит;
— фосфат кальция (нерастворимое вещество), не подходит;
— бромид калия (растворимое вещество), не подходит (все соли калия растворимы!);
— хлорид железа (III) (растворимое вещество), подходит — при взаимодействии с основанием дает осадок в виде гидроксида железа (III).

Но вот вопрос — разве в перечне есть основание? Есть — это гидроксид аммония (NH4OH, или NH3 * H2O).

Если внимательно прочитать условие, то там написано «Допустимо использование водных растворов веществ», этим мы и воспользуемся (водный раствор аммиака это и есть гидроксид аммония):
FeCl3 + 3NH3 * H2O = 3NH4Cl + Fe(OH)3 ↓ — выделяется бурый осадок гидроксида железа (III).
!Не забывай про правильное оформление ионно — обменного процесса

На сегодня все!

1. Взаимодействие простых веществ с водородом

1) Из металлов только щелочные и щелочноземельные металлы реагируют с водородом с образованием гидридов (степень окисления атомов водорода –1):

2Na + H2 →  2NaH (гидрид натрия)

Ca + H2 →  CaH2 (гидрид кальция)

Fe + H2 →  реакция не идет

Cu + H2 →  реакция не идет

2) Все неметаллы реагируют с водородом (кроме P, B, Si и благородных газов), образуя летучие водородные соединения:

H2 + S <=> H2S (нагревание)

3H2 + N2 <=> 2NH3 (t, p, kt)

Примеры водородных соединений:

Валентность: IV III II I
Летучее водородное соединение:

CH4 (метан)

NH3 (аммиак) H2O (вода) HF (фтороводород)
SiH4 (силан) PH3 (фосфин) H2S (сероводород) HCl (хлороводород)

CH4 — бесцветный газ без запаха

SiH4 — бесцветный газ с неприятным запахом

NH3 — бесцветный газ с резким характерным запахом

PH3 — бесцветный, ядовитый газ с неприятным запахом (возникающим из-за примесей)

H2S — бесцветный газ с характерным неприятным запахом тухлых яиц 

HF — бесцветный, токсичный газ с резким запахом

HCl — бесцветный, ядовитый газ с резким запахом, дымящий во влажном воздухе.

Так как P, B и Si не взаимодействуют с водородом, их водородные соединения получают косвенным способом.

2. Взаимодействие сложных веществ с водородом

1) Необходимо помнить, что такие оксиды, как ZnO, CuO, PbO, FeO, Fe2O3 (и некоторые другие оксиды малоактивных металлов, т.е. стоящих в ряду активностей после Al) взаимодействуют с водородом с восстановлением соответствующего металла:

ZnO + H2 →  Zn + H2O

CuO + H2 →  Cu + H2O

FeO + H2 →  Fe + H2O

Fe2O3 + 3H2 →  2Fe + 3H2O

PbO + H2 → Pb + H2O

2) Оксиды таких неметаллов, как азот и углерод также взаимодействуют с водородом:

2NO + 2H2 → N2 + 2H2O
N2O + H2 → N2 + H2O

NO2 + H2 → NO + H2O

CO + 2H2 <=> CH3OH (t, p, kt)

CO2 + 4H2 → CH4 + 2H2O

SiO2 + H2 → реакция не идет.

Сероводород

Строение молекулы и физические свойства

Сероводород H2S – это бинарное соединение водорода с серой, относится к летучим водородным соединениям. Следовательно, сероводород бесцветный ядовитый газ, с запахом тухлых яиц. Образуется при гниении. В твердом состоянии имеет молекулярную кристаллическую решетку.

Геометрическая форма молекулы сероводорода похожа на структуру воды — уголковая молекула. Но валентный угол H-S-H меньше, чем угол H-O-H в воде и составляет 92,1о.

Способы получения сероводорода

1. В лаборатории сероводород получают действием минеральных кислот на сульфиды металлов, расположенных в ряду напряжений левее железа.

Например, при действии соляной кислоты на сульфид железа (II):

FeS   +   2HCl   →   FeCl2   +   H2S↑

Еще один способ получения сероводорода – прямой синтез из водорода и серы:

S  +  H2  →  H2S

Еще один лабораторный способ получения сероводорода – нагревание парафина с серой.

Видеоопыт получения и обнаружения сероводорода можно посмотреть здесь.

2. Также сероводород образуется при взаимодействии растворимых солей хрома (III) и алюминия с растворимыми  сульфидами. Сульфиды хрома (III) и алюминия необратимо гидролизуются в водном растворе.

Например: хлорид хрома (III) реагирует с сульфидом натрия с образованием гидроксида хрома (III), сероводорода и хлорида натрия:

2CrCl3  +  3Na2S  +  6H2O  →   2Cr(OH)3  +  3H2S↑  +  6NaCl

Химические свойства сероводорода

1. В водном растворе сероводород проявляет слабые кислотные свойства. Взаимодействует с сильными основаниями, образуя сульфиды и гидросульфиды:

Например, сероводород реагирует с гидроксидом натрия:

H2S  +  2NaOH  →   Na2S   +  2H2O
H2S  +  NaOH → NaНS   +  H2O

2. Сероводород H2S – очень сильный восстановитель за счет серы в степени окисления -2. При недостатке кислорода и в растворе H2S окисляется до свободной серы (раствор мутнеет):

2H2S   +   O2    →   2S    +   2H2O

В избытке кислорода:

2H2S   +   3O2    2SO2  +   2H2O           

3. Как сильный восстановитель, сероводород легко окисляется под действием окислителей.

Например, бром и хлор окисляют сероводород до молекулярной серы:

H2S  +  Br2     2HBr  +   S↓

H2S  +  Cl2   →  2HCl  +   S↓

Под действием избытка хлора в водном растворе сероводород окисляется до серной кислоты:

H2S   +  4Cl2   +   4H2O   H2SO4  +  8HCl

Например, азотная кислота окисляет сероводород до молекулярной серы:

H2S  +  2HNO3(конц.)    S  +  2NO2  +  2H2O

При кипячении сера окисляется до серной кислоты:

H2S   +  8HNO3(конц.)   H2SO4  +  8NO2   +   4H2O

Прочие окислители окисляют сероводород, как правило, до молекулярной серы.

Например, оксид серы (IV) окисляет сероводород:

2H2S  +  SO2  →  3S   +  2H2O

Соединения железа (III) также окисляют сероводород:

H2S  +  2FeCl3  →  2FeCl2  +  S  +  2HCl

Бихроматы, хроматы и прочие окислители также  окисляют сероводород до молекулярной серы:

3H2S   +   K2Cr2O7   +    4H2SO4      3S    +   Cr2(SO4)3   +   K2SO4   +   7H2O

2H2S   +   4Ag  +  O2   2Ag2S  +  2H2O

Серная кислота окисляет сероводород либо до молекулярной серы:

H2S   +   H2SO4(конц.)   S   +   SO2   +   2H2O

Либо до оксида серы (IV):

H2S   +   3H2SO4(конц.)   4SO2   +  4H2O

4. Сероводород в растворе реагирует с растворимыми солями тяжелых металлов: меди, серебра, свинца, ртути, образуя черные сульфиды, нерастворимые ни в воде, ни в минеральных кислотах.

Например, сероводород реагирует в растворе с нитратом свинца (II). при этом образуется темно-коричневый (почти черный) осадок, нерастворимый ни в воде, ни в минеральных кислотах:

H2S   +   Pb(NO3)2   →  PbS   +   2HNO3

Взаимодействие с нитратом свинца в растворе – это качественная реакция на сероводород и сульфид-ионы.

Видеоопыт взаимодействия сероводорода с нитратом свинца можно посмотреть здесь.

При взаимодействии концентрированной серной кислоты с иодидом калия был получен газ с неприятным запахом, который затем сожгли в недостатке кислорода. Образовавшееся твёрдое простое вещество вступило при нагревании в реакцию с концентрированной азотной кислотой. Выделившийся в результате реакции газ поглотили избытком раствора гидроксида калия. Напишите уравнения четырёх описанных реакrдий.

Данную задачу проверяют не автоматически, а вручную.
Ознакомьтесь с критериями оценки, правильным решением и сами себе поставьте оценку от 0 до 4 баллов.
Даже если вы ошиблись в цифровом ответе, можно получить несколько баллов за правильный ход решения.
Форма для оценки находится внизу страницы.

Критерии оценки вопроса

Содержание верного ответа и указания по оцениванию Баллы
Правильно записаны четыре уравнения реакций 4
Правильно записаны три уравнения реакций 3
Правильно записаны два уравнения реакций 2
Правильно записано одно уравнение реакции 1
Все элементы ответа записаны неверно 0
Максимальный балл 4

Подробное решение

Взаимодействие серной кислоты с йодидом калия:

5 HX2SOX4+8 KI=4 KX2SOX4+HX2S↑+4 IX2+4 HX2Oce{5H2SO4 + 8KI = 4K2SO4 + H2S ^ + 4I2 +4H2O}

2 IX−−2 eX−→IX2X0 ∣ 4SX+6+8 eX−→SX−2 ∣ 1ce{ 2I^{-} — 2 $e$- -> I2^{0} | 4} \
ce{ S^{+6} +8 $e$- -> S^{-2} | 1}

Газ с неприятным запахом — это сероводород. Его сожгли в недостатке кислорода:

2 HX2S+OX2=2 S↓+2 HX2Oce{2H2S + O2 = 2S v + 2H2O}

SX−2−2 eX−→SX0 ∣ 2OX2X0+4 eX−→2 OX−2 ∣ 1ce{ S^{-2} — 2 $e$- -> S^{0} | 2} \
ce{ O2^{0} +4 $e$- -> 2O^{-2} | 1}

Образовавшееся твёрдое вещество — это сера. Она вступила в реакцию с концентрированной азотной кислотой:

S+6 HNOX3=HX2SOX4+6 NOX2↑+2 HX2Oce{S + 6HNO3 = H2SO4 + 6NO2 ^ + 2H2O}

SX0−6 eX−→SX+6 ∣ 1NX+5+1 eX−→NX+4 ∣ 6ce{ S^{0} — 6 $e$- -> S^{+6} | 1} \
ce{ N^{+5} +1 $e$- -> N^{+4} | 6}

Бурый газ, выделившийся в результате реакции, был поглощен раствором гидроксида калия:

2 NOX2+2 KOH=KNOX3+KNOX2+HX2Oce{2NO2 + 2KOH = KNO3 + KNO2 + H2O}

NX+4−1 eX−→NX+5 ∣ 1NX+4+1 eX−→NX+3 ∣ 1ce{ N^{+4} — 1 $e$- -> N^{+5} | 1} \
ce{ N^{+4} +1 $e$- -> N^{+3} | 1}

Оцените своё решение

0

1

2

3

4

Взаимодействие серной кислоты с йодидом калия:

5 HX2SOX4+8 KI=4 KX2SOX4+HX2S↑+4 IX2+4 HX2Oce{5H2SO4 + 8KI = 4K2SO4 + H2S ^ + 4I2 +4H2O}

2 IX−−2 eX−→IX2X0 ∣ 4SX+6+8 eX−→SX−2 ∣ 1ce{ 2I^{-} — 2 $e$- -> I2^{0} | 4} \
ce{ S^{+6} +8 $e$- -> S^{-2} | 1}

Газ с неприятным запахом — это сероводород. Его сожгли в недостатке кислорода:

2 HX2S+OX2=2 S↓+2 HX2Oce{2H2S + O2 = 2S v + 2H2O}

SX−2−2 eX−→SX0 ∣ 2OX2X0+4 eX−→2 OX−2 ∣ 1ce{ S^{-2} — 2 $e$- -> S^{0} | 2} \
ce{ O2^{0} +4 $e$- -> 2O^{-2} | 1}

Образовавшееся твёрдое вещество — это сера. Она вступила в реакцию с концентрированной азотной кислотой:

S+6 HNOX3=HX2SOX4+6 NOX2↑+2 HX2Oce{S + 6HNO3 = H2SO4 + 6NO2 ^ + 2H2O}

SX0−6 eX−→SX+6 ∣ 1NX+5+1 eX−→NX+4 ∣ 6ce{ S^{0} — 6 $e$- -> S^{+6} | 1} \
ce{ N^{+5} +1 $e$- -> N^{+4} | 6}

Бурый газ, выделившийся в результате реакции, был поглощен раствором гидроксида калия:

2 NOX2+2 KOH=KNOX3+KNOX2+HX2Oce{2NO2 + 2KOH = KNO3 + KNO2 + H2O}

NX+4−1 eX−→NX+5 ∣ 1NX+4+1 eX−→NX+3 ∣ 1ce{ N^{+4} — 1 $e$- -> N^{+5} | 1} \
ce{ N^{+4} +1 $e$- -> N^{+3} | 1}

Сероводород

Получение
сероводорода

  • Получение из простых веществ:

S + Н2 = H2S

  • Взаимодействие минеральных кислот и сульфидов металлов, расположенных в ряду напряжений левее железа:

FeS + 2HCI = H2S↑ + FeCl2

  • Действие концентрированной H2SO4 (без избытка) на щелочные и щелочно-земельные металлы:

5H2SO4(конц.) + 8Na = H2S↑ + 4Na2SO4 + 4H2О

  • Гидролиз некоторых сульфидов:

AI2S3 + 6Н2О = 3H2S↑ + 2Аl(ОН)3

  • Нагревание парафина с серой:

C40H82 + 41S = 41Н2S+40С

Видео Получение и обнаружение сероводорода

Физические
свойства и строение сероводорода

Сероводород H2S – это бинарное летучее водородное соединение соединение с серой. H2S — бесцветный ядовитый газ, с неприятным удушливым
запахом тухлых яиц. При концентрации > 3 г/м3 вызывает смертельное отравление.

Сероводород тяжелее воздуха и легко конденсируется в бесцветную жидкость. Растворимость в воде H2S при обычной температуре составляет 2,5.

В твердом состоянии имеет молекулярную кристаллическую решетку.

Геометрическая форма молекулы сероводорода представляет собой сцепленные между собой атомы H-S-H с валентным углом 92,1о.

cтроение сероводорода

Качественная реакция для обнаружения сероводорода

Для
обнаружения анионов S2- и сероводорода используют
реакцию газообразного H2S с Pb(NO3)2:

H2S + Pb(NO3)2 = 2HNO3 + PbS↓ черный
осадок.

Влажная бумага, смоченная в растворе Pb(NO3)2 чернеет в присутствии H2S из-за получения черного осадка PbS.

Химические свойства серы

H2S является сильным восстановителем

При взаимодействии H2S с окислителями образуются различные вещества — S, SО2, H2SO4

  • Окисление кислородом воздуха:

2H2S + 3О2(избыток) = 2SО2↑ + 2Н2О

2H2S + О2(недостаток) = 2S↓ + 2Н2О

  • Окисление галогенами:

H2S + Br2 = S↓ + 2НВr

H2S + Cl2 → 2HCl + S↓

H2S + 4Cl2 + 4H2O → H2SO4 + 8HCl

  • Взаимодействие с кислотами-окислителями:

3H2S + 8HNО3(разб.) = 3H2SO4 + 8NO + 4Н2О

H2S + 8HNО3(конц.) = H2SO4 + 8NО2↑ + 4Н2О

H2S + H2SO4(конц.) = S↓ + SО2↑ + 2Н2О

  • Взаимодействие со сложными окислителями:

5H2S + 2KMnO4 + 3H2SO4 = 5S↓ + 2MnSO4 + K2SO4 + 8Н2О

5H2S + 6KMnO4 + 9H2SO4 = 5SО2 + 6MnSO4 + 3K2SO4 + 14Н2О

H2S + 2FeCl3 = S↓ + 2FeCl2 + 2HCl

2H2S + SO2 = 2H2O + 3S

3H2S + K2Cr2O7 + 4H2SO4 → 3S + Cr2(SO4)3 + K2SO4 + 7H2O

  • Сероводородная кислота H2S двухосновная кислота и диссоциирует по двум ступеням:

1-я ступень:
H2S → Н+ + HS

2-я ступень:
HS → Н+ + S2-

H2S очень слабая
кислота
, несмотря на это имеет характерные для кислот химические свойства. Взаимодействует:

  • с активными металлами

H2S + Mg = Н2↑ + MgS

  • с малоактивными металлами (Аg, Си, Нg) при совместном присутствии окислителей:

2H2S + 4Аg + O2 = 2Ag2S↓ + 2Н2O

  • с основными оксидами:

H2S + ВаО = BaS + Н2O

  • со щелочами:

H2S + NaOH(недостаток) = NaHS + Н2O

H2S + 2NaOH(избыток)  → Na2S + 2H2O

  • с аммиаком:

H2S + 2NH3(избыток) = (NH4)2S

  • с некоторыми солями сильных кислот, если образующийся сульфид металла нерастворим в воде и в сильных кислотах:

CuSO4 + H2S = CuS↓ + H2SO4

H2S + Pb(NO3)2 → PbS↓ + 2HNO3

Реакция
с нитратом свинца в растворе – это качественная реакция на сероводород и сульфид-ионы.

Видео Взаимодействие сероводорода с нитратом свинца

Сульфиды

Получение сульфидов

  • Непосредственно из простых веществ:

S + Fe FeS

S + Mg → MgS

S + Ca → CaS

  • Взаимодействие H2S с растворами щелочей:

H2S + 2NaOH = 2H2O + Na2S

H2S + NaOH = H2O + NaHS

  • Взаимодействие H2S или (NH4)2S с растворами солей:

H2S + CuSO4 = CuS↓ + H2SO4

H2S + 2AgNO3 = Ag2S↓ + 2HNO3

Pb(NO3)2 + Н2S →  PbS↓ + 2НNO3

ZnSO4 + Na2S → ZnS↓ + Na2SO4

  • Восстановление сульфатов при прокаливании с углем:

Na2SO4 + 4С = Na2S + 4СО

Физические свойства сульфидов

Сульфиды – это бинарные соединения серы с элементами с меньшей электроотрицательностью, в том числе с некоторыми неметаллами (С, Si, Р, As и др.).

По растворимости
в воде
и кислотах сульфиды классифицируют
на:

  • растворимые в воде —  сульфиды щелочных металлов и аммония;
  • нерастворимые в воде, но растворимые в минеральных кислотах — сульфиды металлов, расположенных до железа в ряду активности (белые и цветные сульфиды ZnS, MnS, FeS, CdS);
  • нерастворимые ни в воде, ни в минеральных кислотах — черные сульфиды (CuS, HgS, PbS, Ag2S, NiS, CoS)
  • гидролизуемые водой — сульфиды трехвалентных металлов (алюминия и хрома (III))

По цвету сульфиды можно разделить на:

  • Чёрные – HgS, Ag2S, PbS, CuS, FeS,
    NiS;
  • Коричневые – SnS, Bi2S3;
  • Оранжевые – Sb2S3, Sb2S5;
  • Жёлтые – As2S3, As2S5,
    SnS2, CdS;
  • Розовые — MnS
  • Белые – ZnS, Al2S3, BaS,
    CaS;

Химические свойства сульфидов

Обратимый гидролиз сульфидов

  • Хорошо растворимыми в воде являются сульфиды щелочных металлов и аммония, но в водных растворах они в значительной степени подвергаются гидролизу. Реакция среды — сильнощелочная:

K2S + H2O ⇄ KHS + KOH

S2- + H2O → HS + ОН

  • Сульфиды щелочно-земельных металлов и Mg, при взаимодействии с водой подвергаются полному гидролизу и переходят в растворимые кислые соли — гидросульфиды:

2CaS + 2НОН
= Ca(HS)2 + Са(ОН)2

При нагревании растворов сульфидов гидролиз протекает и по 2-й ступени:

HS + H2O → H2S↑ + ОН

Необратимый
гидролиз сульфидов

  • Сульфиды некоторых металлов (Cr2S3, Fe2S3, Al2S3) подвергаются необратимому гидролизу, полностью разлагаясь в водных растворах:

Al2S3 + 6H2O = 3H2S↑ + 2AI(OH)3↓

Нерастворимые
сульфиды
гидролизу не подвергаются

NiS + HСl ≠

  • Некоторые из сульфидов растворяются в сильных кислотах:

FeS + 2HCI =
FeCl2 + H2S↑

ZnS + 2HCI =
ZnCl2 + H2S↑

CuS + 8HNO3 → CuSO4 + 8NO2 + 4H2O

CuS + 4H2SO4(конц. гор.) → CuSO4 + 4SO2 + 4H2O

MnS + 3HNO3 = MnSO4 + 8NO2 + 4H2O

  • Сульфиды Ag2S, HgS, Hg2S, PbS, CuS не pacтворяются не только в воде, но и во многих кислотах.
  • Сульфиды обладают восстановительными свойствами и вступают в реакции с окислителями:

PbS + 4H2O2 → PbSO4 + 4H2O

СuS + Cl2 → CuCl2 + S

  • Окислительный обжиг сульфидов является
    важной стадией переработки сульфидного сырья в различных производствах

2ZnS + 3O2 = 2ZnO + 2SO2

4FeS2 + 11O2 = 2Fe2O3 + 8SO2

2CuS + 3O2 → 2CuO + 2SO2

2Cr2S3 + 9O2 → 2Cr2O3 + 6SO2

Взаимодействия
сульфидов с растворимыми солями свинца, серебра, меди являются качественными на ион S2−:

Na2S + Pb(NO3)2 → PbS↓ + 2NaNO3

Na2S + 2AgNO3 → Ag2S↓ + 2NaNO3

Na2S + Cu(NO3)2 → CuS↓ + 2NaNO3

Оксид серы
(IV), диоксид серы, сернистый газ, сернистый ангидрид (SO2)

Способы получения сернистого газа

  • Окисление серы, сероводорода и сульфидов кислородом воздуха:

S + O2 → SO2

2H2S + 3O2 → 2SO2 + 2H2O

2CuS + 3O2 → 2SO2 + 2CuO

  • Действие высокой температуры на сульфиты (термическое разложение):

CaSO3 = СаО + SO2

  • Действие сильных кислот на сульфиты:

Na2SO3 + 2HCl = SO2 + Н2O + 2NaCI

  • Взаимодействие концентрированной H2SO4 с восстановителями, например с неактивными металлами:

2H2SO4 + Сu = SO2↑ + CuSO4 + 2Н2O

Физические
свойства сернистого газа

При обычной температуре SO2 — газ с резким запахом без цвета. В воде растворим хорошо — при 20°С в 1 л воды растворяется 40 л SO2.

Химические свойства сернистого газа

SO2 – типичный кислотный оксид. За счет того, что сера находится в промежуточной степени окисления (+4) SO2 может проявлять свойства как окислителя так и восстановителя.

  • При растворении в воде SO2 частично соединяется с молекулами воды с образованием слабой сернистой кислоты.

SO2 + H2O ↔ H2SO3

  • Как
    кислотный оксид, SO2 вступает
    в реакции с щелочами и оксидами щелочных и щелочноземельных металлов:

SO2 + СаО = CaSO3

SO2 + Na2O → Na2SO3

SO2 + NaOH = NaHSO3

SO2 + 2NaOH = Н2O + Na2SO3

  • При взаимодействии с окислителями SO2 проявляет восстановительные свойства. При этом степень окисления серы повышается:

2SO2 + O2 ↔ 2SO3

SO2 + Br2 + 2H2O → H2SO4 + 2HBr

SO2 + 2HNO3 → H2SO4 + 2NO2

SO2 + O3 → SO3 + O2

SO2 + PbO2 → PbSO4

5SO2 + 2H2O + 2KMnO4 → 2H2SO4 + 2MnSO4 + K2SO4

Обесцвечивание раствора перманганата калия KMnO4  является качественной реакцией для обнаружения сернистого газа и сульфит-иона

  • SO2 проявляет окислительные свойства при взаимодействии с сильными восстановителями, восстанавливаясь чаще всего до свободной серы:

SO2 + 2Н2S → 3S↓ + 2H2O

SO2 + 2CO → S↓ +2СО2

SO2 + С → S↓ + СO2

Оксид серы (VI), триоксид серы, серный ангидрид (SO3)

Способы получения серного ангидрида

  • SO3 можно получить из SO2 путем каталитического окисления последнего кислородом:

2SO2 + O2 ↔ 2SO3

  • Окислением SO2 другими окислителями:

SO2 + O3 → SO3 + O2

SO2 + NO2 → SO3 + NO

  • Разложением сульфата железа (III):

Fe2(SO4)3 → Fe2O3 + 3SO3

Физические
свойства серного ангидрида

При обычных условиях SO3 представляет собой бесцветную жидкость с характерным резким
запахом. На воздухе SO3 «дымит» и сильно
поглощает влагу.

SO3 – тяжелее
воздуха, хорошо растворим в воде.

SO3 ядовит!

Химические свойства серного
ангидрида

Оксид серы (VI) – это кислотный оксид.

  • Хорошо поглощает влагу и реагирует с водой образуя серную кислоту:

SO3 + H2O → H2SO4

  • Как кислотный оксид, SO3 взаимодействует с щелочами и
    основными оксидами, образуются средние или кислые соли:

SO3 + 2NaOH(избыток) → Na2SO4 + H2O

SO3 + NaOH(избыток) → NaHSO4

SO3 + MgO → MgSO4 (при сплавлении):

SO3 + ZnO = ZnSO4

  • SO3 проявляет сильные окислительные свойства, так
    как сера в находится в максимальной степени окисления (+6).

Вступает в реакции с восстановителями:

SO3 + 2KI → I2 + K2SO3

3SO3 + H2S → 4SO2 + H2O

5SO3 + 2P → P2O5 + 5SO2

  • При растворении в концентрированной
    серной кислоте образует олеум (раствор
    SO3 в H2SO4).

Сернистая кислота (H2SO3)

Способы
получения сернистой кислоты

При растворении в воде SO2 образует слабую сернистую кислоту, которая сразу частично разлагается:

SO2 + H2O ↔ H2SO3

Физические
свойства сернистой кислоты

Сернистая кислота H2SO3 двухосновная кислородсодержащая кислота. При обычных условиях неустойчива.

Валентность серы
в сернистой кислоте равна IV, а степень окисления +4.

строение сернистой кислоты

Химические свойства сернистой кислоты

Общие свойства
кислот

  • Сернистая кислота – слабая кислота, диссоциирует в две стадии. Образует два типа солей:
  • кислые – гидросульфиты

H2SO3 ↔ HSO3 + H+

  • средние – сульфиты

HSO3↔ SO32- + H+

  • Сернистая кислота самопроизвольно распадается на SO2 и H2O:

H2SO3 ↔ SO2 + H2O

Соли сернистой кислоты, сульфиты и гидросульфиты

Способы
получения сульфитов

Соли сернистой кислоты получаются при взаимодействии SO2 с щелочами и оксидами щелочных и щелочноземельных металлов:

SO2 + СаО = CaSO3

SO2 + Na2O → Na2SO3

SO2 + NaOH = NaHSO3

SO2 + 2NaOH = Н2O + Na2SO3

Физические
свойства сульфитов

Сульфиты
щелочных металлов и аммония растворимы в воде, сульфиты остальных металлов — нерастворимы
или не существуют.

Гидросульфиты
металлов хорошо растворимы в Н2O, а некоторые из
них, такие как Ca(HSO3)2 существуют
только в растворе.

Химические свойства сульфитов

Cернистая кислота – двухосновная, образует нормальные (средние) соли — сульфиты Mex(SO3)y и кислые соли — гидросульфиты Me(HSO3)x.

  • Водные растворы сульфитов подвергаются гидролизу. Реакция среды – щелочная (окрашивают лакмус в синий цвет):

SO3 + Н2O = HSO3 + ОН

Na2SO3 + Н2O = NaHSO3 + NaOH

Реакции, протекающие без изменения степени окисления:

  • Реакция с сильными кислотами:

Na2SO3 + 2HCl = 2NaCl +
SO2↑ + Н2O

NaHSO3 + HCl = NaCl + SO2↑ + Н2O

  • Термическое разложение сульфитов:

CaSO3 = СаО + SO2

  • Нормальные сульфиты в водных растворах, при избытке SO2, переходят в гидросульфиты:

CaSO3 + SO2 + Н2O = Ca(HSO3)2

  • Ионно-обменные реакции с другими солями, протекающие с образованием нерастворимых сульфитов:

Na2SO3 + ZnCl2 = ZnSO3↓ + 2NaCl

Окислительно-восстановительные реакции

Сульфиты, также как и SO2, могут быть как восстановителями, так и окислителями, т.к. атомы серы в анионах находятся в промежуточной степени окисления +4

  • Окисление водных растворов сульфитов, и гидросульфитов до сульфатов:

Na2SO3 + Вr2 + Н2O = Na2SO4 + 2НВr

5K2SO3 + 2КМnO4 + 3H2SO4 = 6K2SO4 + 2MnSO4 + 3Н2O

Na2SO3 + HNO3 = 2NaNO3 + SO2 + H2O

  • Твердые сульфиты при хранении на воздухе также медленно окисляются до сульфатов:

2Na2SO3 + O2 = 2Na2SO4

  • При нагревании сухих сульфитов с активными восстановителями (С, Mg, Al, Zn) сульфиты превращаются в сульфиды:

Na2SO3 + ЗС = Na2S + ЗСО

  • При нагревании сухих сульфитов до высоких температур сульфиты диспропорционируют, превращаются в смесь сульфатов и сульфидов:

4K2SO3 = 3K2SO4 + K2S

Серная кислота (H2SO4)

Способы
получения серной кислоты

В промышленности серную кислоту производят из серы, сульфидов
металлов, сероводорода и др.

Наиболее часто серную кислоту получают из пирита FeS2.

Основные стадии получения серной кислоты включают:

1.Обжиг пирита в кислороде в печи для обжига с получением сернистого газа:

4FeS2 +
11O2 → 2Fe2O3 +
8SO2 + Q

2. Очистка полученного сернистого газа от примесей в циклоне, электрофильтре.

3. Осушка сернистого газа в сушильной башне

4. Нагрев очищенного газа в теплообменнике.

5. Окисление сернистого газа в серный ангидрид в контактном аппарате:

2SO2 + O2 ↔ 2SO3 + Q

6. Поглощение серного ангидрида серной кислотой в поглотительной башне – получение олеума.

производство серной кислоты

Физические
свойства, строение серной кислоты

При обычных условиях серная кислота – тяжелая бесцветная маслянистая жидкость, хорошо растворимая в воде. Максимальная плотность равна 1,84 г/мл

При растворении серной кислоты в воде выделяется большое количество теплоты. Поэтому, по правилам безопасности в лаборатории при приготовлении разбавленного раствора серной кислоты во избежание разбрызгивания необходимо наливать серную кислоту в воду тонкой струйкой по стеклянной палочке при постоянном перемешивании. Но не наоборот! 

Валентность серы в серной кислоте равна VI.

строение серной кислоты

Качественные
реакции для обнаружения серной кислоты и сульфат ионов

Для обнаружения сульфат-ионов используют реакцию с растворимыми солями бария. В результате взаимодействия, образуется белый кристаллический осадок сульфата бария:

BaCl2 + Na2SO4 BaSO4↓ + 2NaCl

Видео Взаимодействие хлорида бария и сульфата натрия в растворе (качественная реакция на сульфат-ион).

Химические свойства серной кислоты

Серная кислота — сильная двухосновная кислота, образует два типа солей: средние – сульфаты, кислые – гидросульфаты.

  • Серная кислота практически полностью диссоциирует в разбавленном в растворе по первой ступени и достаточно по второй ступени:

H2SO4 ⇄ H+ + HSO4

HSO4 ⇄ H+ + SO42–

Характерны все свойства кислот:

  • Реагирует с основными оксидами, основаниями, амфотерными оксидами, амфотерными гидроксидами и аммиаком:

H2SO4 + MgO → MgSO4 + H2O

H2SO4 + КОН → KHSО4 + H2O

H2SO4 + 2КОН → К24 + 2H2O

3H2SO4 + 2Al(OH)3 → Al2(SO4)3 + 6H2O

H2SO4 + NH3 → NH4HSO4

  • Вытесняет более слабые кислоты из их солей в растворе (карбонаты, сульфиды и др.) и летучие кислоты из их солей (кроме солей HBr и HI):

Н2SO4 + 2NaHCO3 → Na2SO4 + CO2 + H2O

H2SO4 + Na2SiO3 → Na2SO4 + H2SiO3

  • Концентрированная серная кислота реагирует с твердыми солями, например нитратом натрия, хлорида натрия.

NaNO3(тв.) + H2SO4 → NaHSO4 + HNO3

NaCl(тв.) + H2SO4 → NaHSO4 + HCl

  • Вступает в обменные реакции с солями:

H2SO4 + BaCl2 → BaSO4 + 2HCl

  • Взаимодействует с металлами:

Разбавленная серная кислота взаимодействует с металлами, расположенными в ряду напряжения металлов до водорода. В результате реакции образуются соль и водород:

H2SO4(разб.) + Fe → FeSO4 + H2

H2SO4 + Zn = ZnSO4 + H2

Концентрированная серная кислота — сильный окислитель. Реакция с металлами протекает без вытеснения водорода из кислоты. В зависимости от активности металла образуются различные продукты реакции:

  • Активные металлы и цинк при обычной температуре с концентрированной серной кислотой образуют соль, сероводород (или серу) и воду:

H2SO4 + Na = Na2SO4 + Н2S↑ + H2O

5H2SO4(конц.) + 4Zn → 4ZnSO4 + H2S↑ + 4H2O

  • Металлы средней активности с концентрированной H2SO4 образуют соль, серу и воду:

4H2SO4 + 3Mg → 3MgSO4 + S + 4H2O

  • Такие металлы, как железо Fe,
    алюминий Al, хром Cr пассивируются
    концентрированной
    серной кислотой на холоде. При нагревании,
    при удалении оксидной пленки реакция возможна.

6H2SO4(конц.) + 2Fe → Fe2(SO4)3 + 3SO2 + 6H2O

6H2SO4(конц.) + 2Al → Al2 (SO4)3 + Н2S↑ + 6H2O

  • Неактивные металлы восстанавливают концентрированную серную кислоту до сернистого газа:

2H2SO4(конц.) + Cu → CuSO4 + SO2 ↑ + 2H2O

2H2SO4(конц.) + Hg → HgSO4 + SO2 ↑ + 2H2O

2H2SO4(конц.) + 2Ag → Ag2SO4 + SO2↑+ 2H2O

взаимодействие серной кислоты с металлами
  • В реакциях с неметаллами концентрированная серная кислота также проявляет окислительные свойства:

5H2SO4(конц.) + 2P → 2H3PO4 + 5SO2↑ + 2H2O

2H2SO4(конц.) + С → СО2↑ + 2SO2↑ + 2H2O

2H2SO4(конц.) + S → 3SO2 ↑ + 2H2O

3H2SO4(конц.) + 2KBr → Br2↓ + SO2↑ + 2KHSO4 + 2H2O

5H2SO4(конц.) + 8KI → 4I2↓ + H2S↑ + K2SO4 + 4H2O

H2SO4(конц.) + 3H2S → 4S↓ + 4H2O (комнатная температура)

H2SO4(конц.) + H2S = S↓ + SО2↑ + 2Н2О (при нагревании)

H2SO4(конц.) + 2HBr = Br2 + SO2 + 2H2O

  • Концентрированная серная кислота широко используется в химических процессах как водоотнимающий агент, т.к. проявляет сильное водоотнимающее действие. В органической химии ее используют при получении спиртов, простых и сложных эфиров, альдегидов и т.д.

Соли серной кислоты, сульфаты, гидросульфаты

Способы
получения солей серной кислоты

Сульфаты можно получить при взаимодействии серной кислоты с металлами,
оксидами, гидроксидами (см. Химические свойства серной кислоты). А также при
взаимодействии с другими солями, если продуктом реакции является нерастворимое
соединение.

Физические
свойства солей серной кислоты

Кристаллы разного цвета. Многие средние и кислые сульфаты растворимы
в воде. Плохо растворяются или не растворяются в воде сульфаты многозарядных
щёлочноземельных металлов (BaSO4, RaSO4), сульфаты лёгких
щёлочноземельных металлов (CaSO4, SrSO4) и сульфат свинца.

Средние сульфаты щелочных металлов термически устойчивы. Кислые
сульфаты щелочных металлов при нагревании разлагаются.

Многие средние сульфаты образуют устойчивые кристаллогидраты:

Na2SO4 ∙ 10H2O − глауберова
соль

CaSO4 ∙ 2H2O − гипс

2CaSO4 xH2O –
алебастр

CuSO4 ∙ 5H2O − медный купорос

FeSO4 ∙ 7H2O − железный купорос

ZnSO4 ∙ 7H2O − цинковый купорос

Na2CO3 ∙ 10H2O −
кристаллическая сода

KАl(SO4)2 x 12H2O
– алюмокалиевые квасцы.

Химические свойства солей серной кислоты

Разложение сульфатов на различные классы соединений в зависимости от металла, входящего в состав соли.

  • Сульфаты щелочных металлов плавятся без разложения.
  • Кислые сульфаты щелочных металлов разлагаются с отщеплением воды:

2KHSO4 → K2S2O7 + H2O↑.

  • Сульфаты металлов средней активности разлагаются на соответствующие оксиды:

ZnSO4 = ZnO + SO3

FeSO4 = 2Fe2O3 + 4SO2 + O2

2CuSO4 → 2CuO + SO2 + O2 (SO3)

2Al2(SO4)3 → 2Al2O3 + 6SO2 + 3O2

2Cr2(SO4)3 → 2Cr2O3 + 6SO2 + 3O2

  • Сульфаты тяжёлых или малоактивных металлов разлагаются с образованием металла и кислорода:

HgSO4 = Hg + SO2 + O2

  • Некоторые сульфаты проявляют окислительные свойства и вступают в реакции с простыми веществами:

CaSO4 +
C = CaO + SO2 + CO

BaSO4 +
4C = BaS + 4CO

Like this post? Please share to your friends:
  • Яковлев экономические задачи егэ
  • Язык это несомненно наиболее стабильный инструмент егэ
  • Ядерный реактор егэ
  • Яковлев стереометрия на егэ по математике
  • Язык человека показатель его культуры сочинение рассуждение