Ютуб егэ математика профиль задание 10

В ЕГЭ 2022 года добавили новую задачу на графики функций. Для решения этой задачи нужно сначала определить формулу функции, а затем вычислить ответ на вопрос задачи. И если вычисление ответа по известной формуле обычно не составляет труда, то вот определение самой формулы часто ставит школьников в тупик. Поэтому мы разберем три разных подхода к этому вопросу.

Замечание. Про то как определяется формула у прямой и параболы я написала в этой и этой статьях. Поэтому здесь в примерах я буду использовать другие функции – дробные, иррациональные, показательные и логарифмические, но все три описанных здесь способа работают и для линейных, и для квадратичных функций в том числе.

1 способ – находим формулу по точкам

Этот способ подходит вообще для любой девятой задачи, но занимает достаточно много времени и требует хорошего навыка решения систем уравнений.

Давайте разберем алгоритм на примере конкретной 9-ой задачи ЕГЭ:

задача с гиперболой

Алгоритм:

1. Находим 2 точки с целыми координатами. Обычно они выделены жирно, но если это не так, то не проблема найти их самому.
Пример:

находим две точки с целыми координатами

2. Подставляем эти координаты в «полуфабрикат» функции. Вместо (f(x))– координату игрек, вместо (x) – икс. Получается система.

составляем уравнения

3. Решаем эту систему и получаем готовую формулу.

решаем систему

4. Готово, функция найдена, можно переходить ко второму этапу – вычислению (f(-8)). Если вы вдруг не знаете, что это значит – в конце статьи я рассматриваю этот момент более подробно.

отвечаем на вопрос задачи

Давайте посмотрим метод еще раз на примере с логарифмической функцией.
Пример:

Пример с логарифмической функцией

2 способ – преобразование графиков функций

Этот способ сильно быстрее первого, но требует больше знаний. Для использования преобразований функций нужно знать, как выглядят функции без изменения и как преобразования их меняют. Наиболее удобно использовать этот способ для иррациональной функции ((y=sqrt{x}) ) и функции обратной пропорциональности ((y=frac{1}{x})).

Вот как выглядит применение этого способа:

преобразование графиков функций

Для использования этого способа надо знать, как выглядят изначальные функции:

Виды функций

И понимать, как меняются функции от преобразований:

Преобразование графиков функций

примеры преобразований функций

Преобразование показательной функции Преобразование гипербол

Часто даже по «полуфабрикату» функции понятно, какие преобразования сделали с функцией:

как по формуле определить какие были преобразования с функцией

Пример:

пример с функцией обратной пропорциональности

3 способ – гибридный

Идеально подходит для логарифмических и показательных функций, так как обычно у таких функций неизвестно основание и с помощью преобразований его не найти. С другой стороны, независимо от оснований любая показательная функция должна проходить через точку ((0;1)), а любая логарифмическая — через точку ((1;0)).

показательная и логарифмическая функция

По смещению этих точек легко понять, как именно двигали функцию, но только если ее не растягивали, а лишь перемещали вверх-вниз, влево-вправо (как обычно и бывает в задачах на ЕГЭ).

Основание же лучше находить уже следующим действием, используя подстановку координат точки в «полуфабрикат» функции.

пример с логарифмической функцией

пример с логарифмической функцией

Как отвечать на вопросы в задаче, когда уже определили функцию

— Если просят найти (f)(любое число), то нужно это число подставить в готовую функцию вместо икса.
Пример:

что значит найти f от числа

— Если просят найти «при каком значении x значение функции равно *любому числу*», то надо решить уравнение, в одной части которого будет функция, а в другой — то самое число. Аналогично надо поступить, если просят «найти корень уравнения (f(x)=) *любое число*».
Пример:

найдите, при каком значении x значение функции равно 8

— Если просят найти абсциссу точки пересечения – надо приравнять 2 функции и решить получившееся уравнение. Корень уравнения и будет искомой абсциссой. Аналогично надо делать в задачах, где даны две точки пересечения (A)(*любое число*;*другое число*) и (B(x_0;y_0)) и просят найти (x_0).
Пример:

найдите точку пересечения функций

— Если просят найти ординату точки пересечения – надо приравнять 2 функции, найти иксы и подставить подходящий икс в любую функцию. Точно также решаем если просят найти (y_0) точки пересечения двух функций.
Пример:

найдите ординату точки пересечения

— Иногда просят найти просто какой-либо из коэффициентов функции. Тогда надо просто восстановить функцию и записать в ответ то, о чем спросили:
Пример:

найдите k

Skip to content

ЕГЭ по математике — Профиль 2023. Открытый банк заданий с ответами.

ЕГЭ по математике — Профиль 2023. Открытый банк заданий с ответами.admin2023-03-05T19:16:30+03:00

Графики функций.

 Задание 10 ЕГЭ по
математике (профильный уровень)

              
Как формулируется задание 10 ЕГЭ по математике? По графику функции, который
дается в условии, вам нужно определить неизвестные параметры в ее формуле.
Возможно — найти значение функции в некоторой точке или координаты точки
пересечения графиков функций.

            
Чтобы выполнить это задание, надо знать, как выглядят и какими свойствами
обладают графики элементарных функций. Надо уметь читать графики, то есть
получать из них необходимую информацию. Например, определять формулу функции по
ее графику.       

Рекомендации:

Запоминай, как
выглядят графики основных элементарных функций.

Замечай
особенности графиков, чтобы не перепутать параболу с синусоидой : -)

Проверь себя:
какие действия нужно сделать с формулой функции, чтобы сдвинуть ее график по
горизонтали или по вертикали, растянуть, перевернуть?

Разбирая решения
задач, обращай внимание на то, как мы ищем точки пересечения графиков или
неизвестные переменные в формуле функции. Такие элементы оформления встречаются
также в задачах с параметрами.

               Важный
принцип — это логичность. В шутливой манере он говорит: «нормальные герои
всегда идут в обход». Нужно учиться использовать наличный запас знаний,
применяя различные «хитрости» и «правдоподобные
рассуждения» для ответа наиболее простым и понятным способом.

Автор материала — Анна Малкова

На этой странице – решения новых задач из Открытого Банка заданий, из которого формируется Банк заданий ФИПИ. Вы знаете, что в Проекте ЕГЭ-2022 в варианте Профильного ЕГЭ по математике не одна задача на теорию вероятностей, а две, причем вторая – повышенной сложности. Покажем, какие задачи могут вам встретиться на ЕГЭ-2022. Проект пока не утвержден, возможны изменения, но ясно одно – теория вероятностей на ЕГЭ будет на более серьезном уровне, чем раньше. Раздел будет дополняться, так что заходите на наш сайт почаще!

1. Игральный кубик бросают дважды. Известно, что в сумме выпало 8 очков. Найдите вероятность того, что во второй раз выпало 3 очка.

Решение:

Выпишем возможные варианты получения 8 очков в сумме:

Подходит только вариант 5; 3. Вероятность этого события равна 1 : 5 = 0,2 (один случай из 5 возможных).

Ответ: 0,2.

2. В ящике 4 красных и 2 синих фломастера. Фломастеры вытаскивают по очереди в случайном порядке. Какова вероятность того, что первый раз синий фломастер появится третьим по счету?

Решение:

Благоприятными будут следующие исходы:

Первый раз – вытащили красный фломастер,

И второй раз – красный,

А третий раз – синий.

Вероятность вытащить красный фломастер (которых в ящике 4) равна displaystyle frac{4}{6}=frac{2}{3}.

После этого в ящике остается 5 фломастеров, из них 3 красных, вероятность вытащить красный равна displaystyle frac{3}{5}.

Наконец, когда осталось 4 фломастера и из них 2 синих, вероятность вытащить синий равна displaystyle frac{1}{2}.

Вероятность события {красный – красный – синий } равна произведению этих вероятностей, то есть displaystyle frac{2}{3}cdot frac{3}{5}cdot frac{1}{2}=frac{1}{5}=0,2.

Ответ: 0,2.

3. В коробке 10 синих, 9 красных и 6 зеленых фломастеров. Случайным образом выбирают 2 фломастера. Какова вероятность того, что окажутся выбраны один синий и один красный фломастер?

Решение:

Всего в коробке 25 фломастеров.
В условии не сказано, какой из фломастеров вытащили первым – красный или синий.

Предположим, что первым вытащили красный фломастер. Вероятность этого displaystyle frac{9}{25}, в коробке остается 24 фломастера, и вероятность вытащить вторым синий равна displaystyle frac{10}{24}. Вероятность того, что первым вытащили красный, а вторым синий, равна displaystyle frac{9}{25} cdot frac{10}{24} = frac{3}{5} cdot frac{1}{4} = frac{3}{20}.

А если первым вытащили синий фломастер? Вероятность этого события равна displaystyle frac{10}{25}=frac{2}{5}. Вероятность после этого вытащить красный равна displaystyle frac{9}{24}=frac{3}{8}, вероятность того, что синий и красный вытащили один за другим, равна displaystyle frac{2}{5}cdot frac{3}{8} = frac{3}{20}.

Значит, вероятность вытащить первым красный, вторым синий или первым синий, вторым красный равна displaystyle frac{3}{20} + frac{3}{20} =0,3.

А если их доставали из коробки не один за другим, а одновременно? Вероятность остается такой же: 0,3. Потому что она не зависит от того, вытащили мы фломастеры один за другим, или с интервалом в 2 секунды, или с интервалом в 0,5 секунды… или одновременно!
Ответ: 0,3.

4. При подозрение на наличие некоторого заболевания пациента отправляют на ПЦР-тест. Если заболевание действительно есть, то тест подтверждает его в 86 % случаев. Если заболевания нет, то тест выявляет отсутствие заболевания в среднем в 94% случаев.

Известно, что в среднем тест оказывается положительным у 10% пациентов, направленных на тестирование. При обследовании некоторого пациента врач направил его на ПЦР-тест, который оказался положительным. Какова вероятность того, что пациент действительно имеет это заболевание?

Решение:

Задача похожа на уже знакомую тем, кто готовится к ЕГЭ (про гепатит), однако вопрос здесь другой.
Уточним условие: «Какова вероятность того, что пациент, ПЦР-тест которого положителен, действительно имеет это заболевание?». В такой формулировке множество возможных исходов — это число пациентов с положительным результатом ПЦР-теста, причем только часть из них действительно заболевшие.

Пациент приходит к врачу и делает ПЦР-тест. Он может быть болен этим заболеванием – с вероятностью х. Тогда с вероятностью 1 – х он этим заболеванием не болен.

Анализ пациента может быть положительным по двум причинам:
а) пациент болеет заболеванием, которое нельзя называть, его анализ верен; событие А,
б) пациент не болен этим заболеванием, его анализ ложно-положительный, событие В.
Это несовместные события, и вероятность их суммы равна сумме вероятностей этих событий.

Имеем:

P(A)=0,86x;

P(B)=0,06 cdot (1-x);

P(A+B)=P(A)+P(B)=0,86x+0,06 (1-x)=0,1.

Мы составили уравнение, решив которое, найдем вероятность x.

x = 0,05.

Что такое вероятность х? Это вероятность того, что пациент, пришедший к доктору, действительно болен. Здесь множество возможных исходов — это количество всех пациентов, пришедших к доктору.

Нам же нужно найти вероятность z того, что пациент, ПЦР-тест которого положителен, действительно имеет это заболевание. Вероятность этого события равна 0,05 cdot 0,86 (пациент болен и ПЦР-тест выявил заболевание, произведение событий). С другой стороны, эта вероятность равна 0,1 cdot z (у пациента положительный результат ПЦР-теста, и при выполнении этого условия он действительно болен).

Получим: 0,05 cdot 0,86 = 0,1 cdot z, отсюда z = 0,43.
Ответ: 0,43.

Вероятность того, что пациент с положительным результатом ПЦР-теста действительно болен, меньше половины!
Кстати, это реальная проблема для диагностики в медицине, то есть в задаче отражена вполне жизненная ситуация.

5. Телефон передает sms-сообщение. В случае неудачи телефон делает следующую попытку. Вероятность того, что сообщение удастся передать без ошибок в каждой следующей попытке, равна 0,4. Найдите вероятность того, что для передачи сообщения потребуется не больше 2 попыток.

Решение:

Здесь все просто. Либо сообщение удалось передать с первой попытки, либо со второй.
Вероятность того, что сообщение удалось передать с первой попытки, равна 0,4.
С вероятностью 0,6 с первой попытки передать не получилось. Если при этом получилось со второй, то вероятность этого события равна 0,6 cdot 0,4.
Значит, вероятность того, что для передачи сообщения потребовалось не более 2 попыток, равна 0,4 + 0,4 cdot 0,6 = 0,4 cdot ( 1 + 0,6 ) = 0,64.

Ответ: 0,64.

6. Симметричную монету бросают 10 раз. Во сколько раз вероятность события «выпадет ровно 5 орлов» больше вероятности события «выпадет ровно 4 орла»?

Решение:

А это более сложная задача. Можно, как и в предыдущих, пользоваться определением вероятности и понятиями суммы и произведения событий. А можно применить формулу Бернулли.

Формула Бернулли:

– Вероятность P_n^m того, что в n независимых испытаниях некоторое случайное событие A наступит ровно m раз, равна:

P_n^m=C_n^m p^m q^{n-m}, где:

p – вероятность появления события A в каждом испытании;
q=1-p – вероятность непоявления события A в каждом испытании.

Коэффициент C_n^m часто называют биномиальным коэффициентом.

О том, что это такое, расскажем с следующих статьях на нашем сайте. Чтобы не пропустить – подписывайтесь на нашу рассылку.

А пока скажем просто, как их вычислять.

displaystyle C_n^m=frac{n!}{m!(n-m)!}

Нет, это не заклинание. Не нужно громко кричать: Эн!!!! Поделить на эм! И на эн минус эм! 🙂 То, что вы видите в формуле, – это не восклицательные знаки. Это факториалы.
На самом деле все просто: n! (читается: эн факториал) – это произведение натуральных чисел от 1 до n. Например,

6! = 1cdot 2cdot 3cdot 4cdot 5cdot 6.

Пусть вероятность выпадения орла при одном броске монеты равна displaystyle frac{1}{2}, вероятность решки тоже displaystyle frac{1}{2}. Давайте посчитаем вероятность того, что из 10 бросков монеты выпадет ровно 5 орлов.

displaystyle P_1=C_{10}^5 cdot left ( frac{1}{2} right )^5 cdot left ( frac{1}{2} right )^5 =frac{10!}{5!cdot 5!}cdot frac{1}{2^{10}}.

Вероятность выпадения ровно 4 орлов равна

displaystyle P_2=C_{10}^4 cdot left ( frac{1}{2} right )^4 cdot left ( frac{1}{2} right )^6 =frac{10!}{4!cdot 6!}cdot frac{1}{2^{10}}.

Найдем, во сколько раз P_1 больше, чем P_2.

displaystyle frac{P_1}{P_2}=frac{10!cdot 4!cdot 6!cdot 2^{10}}{5!cdot 5!cdot 2^{10}cdot 10!}=frac{4!}{5!}=frac{1cdot 2cdot 3cdot 4cdot 1cdot 2cdot 3 cdot 4cdot 5cdot 6}{1cdot 2cdot 3cdot 4cdot 5 cdot 1cdot 2cdot 3 cdot 4cdot 5}=

displaystyle =frac{6}{5}=1,2.

Ответ: 1,2.

7. Стрелок стреляет по пяти одинаковым мишеням. На каждую мишень дается не более двух выстрелов, и известно, что вероятность поразить мишень каждым отдельным выстрелом равна 0,6. Во сколько раз вероятность события «стрелок поразит ровно 5 мишеней» больше вероятности события «стрелок поразит ровно 4 мишени»?

Решение:

Стрелок поражает мишень с первого или со второго выстрела.

Вероятность поразить мишень равна

0,6 + 0,4 cdot 0,6 = 0,84.

Вероятность поразить 5 мишеней из 5 равна 0,84^5 = P_1 .

Вероятность поразить 4 мишени из 5 находим по формуле Бернулли:

displaystyle P_2={C_5}^4 cdot 0,84^4 cdot 0,16 = frac{5!}{4!}cdot 0,84^4 cdot 0,16 = 5cdot 0,84^4 cdot 0,16 ;

displaystyle frac{P_1}{P_2}=frac{0,84^5}{5cdot 0,84^4 cdot 0,16} = frac{0,84}{0,8} = 1,05.

8. В одном ресторане в г. Тамбове администратор предлагает гостям сыграть в «Шеш-беш»: гость бросает одновременно 2 игральные кости. Если он выбросит комбинацию 5 и 6 очков хотя бы один раз из двух попыток, то получит комплимент от ресторана: чашку кофе или десерт бесплатно. Какова вероятность получить комплимент? Результат округлите до сотых.

Решение:

Ресторан «Шеш-Беш» должен сказать составителям задачи спасибо: теперь популярность вырастет во много раз :-)
Заметим, что условие не вполне корректно. Например, я бросаю кости и при первом броске получаю 5 и 6 очков. Надо ли мне бросать второй раз? Могу ли я получить 2 десерта, если дважды выброшу комбинацию из 5 и 6 очков?

Поэтому уточним условие. Если при первом броске получилась комбинация из 5 и 6 очков, то больше кости я не бросаю и забираю свой десерт (или кофе).

Если первый раз не получилось – у меня есть вторая попытка.

Решим задачу с учетом этих условий.

При броске одной игральной кости возможны 6 исходов, при броске 2 костей – 36 исходов. Только два из них благоприятны: это 5; 6 и 6; 5, вероятность каждого из них равна displaystyle frac{1}{36}. Вероятность выбросить 5 и 6 при первом броске равна displaystyle frac{1}{36} + frac{1}{36}=frac{2}{36}=frac{1}{18}.

Вероятность того, что с первой попытки не получилось, равна displaystyle 1- frac{1}{18}=frac{17}{18}.

Если в первый раз не получилось выбросить 5 и 6, а во второй раз получилось – вероятность этого события равна displaystyle frac{17}{18}cdot frac{1}{18}.

Вероятность выбросить 5 и 6 с первой или со второй попытки равна displaystyle frac{1}{18}+ frac{1}{18} cdot frac{17}{18}= frac{1}{18} cdot frac{35}{18} = frac{35}{324}approx 0,11.

9. Игральную кость бросили один или несколько раз. Оказалось, что сумма всех выпавших очков равна 4. Какова вероятность того, что был сделан один бросок? Ответ округлите до сотых.

Решение:

Рассмотрим возможные варианты. Игральную кость могли бросить:
1 раз, выпало 4 очка. Вероятность этого события равна displaystyle frac{1}{6} (1 благоприятный исход из 6 возможных). При этом, если получили 4 очка, кость больше не бросаем.

2 раза, выпало 3 и 1 или 1 и 3 или 2 и 2. При этом, если получили 4 очка, больше не бросаем кость. Для 2 бросков: всего 36 возможны исходов, из них 3 благоприятных, вероятность получить 4 очка равна displaystyle frac{3}{36}.

3 раза, выпало 1, 1, 2 или 1, 2, 1 или 2, 1, 1. Если получили 4 очка – больше не бросаем кость. Для 3 бросков: всего 6^3 = 216 возможны исходов, из них 3 благоприятных, вероятность получить 4 очка равна displaystyle frac{3}{216}.

4 раза, каждый раз по 1 очку. Вероятность этого события равна displaystyle frac{1}{6^4}.

Вероятность получить 4 очка равна

displaystyle P=frac{1}{6}+frac{3}{6^2}+frac{3}{6^3}+frac{1}{6^4}=frac{1}{6}left ( 1+frac{3}{6}+frac{3}{6^2}+frac{1}{6^3} right )=

displaystyle =frac{1}{6}left ( 1+frac{1}{6} right )^3=frac{1}{6}cdot frac{7^3}{6^3}=frac{7^3}{6^4}.

Воспользуемся формулой условной вероятности.

Пусть P_1 — вероятность получить 4 очка, сделав 1 бросок; displaystyle P_1=frac{1}{6} (для одного броска: 6 возможных исходов, 1 благоприятный);

P — вероятность получить 4 очка с одной или нескольких попыток, displaystyle P=frac{7^3}{6^4};

P_2 — вероятность, что при этом был сделан только один бросок;

P_1=Pcdot P_2;

displaystyle frac{1}{6}=frac{1}{6}cdot frac{7^3}{6^3}cdot P_2;

displaystyle P_2=frac{6^3}{7^3}=frac{216}{343}approx 0,63.

Ответ: 0,63.

10. В викторине участвуют 6 команд. Все команды разной силы, и в каждой встрече выигрывает та команда, которая сильнее. В первом раунде встречаются две случайно выбранные команды.

Ничья невозможна. Проигравшая команда выбывает из викторины, а победившая команда играет со следующим случайно выбранным соперником. Известно, что в первых трех играх победила команда А. Какова вероятность того, что эта команда выиграет следующий раунд?

Решение:

Пусть силы команд равны 1, 2, 3, 4, 5 и 6.
В трех раундах участвуют 4 команды, то есть выбирается 4 числа из 6 и среди этих четырех находится наибольшее.
Выпишем в порядке возрастания, какие 4 команды могли участвовать в первых трех раундах:

1234, 1235, 1236, 1245, 1246, 1256, 1345, 1346, 1356, 1456, 2345, 2346, 2356, 2456, 3456 — всего 15 вариантов.

Среди этих 15 групп есть только одна, в которой 4 — наибольшее число. Это группа 1234. Однако, если команда 4 победила команды 1, 2 и 3, то у нее нет шансов выиграть в следующем раунде у команды 5 или 6.

Есть также 4 группы, в которых 5 — наибольшее число. Вероятность того, что команда 5 победила в трех первых раундах, равна displaystyle frac{4}{15}. В следующем туре команда 5 встретится либо с командой 6 (и проиграет), либо с командой 1, 2, 3 или 4 и выиграет, то есть в четвертом раунде команда 5 побеждает с вероятностью displaystyle frac{1}{2}.

Есть также 10 групп, где 6 — наибольшее число. Вероятность того, что команда 6 победила в трех первых раундах, равна displaystyle frac{10}{15}. В четвертом туре команда 6 побеждает с вероятностью 1 (она самая сильная). Соответственно, в следующем туре команда 6 побеждает с вероятностью 1.
Получается displaystyle frac{4}{15} cdot frac{1}{2} + frac{10}{15} cdot 1 = frac{12}{15} = frac{4}{5} — вероятность команды, победившей в 3 первых турах, победить в четвертном.

Ответ: displaystyle frac{4}{5}.

И наконец, хитроумная задача, совсем не похожая на школьную теорию вероятностей. В математике ее называют «задачей о разорении игрока». Это уже крутейший теорвер! Будем надеяться, что в варианты ЕГЭ ее все-таки включать не будут.

11. Первый член последовательности целых чисел равен 0. Каждый следующий член последовательности с вероятностью р = 0,8 на единицу больше предыдущего и с вероятностью 1 – р меньше предыдущего. Какова вероятность того, что какой-то член этой последовательности окажется равен – 1?

Решение:

Кошмар, что и говорить, и точно не задача из Части 1 ЕГЭ. Будем разбираться.
Вначале мы находимся в точке 0, из нее можем попасть в точку с координатой 1 или в точку с координатой -1. Дальше возможно увеличение или уменьшение координаты на каждом шаге, а найти надо вероятность того, что когда-либо попадем в точку -1.

Обозначим P_1 – вероятность когда-либо попасть в точку -1, если сейчас мы находимся в точке 0,
P_i – вероятность когда-либо попасть в точку -1, если сейчас мы находимся в точке i.

Из точки 0 можно пойти вверх или вниз. Если мы идем вниз (с вероятностью q=1 – р) – мы сразу попадаем в точку -1.

Поскольку из точки 0 можно пойти вверх или вниз, и эти события несовместны, получим:

P_1= q + p cdot P_2, где P_2 – вероятность попасть когда-нибудь в точку -1, находясь в данный момент в точке 1.
А из точки 1 в точку – 1 можно попасть следующим образом: сначала в точку 0, потом в точку – 1; вероятность каждого из этих событий равна P_1.
Да, это сложно воспринять! Но давайте вернемся к обозначениям: Р1 – вероятность когда-либо попасть в точку -1, если сейчас мы находимся в точке 0. И она точно такая же, как вероятность когда-либо попасть в точку 0, если сейчас мы находимся в точке 1.
Значит, вероятность попадания из точки 1 в точку – 1 равна {P_1}^2 . Мы получаем квадратное уравнение: P_1 = q +p cdot {P_1}^2 .

По условию, q = 1 - p = 0,2. Тогда 0,8cdot{P_1}^2 - P_1 + 0,2 = 0;
4 cdot {P_1}^2 - 5P_1 + 1 = 0. Корни этого уравнения: displaystyle P_1 = 1 или displaystyle P_1 = frac{1}{4} = frac{q}{p}.

Какой из этих корней выбрать? Оказывается, если по условию displaystyle frac{q}{p} textgreater 1, то в ответе получится 1 (всегда попадем в точку -1).
А если, как в нашем случае, displaystyle frac{q}{p} textless 1, то ответ displaystyle frac{q}{p} , то есть 0,25.
Ответ: 0,25.

А теперь представим себе, что будет, если эту задачи все-таки включат в курс подготовки к ЕГЭ. Учителя будут говорить ученикам: если тебе надо попасть из 0 в точку – 1, вероятность перехода вверх равна р, вероятность перехода вниз равна q, и если q textless p, то в ответе будет displaystyle frac{q}{p}, а если q textgreater p, то в ответе будет 1. Бессмысленная зубрежка, короче говоря.

Задачи, разобранные в этой статье, взяты из Открытого Банка заданий ЕГЭ по математике: mathege.ru

Будут ли эти задачи — и особенно последние — на ЕГЭ-2022? Вот официальный ответ ФИПИ:

«Открытость и прозрачность ЕГЭ, наличие открытых банков, дает возможность развивать различные ресурсы, способствующие повышению качества образования.

При этом вся официальная информация, спецификации, демонстрационные варианты, открытые банки, содержатся только на сайте ФИПИ. Типы заданий, которые будут включены в ЕГЭ по математике в 2022 году прошли широкое обсуждение и апробацию в регионах, соответствуют ФГОС.

ФИПИ не комментирует содержание других ресурсов».
Ждем, когда на сайте ФИПИ появятся подборки задач №10 ЕГЭ-2022.

Благодарим за то, что пользуйтесь нашими публикациями.
Информация на странице «Новые задачи по теории вероятностей из Открытого Банка заданий ЕГЭ, 2021-2022 год» подготовлена нашими авторами специально, чтобы помочь вам в освоении предмета и подготовке к экзаменам.
Чтобы успешно сдать необходимые и поступить в ВУЗ или техникум нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими статьями из разделов нашего сайта.

Публикация обновлена:
09.03.2023

Новые задания №10 ЕГЭ 2022 по математике профильного уровня — вероятности сложных событий.

Для успешного результата необходимо уметь моделировать реальные ситуации на языке теории вероятностей и статистики, вычислять в простейших случаях вероятности событий.

Задание №10 ЕГЭ 2022 математика профильный уровень — скачать прототипы

→ Теоремы о вероятностях событий

→ Теория вероятностей повышенной сложности

→ Линия 10 – задания повышенного уровня сложности с кратким ответом по курсу «Теория вероятностей и статистика» от ФИПИ

Источник: math100.ru

Еще несколько заданий из открытого банка заданий ЕГЭ от ФИПИ (по кодификатору элементов содержания пункт 6.3).

4900. В чемпионате по гимнастике участвуют 25 спортсменок: 6 из Венгрии, 7 из Румынии, остальные из Болгарии. Порядок, в котором выступают гимнастки, определяется жребием. Найдите вероятность того, что спортсменка, выступающая первой, окажется из Болгарии.

4881. В соревнованиях по толканию ядра участвуют спортсмены из четырёх стран: 7 из Великобритании, 6 из Франции, 4 из Германии и 3 из Италии. Порядок, в котором выступают спортсмены, определяется жребием. Найдите вероятность того, что спортсмен, выступающий первым, окажется из Великобритании.

4862. Научная конференция проводится в 3 дня. Всего запланировано 70 докладов: в первый день 28 докладов, остальные распределены поровну между вторым и третьим днями. На конференции планируется доклад профессора М. Порядок докладов определяется жеребьёвкой. Какова вероятность того, что доклад профессора М. окажется запланированным на последний день конференции?

4843. Конкурс исполнителей проводится в 5 дней. Всего заявлено 75 выступлений: по одному от каждой страны, участвующей в конкурсе. Исполнитель из России участвует в конкурсе. В первый день запланировано 27 выступлений, остальные распределены поровну между оставшимися днями. Порядок выступлений определяется жеребьёвкой. Какова вероятность того, что выступление исполнителя из России состоится в третий день конкурса?

4824. На конференцию приехали 2 учёных из Дании, 7 из Польши и 3 из Венгрии. Каждый из них делает на конференции один доклад. Порядок докладов определяется жеребьёвкой. Найдите вероятность того, что четвёртым окажется доклад учёного из Венгрии.

При отработке данного задания будет полезна книга:

Элементы теории вероятностей для ЕГЭ по математике - задание 10

Купить ЕГЭ 2022 Математика. Профильный Теория вероятности

Связанные страницы:


Пройти тестирование по этим заданиям
Вернуться к каталогу заданий

Версия для печати и копирования в MS Word

1

Какова вероятность того, что случайно выбранный телефонный номер оканчивается двумя чётными цифрами?


2

Если шахматист А. играет белыми фигурами, то он выигрывает у шахматиста Б. с вероятностью 0,52. Если А. играет черными, то А. выигрывает у Б. с вероятностью 0,3. Шахматисты А. и Б. играют две партии, причём во второй партии меняют цвет фигур. Найдите вероятность того, что А. выиграет оба раза.


3

На рисунке изображён лабиринт. Паук заползает в лабиринт в точке «Вход». Развернуться и ползти назад паук не может, поэтому на каждом разветвлении паук выбирает один из путей, по которому ещё не полз. Считая, что выбор дальнейшего пути чисто случайный, определите, с какой вероятностью паук придёт к выходу D.


4

Вероятность того, что в случайный момент времени температура тела здорового человека окажется ниже чем 36,8 °С, равна 0,81. Найдите вероятность того, что в случайный момент времени у здорового человека температура окажется 36,8 °С или выше.


5

При изготовлении подшипников диаметром 67 мм вероятность того, что диаметр будет отличаться от заданного не больше, чем на 0,01 мм, равна 0,965. Найдите вероятность того, что случайный подшипник будет иметь диаметр меньше чем 66,99 мм или больше чем 67,01 мм.

Пройти тестирование по этим заданиям

Понравилась статья? Поделить с друзьями:
  • Юридическая клиника экзамен
  • Юнг полное собрание сочинений купить
  • Юзгу сдать экзамен
  • Юзгу подготовка к егэ
  • Ювенальная юстиция вопросы к экзамену