За сколько можно подготовиться к егэ по математике на профильном уровне 1 часть

Как часто вы слышите от учителей: «Сначала делайте все простые задания и откладывайте сложные напоследок, тогда вы сможете успеть все сделать быстро!»? Но действительно ли нужно следовать этому совету?

Давайте разбираться.

Сколько времени нам дают на ЕГЭ по математике? Сколько времени нам дается на ЕГЭ по базовой математике

Надо понимать, что на ЕГЭ у нас на самом деле не так много времени. К тому же стоит отметить, что базовая и профильная математика совершенно разные вещи. 

Сколько времени нам дается на ЕГЭ по базовой математике?

Поскольку базовая математика не такой сложный предмет, который нужен лишь для оценки в аттестат, на него выделяется 3 часа.

Сколько времени нам дается на ЕГЭ по профильной математике?

На все про все дается всего лишь 3 часа 55 минут, за которые нужно не только успеть решить все задания, но и переписать их в бланки ответов. А ЕГЭ по профильной математике по статистике является одним из самых сложных предметов, на котором ученики зачастую не успевают решить все за такой короткий промежуток времени. Именно поэтому так важно правильно разделить время и четко понимать за каким баллом ты гонишься.

Сколько баллов вы можете получить на ЕГЭ? 

Всего мы можем получить 32 первичных балла. Получается, что 1 первичный балл равен 4-5 вторичным. Далее мы будем разбираться уже во вторичных баллах.

Эта статья не даст вам знания на 100 баллов, однако, мы постараемся помочь вам грамотно распределить время на экзамене для того, чтобы вы не столкнулись с проблемой, когда вы можете решить все идеально, но просто не успеваете.

Для начала задайте себе вопрос: «За каким баллом я гонюсь?»

Цель менее 70 балловСколько баллов вы можете получить на ЕГЭ

Если ваша цель набрать средний балл, не стоит сдавать свою работу уже через час. Спешка и невнимательность – наши главные враги, поэтому даже для невысокого балла нужно грамотное распределение времени. Чтобы набрать 70 или менее вторичных баллов, вам большую часть внимания нужно сосредоточить на первой части.

С 10:00 до 11:20 полностью решаем первую часть.

Далее даем себе передохнуть пару минут (можете попить воды или скушать шоколадку – это отвлечет вас и приведет вашу мозговую активность в норму).

С 11:30 до 12:10 проверяем свои решения на наличие ошибок и переносим ответы в КИМы.

И после этого, ни в коем случае не стоит все сдавать сразу! У вас еще есть время, которое можно потратить с пользой.

Оставшиеся 1,5 часа вы можете потратить на задания с подробным ответом. Вам вполне может повести с заданиями №13,15,17, которые являются самыми легкими. А также, иногда задание №19 можно решить исходя из логики. Таким образом вы сможете подстраховаться, если вдруг в первой части у вас окажутся ошибки.

Цель 70-85 баллов

Вот здесь уже начинаются трудности. Если вы хотите получить балл выше 70, вы уже не будете иметь право на ошибку в заданиях с кратким ответом.

С 10:00 до 10:40 полностью решаем задания из 1 части и переносим их в бланки ответов.

Немного отдыхаем, пьем воды и приступаем к заданиям с развернутым ответом.

С 10:50 до 12:00 решаем самые легкие задания из второй части (это задания № 13,15,17) и так же сразу переносим все в бланки, чтобы потом не путаться в ответах.

Если вы решите все эти задания правильно или же с парой ошибок, вы уже получите желаемый балл. Однако всегда стоит, как это говорится, «держать туз в рукаве». Поэтому, после того как выполните задания №13,15,17, внимательно посмотрите на остальные задания второй части. Если вам показалось что-то относительно простым – стоит попробовать решить. Лишние баллы никому еще не мешали!

Цель 85-95 баллов

Тем, кто хочет набрать выше 85 баллов придется очень сильно постараться, ведь им придется играть не только с удачей, но и в гонку со временем. Первую часть в данном случае и вовсе нужно решать «с закрытыми глазами».

Итак, с 10:00 до 10:20 решаем все тестовые задания. С ними у вас не должно возникать никаких трудностей, если ваша цель – высочайший балл.

С 10:20 до 11:30 решаем уже в чистовике задания №13,15,17. Опять-таки, если ваша цель – 90 баллов, эти задания вы должны «щелкать как орешки».

С 11:30 до 12:30 пытаемся решить задания №14 и №16. Решаем в порядке сложности, от самого легкого.

С 12:30 до 12:35 даем себе наконец передохнуть, чтобы подготовить свой мозг к последним заданиям.

С 12:35 и до конца экзамена решаем задания №18,19. Сначала быстро пробегаемся глазами, определяем самое легкое задания и уже только после этого решаем в порядке возрастания сложности.

Цель 95-100 баллов

Сколько времени нам дают на ЕГЭ по математике

И последнее, самое сложное и почти нереальное. То, что снится школьникам в хороших снах.

В данном случае надо понимать, что у вас в принципе нет права на ошибку (разве что на одну или две незначительные). Вы должны быть идеально подготовленными для этого и вот здесь уже без очень четкого распределения времени – никуда.

С 10:00 до 10:20 не останавливаясь ни на чем, решаем задания первой части.

С 10:20 до 11:10 решаем простейшие для вас номера 13,15,17. Они, как и тестовая часть, у вас должны быть готовы как по шаблону, быстро и четко.

С 11:10 до 11:20 дам себе немного отдохнуть, иначе от такого огромного количества информации за короткое время мозг начинает просто «закипать», а вам ведь нужно еще решить самое сложное!

С 11:20 до 12:30 решаем задачи с чертежами. Важно! В черновике нужно только нарисовать чертеж и записать очень кратко все, что нужно, а само подробное решение нужно писать сразу в чистовик. В противном случае у вас не останется времени на остальные задания, а мы ведь целимся на успешный балл.

С 12:30 до 12:35 даем себе еще немного передохнуть. Попейте воды и немного настройтесь на выполнение следующих, не менее сложных задач.

С 12:35 до 13:40 решаем оставшиеся задачи №18 и №19. Для начала выбираем самую легкую из них. Решаем так же в основном в чистовике, в черновике лишь делаем изначально заметки и рисунки, если нужно.

Оставляем себе 15 минут в конце, чтобы спокойно вздохнуть и еще раз все перепроверить и ничего не забыть.

Важно! За каким бы вы баллом ни стремились, переписывайте сразу все ответы в бланки! Так вы не будете нервничать о том, что в конце в спешке могли что-то неправильно написать.

Не ленитесь и усердно готовьтесь! Удачи вам на экзаменах!

Подготовка к ЕГЭ по математике

Из каких частей состоит ЕГЭ по математике в 2023 году

Математика — один из двух обязательных предметов на ЕГЭ. Но, в отличие от русского языка, эта дисциплина предлагает 2 уровня сложности: профильный и базовый. Какий именно вариант выбрать, зависит от вашей цели. Если вуз, в который вы хотите поступить, требует профильного уровня, нужно сдавать его. Обычно это касается технических специальностей.

Для получения аттестата выпускникам школ хватит и базового. Но финальное решение за вами. Если вы хотите сдать профильный вариант, просто чтобы проверить свои знания и уровень подготовки, — дерзайте!

Структура базового уровня ЕГЭ по математике

Базовый уровень проверяет основные знания школьника по математике. Такой экзамен не делится на части: в него входит только 21 задание с кратким ответом. Ответом может быть целое число, десятичная дробь или ряд цифр. По уровням сложности задания экзамена тоже не делятся — все задачи в нем базового уровня. Чтобы выполнить такую работу, ученику дают 180 минут.

Структура профильного уровня ЕГЭ по математике

Варианты профильного уровня проверяют основные и углубленные знания школьника. В 2023 году ЕГЭ состоит из 2 частей:

  • 1-я часть: 11 задач с кратким ответом;

  • 2-я часть: 7 задач с развернутым ответом.

В первой части ответом может быть целое число, десятичная дробь или ряд цифр. Во второй части — полное обоснованное решение и ответ. Чтобы выполнить задания экзамена, школьнику дают 235 минут.

Задачи ЕГЭ по математике профильного варианта делятся на категории по уровням сложности. В таблице ниже можно увидеть, как именно.

Базовый 6
Повышенный 10
Высокий 2
Всего 18

Получай лайфхаки, статьи, видео и чек-листы по обучению на почту

Альтернативный текст для изображения

Демоурок по подготовке к экзаменам

Составим ваш личный путь к высоким баллам — учтем сроки, уровень знаний и цель.

Демоурок по подготовке к экзаменам

Как сдать ЕГЭ по математике: разбор сложных задач

Экзамен по математике не зря считают одним из самых трудных. Даже в заданиях базового варианта можно легко ошибиться по невнимательности. Что уж говорить о действительно сложных задачах с полным решением, где много «подводных камней»? Чтобы вы знали, как подготовиться к ЕГЭ по профильной математике, мы разобрали несколько из них.

Задание 16

Две окружности касаются внешним образом в точке K. Прямая AB касается первой окружности в точке A, а второй — в точке B. Прямая BK пересекает первую окружность в точке D, прямая AK пересекает вторую окружность в точке C.

а) Докажите, что прямые AD и BC параллельны.

б) Найдите площадь треугольника AKB, если известно, что радиусы окружностей равны 4 и 1.

Совет

Для этого задания советуем повторить темы:

  • Касательные к окружности и их свойства.

  • Свойства вписанных углов.

  • Взаимное расположение окружностей.

  • Свойства прямоугольного треугольника.

  • Признаки и свойства параллельных прямых.

  • Подобные треугольники, площади подобных фигур.

  • Свойство площадей (в частности: отношение площадей треугольников с одинаковой стороной).

  • Трапеция, её свойства. Площадь трапеции.

  • Теорема Пифагора.

Проследите, чтобы они были в вашем плане подготовки к профилю ЕГЭ по математике.

Решение

а) Выполним построение.

  1. Окружности с центрами О1 и О2 соответственно касаются друг друга в одной точке К.

  2. Прямая АВ касается обеих окружностей в точках А и В соответственно.

  3. Прямые АК и ВК пересекают окружности в точках С и D соответственно

  4. Пусть общая касательная окружностей в точке К, пересекает прямую АВ в точке М.

    Решение задач из ЕГЭ по математике. Рисунок 1

    Тогда по свойству касательных, проведенных из одной точки, AM = KM и KM = BM.

    Решение задач из ЕГЭ по математике. Рисунок 2

  5. Рассмотрим треугольник АВК. Его медиана АМ равна половине стороны, которую она разбивает. Следовательно, делаем вывод, что треугольник АВК прямоугольный, а угол К = 90°.

    Решение задач из ЕГЭ по математике. Рисунок 3

  6. Вписанный угол AKD является смежным углом АКВ, а значит, он тоже 90° как прямой. Следовательно, угол AKD опирается на диаметр AD. Значит, AD ⊥ AB, так как радиус, а в данном случае диаметр, перпендикулярен касательной в точке касания.

  7. Аналогично рассмотрев угол ВКС, получим, что BC⊥ AB.

    Решение задач из ЕГЭ по математике. Рисунок 4

  8. Прямые AD и ВС перпендикулярны третьей прямой АВ, следовательно, прямые AD и BC параллельны. Ч. т. д.

б) Пусть радиус первой окружности равен 4, а радиус второй окружности равен 1. Тогда АD = 8, ВС = 2.

Решение задач из ЕГЭ по математике. Рисунок 5

  1. Рассмотрим треугольники ADK и СВК. Они подобны, т. к. имеют два равных угла (К – вертикальный, С и А — накрест лежащие). Из подобия треугольников следует, что их площади относятся как коэффициент подобия в квадрате:

  2. Обозначим площадь треугольника СВК за S, тогда площадь треугольника ADK будет равна 16S.

    Решение задач из ЕГЭ по математике. Рисунок 6

  3. Пусть площади треугольников АВК и CDK будут равны х и у соответственно.

    Решение задач из ЕГЭ по математике. Рисунок 7

  4. Вспомним свойство, связывающее высоты треугольников с общим основанием и получим следующие равенства: DB — общая сторона треугольников ADB и СDB, следовательно:

    (равно 4 из подобия треугольников ADK и СВК, см. выше),

    Решение задач из ЕГЭ по математике. Рисунок 8

  5. Аналогично, AC — общая сторона треугольников ADС и ABC, следовательно,

    (равно 4 из подобия треугольников ADK и СВК, см. выше),

    Решение задач из ЕГЭ по математике. Рисунок 9

  6. Решим полученную систему уравнений:

  7. Из первого уравнения

    подставим во второе и найдем y.

    следовательно,

    подставим во второе и найдем y.

  8. Площадь ABCD равна 16S + 4S + 4S + S = 25S.

  9. Заметим, что ABCD — прямоугольная трапеция (AD||BC, AB — перпендикулярна основаниям). Для вычисления ее площади нужно полусумму оснований умножить на высоту.

    Решение задач из ЕГЭ по математике. Рисунок 9

  10. Для того, чтобы найти высоту, рассмотрим меньшую трапецию AO1O2B.

    Решение задач из ЕГЭ по математике. Рисунок 10

    Ее основания равны 1 и 4, так как О2В и О1А — радиусы. O1O2 = 5, так как О2К и О1К — радиусы. О2H — высота трапеции AO1O2B.

  11. По теореме Пифагора найдём О2H:

  12. Вычислим площадь трапеции ABCD:

  13. С другой стороны мы нашли

    Отсюда S = 0,8.

  14. Площадь треугольника АКВ = 4S, следовательно,

Ответ: 3,2.

Задание 18

В школах № 1 и № 2 учащиеся писали тест. В каждой школе тест писали по крайней мере 2 учащихся, а суммарно тест писали 9 учащихся. Каждый учащийся, писавший тест, набрал натуральное количество баллов. Оказалось, что в каждой школе средний балл за тест был целым числом. После этого один из учащихся, писавших тест, перешел из школы № 1 в школу № 2, а средние баллы за тест были пересчитаны в обеих школах.

а) Мог ли средний балл в школе № 1 уменьшиться в 10 раз?

б) Средний балл в школе № 1 уменьшился на 10%, средний балл в школе № 2 также уменьшился на 10%. Мог ли первоначальный средний балл в школе № 2 равняться 7?

в) Средний балл в школе № 1 уменьшился на 10%, средний балл в школе № 2 также уменьшился на 10%. Найдите наименьшее значение первоначального среднего балла в школе № 2.

Совет

Чтобы справиться с этой задачей, нужно повторить темы:

  • Понятие натурального и целого числа.

  • Среднее арифметическое.

  • Делимость чисел.

  • Процент. Нахождение процента от числа, уменьшение числа на заданный процент.

  • Составление и решение линейных уравнений.

Добавьте их в ваш план подготовки к ЕГЭ по математике, если собираетесь сдавать профиль.

Решение:

а)

  1. Допустим, что в школе № 1 писали тест 2 учащихся, один из них набрал 1 балл, а второй набрал Х баллов и перешёл в другую школу. Тогда средний балл в школе был равен (1 + Х) : 2 = 10, а стал равен 1, т. е. уменьшился в 10 раз.

  2. Решим уравнение и получим Х = 19 — натуральное число. Следовательно, наше предположение верно.

  3. Или мы можем предположить другой вариант: что один учащийся набрал 2 балла. Тогда средний балл изначально равняется 20, а после ухода второго станет 2, т. е. изменится в 10 раз.

  4. Решим уравнение (2 + Х) : 2 = 20, отсюда Х = 38 — натуральное число, что тоже удовлетворяет условию задачи.

Ответ: средний балл в школе № 1 мог уменьшиться в 10 раз.

б)

  1. Пусть в школе № 2 писали тест m учащихся, n — сумма баллов m учащихся, средний балл равнялся B, а перешедший в неё учащийся набрал u баллов.

  2. Умножим обе части полученного уравнения на 10, получим:

  3. По условию B = 7, тогда получим, что 10u кратно 10, а

    не делится на 10, так как ни один из множителей не делится на 10. Это противоречие.

Ответ: Первоначальный средний балл в школе № 2 не мог равняться 7.

в)

  1. Пусть в школе № 1 средний балл равнялся A, общее количество баллов — p, количество писавших работу — (9 – m).

    (из пункта б).

    Следовательно,

  2. Попробуем найти средний балл в школе № 2 методом подбора. Пусть:

    В = 1, тогда:

    кратно 10, а

    не делится на 10.

    В = 2, тогда:

    пусть u = 1, тогда m = 4:

    — не является целым числом.

    u = 2 не может быть, т. к. m ≥ 1

    В = 3, тогда:

    кратно 10, а

    не делится на 10.

    В = 4, тогда:

    Чтобы m было натуральным числом u должно быть четным, u = 2, тогда m = 4, что невозможно (доказали при В = 2).

    u = 4, тогда m меньше 0, что невозможно т. к. m ≥ 1.

    В = 5, тогда:

    пусть u = 1, тогда m = 7, что невозможно (доказали в пункте б);

    пусть u = 2, тогда m = 5:

    — не является целым числом;

    пусть u = 3, тогда m = 3:

  3. Этот случай реализуется, например, в школе № 2 при m = 3, B = 5. Предположим, что каждый ученик набрал по 5 баллов. Тогда в школе № 1 писали 9 – m = 9 – 3 = 6 учащихся, 3 из них набрали по 1 баллу, а 3 – по 3 балла, тогда средний балл:

  4. Переход из школы № 1 в школу № 2 совершил ученик с 3 баллами, тогда
    средний балл в школе № 1 стал равен:

    что на 10% меньше от первоначального значения.

  5. Тогда средний балл в школе № 2 стал равен:

    что на 10% меньше от первоначального значения.

Ответ: наименьшее значение первоначального среднего балла в школе № 2 равно 5.

Ответ: а) да; б) нет; в) 5.

Как выставляют баллы за ЕГЭ по математике

С базовым уровнем сложности все просто: за каждый правильный ответ вашего варианта вы получаете по 1 первичному баллу. То же самое касается и первой части профиля: задания 1–11 тоже оценивают в 1 балл.

Как вы помните, во 2-й части профильного варианта нужны и решение, и ответ. Здесь задания оценивают по нескольким критериям. Они сложнее, но и баллов за них можно получить больше. Давайте же разберемся, как выставляют баллы во второй части профиля. Это поможет вам подготовиться к заданиям ЕГЭ по математике как самостоятельно, так и с учителем.

Задание № 12 Баллы
В обоих пунктах есть обоснованные ответы 2
Есть обоснованный ответ только в пункте а
или
есть неверный ответ из-за ошибки в вычислениях, но шаги в решениях обоих пунктов верные
1
Все остальные случаи 0
Максимальный балл 2
Задание № 13 Баллы
Верно доказан пункт а, в пункте б есть обоснованный ответ 3
Есть только обоснованный ответ в пункте б
или
верно доказан пункт а, в пункте б шаги решения верные, но из-за ошибки в вычислении получен неверный ответ
2
Есть только верное доказательство пункта а,
или
в пункте б шаги решения верные, но из-за ошибки в вычислении получен неверный ответ,
или
есть обоснованный ответ в пункте в, который получен с помощью пункта а, но сам пункт а не выполнен
1
Все остальные случаи. 0
Максимальный балл 3
Задание № 14 Баллы
Есть обоснованный ответ 2
Ответ обоснован, но он отличается от верного исключением точек –12 и/или 0
или
шаги решения верные, но из-за ошибки в вычислениях получен неверный ответ
1
Все остальные случаи 0
Максимальный балл 2
Задание № 15 Баллы
Есть обоснованный ответ 2
Ученик верно построил математическую модель 1
Все остальные случаи 0
Максимальный балл 2
Задание № 16 Баллы
Верно доказан пункт а, в пункте б есть обоснованный ответ 3
Есть только обоснованный ответ в пункте б
иЛИ
Верно доказан пункт а, в пункте б шаги решения верные, но из-за ошибки в вычислении получен неверный ответ
2
Есть только верное доказательство пункта а,
или
в пункте б шаги решения верные, но из-за ошибки в вычислении получен неверный ответ,
или
есть обоснованный ответ в пункте в, который получен с помощью пункта а, но сам пункт а не выполнен
1
Все остальные случаи 0
Максимальный балл 3
Задание № 17 Баллы
Есть обоснованный ответ 4
Рассуждения и значения параметра верные, но в ответе есть 1–2 неверных значения или решение недостаточно обосновано 3
Есть верное рассуждение и хотя бы одно правильное значение 2
Задача сведена к исследованию взаимного расположения 3 окружностей или двух квадратных уравнений с параметром 1
Все остальные случаи 0
Максимальный балл 4
Задание № 18 Баллы
Есть обоснованный ответ в пунктах а, б, в 4
Есть обоснованный ответ в пункте в и есть обоснованный ответ в пунктах а или б 3
Есть обоснованный ответ в пунктах а и б
или
есть обоснованный ответ в пункте в.
2
Есть обоснованный ответ в пунктах а или б 1
Все остальные случаи 0
Максимальный балл 4

Узнать больше о структуре экзамена, вариантах и критериях, по которым оценивают работы, можно на официальном сайте ФИПИ, в разделе «Демоверсии, спецификации, кодификаторы». Там же вы найдете методические указания для подготовки.

Сколько баллов нужно набрать, чтобы получить 3, 4 и 5

Теперь, когда мы разобрали критерии, можно посчитать, сколько баллов нужно набрать на конкретную оценку. В этом нам помогут таблицы ниже. Заодно разберемся, как первичные баллы переводятся в тестовые — финальные.

Шкала перевода баллов в базовой математике
Первичные баллы Оценка
<7 2
7–11 3
12–16 4
17–21 5
Максимальный балл 4

Обратите внимание: с 2008 года официально баллы ЕГЭ не переводят в привычные нам оценки по пятибальной системе. Но если вам хочется это сделать, можно примерно оценить работу по таблице ниже.

Шкала перевода баллов в профильной математике (неофициальная)
Первичные баллы Тестовые баллы Оценка
<5 <27 2
5–8 27–49 3
8–20 50–67 4
21–31 68–100 5

6 советов от эксперта, как готовиться к ЕГЭ по математике

Мы занимаемся подготовкой учеников к экзамену каждый год и понимаем, насколько это важно и волнительно. Вам предстоит ответственная работа, от которой многое зависит. Чтобы облегчить ее, мы собрали несколько советов, которые помогут вам как можно лучше подготовиться к ЕГЭ по математике:

  • Осознанно выберите уровень сложности и поставьте цель в баллах.

  • Составьте план подготовки к ЕГЭ по математике: больше времени уделяйте темам, которые у вас «западают». Чтобы выявить их, ученики Skysmart проходят тест на бесплатном уроке.

  • Узнайте все о ЕГЭ: сколько времени длится экзамен, из каких частей состоит, по каким темам будут задания, сколько вариантов, какие дадут справочные материалы и т. д.

  • Составьте сбалансированное расписание для подготовки и следите, чтобы в нем было достаточно времени для отдыха.

  • Много практикуйтесь: решайте варианты из Открытого банка заданий ЕГЭ и сдавайте тестовые экзамены.

  • Систематически консультируйтесь и занимайтесь с наставником, который часто имеет дело с подготовкой к ЕГЭ — преподавателем в школе или репетитором.

Все пункты в этом списке важны для тех, кто хочет набрать 80–100 баллов, но последний — особенно. Преподаватель расскажет о том, что представляет из себя ЕГЭ, и тогда на реальном экзамене не будет неприятных сюрпризов.

На курсах подготовки к ЕГЭ по математике в Skysmart учителя помогают школьникам разобраться в КИМах и прорешать каждый тип задач. Ученики заранее знакомятся с частыми ошибками, что помогает избегать их в работе и сохранять баллы. А еще мы учим готовиться морально, чтобы не допустить ошибок из-за паники и невнимательности. Начните подготовку к ЕГЭ по математике с нуля вместе со Skysmart: первый урок — бесплатно!

Что нужно делать школьнику, чтобы получить 100 баллов?

Чтобы получить 100 баллов, надо любить и понимать математику (быть математиком — по сути, по настроению, по образу жизни). Если школьник рассматривает математику как второстепенный предмет, как предмет, который просто необходимо сдать, например, когда речь идет о поступлении на экономические направления, он не сможет получить 100 баллов ни при каком раскладе. Максимальный балл требует, чтобы человек всем своим «нутром и состоянием своего мозга» был ориентирован на математику. Потому что есть задачи, которые требуют четкого, хорошего логического мышления и владения абсолютно всем материалом. В нужный момент необходимо выудить необходимые знания и применить их для решения задачи. Есть такие задачи, на которые натаскать по принципу «делай вот так» просто нельзя (например, задача № 19). Даже если школьник прекрасно знает математику, 100 баллов получить очень сложно. Это единичные случаи.

По вашему опыту преподавания, какие разделы математики самые сложные и вызывают наибольшие затруднения?

Сегодня для школьника самое сложное — это геометрия. К сожалению, культура геометрии в школе просто отсутствует. И еще, конечно, задачи с параметрами. Старшеклассники их панически боятся. Но ученик, который понимает математику, и с этими задачами справляется. Для их решения требуется именно понимание, а все необходимые для этого знания изложены в курсе школьной математики.

А вообще, в любой теме есть простой материал (азы), который лежит в основе задач из первой части ЕГЭ, и сложный материал, который лежит в основе задач второй части. Думаю, что если есть желание, то каждый в состоянии освоить азы любой темы из школьной программы по математике, а вот более глубокое понимание этих тем и умение решать сложные задачи по силам не всем.

Ни о каком везении разговора быть не может, если школьник хочет получить больше 80 баллов

А какие темы можно назвать самыми простыми?

Обычно школьники легко решают линейные и квадратные уравнения, но только в том случае, если в них нет параметра. Так что по темам «Линейная функция» и «Квадратичная функция» есть простые задачи, а есть сложные. И так по любой теме. Можно сформулировать простую задачу, а можно такую, что никто не решит.

Простыми темами можно считать те, на большинство задач по которым можно школьника натаскать. Простая задача — это гарантированно правильно решенная. А про ЕГЭ (особенно про задачи первой части) так вообще нельзя говорить. Например, школьник знает, как решить задачу, но допускает арифметическую ошибку или невнимательно читает условие (ищет одну величину, а для ответа надо еще что-то с ней сделать). В итоге получается неверный ответ. И задача не решена. И не важно, простая она была или сложная.

Присутствует ли на ЕГЭ по математике фактор везения? Возможно ли получить высокий балл, если знаешь предмет на более скромный результат?

Да, это возможно, но только если речь идет о результате в районе 75 баллов или меньше. Ни о каком везении разговора быть не может, если школьник хочет получить больше 80 баллов. Там нужно решать сложные задачи из второй части, а они требуют четкого обоснования решения, что для большинства является непосильным. Здесь должна быть стабильность.

А можно завалить экзамен, если знаешь предмет очень хорошо?

Элементарно. Арифметические ошибки, невнимательное чтение условия задачи и просто паника. Все это приводит талантливых учеников к более скромным результатам.

Что же делать? Есть «формула успеха», которая поможет подготовиться к ЕГЭ по математике?

Учить математику! Не натаскиваться по вариантам ЕГЭ, а систематически учить темы, разбираться, стараться понять. Тогда до многих задач школьник дойдет сам, своим умом, а это и есть залог успешной подготовки и высоких баллов. Математика — это, в первую очередь, понимание, а потом уже формулы и схемы решения. При подготовке методом натаскивания потолок — это 75 баллов. Одна и та же задача, сформулированная просто «с другого конца», натасканного ребенка деморализует. Он не может узнать знакомую задачу, а разобраться в «новой» сам не в состоянии.

Вот, например, задача № 17. Когда она появилась в вариантах диагностических работ, детям в школе начали давать формулы для ее решения. И школьники заучивали эти формулы, сопротивляясь попыткам учителей объяснить, откуда они взялись. Многие действовали методом «я знаю формулу и по ней буду решать». А на самом экзамене в условие внесли незначительное изменение, и ни одна из выученных формул не подходила. Как получить ту, которая позволит решить задачу, дети не знали. Вроде бы решили все 120 вариантов задания № 17, а на ЕГЭ дали 121-й вариант. В итоге те, кто не разбирался, задачу не решили.

Надо выбросить калькулятор и научиться считать без него

До ЕГЭ по математике осталось 3,5 месяца. Как вы посоветуете выпускникам распределить время, чтобы подготовиться наилучшим образом?

Во-первых, выбросить калькулятор и научиться считать без него. Во-вторых, повторить теорию и выучить формулы (именно сейчас, а не перед экзаменом): то есть подготовить базу, а дальше решать задачи. Можно решать из сборников вариантов ЕГЭ, но, к сожалению, там их не очень много и они часто повторяются.

Каждый ребенок ставит для себя определенную планку в зависимости от того, куда собирается поступать и как знает предмет. Если говорить о заданиях второй части ЕГЭ, то во время подготовки необходимо прежде всего обратить внимание на задачи № 13, № 15 и № 17. Их можно научиться решать. Если решение не вызывает проблем, можно переходить к задачам № 14 и № 16.

Задачи № 18 и № 19 — это, конечно, уже очень высокий уровень, но попробовать можно. Если эти задачи идут хорошо, то я не думаю, что надо тратить оставшееся время на курсы. Лучше решить больше задач самостоятельно. Если же возникают проблемы или неуверенность, что вы все решаете верно, не откладывая обращайтесь за помощью. Эффективная стратегия на этот период — решать, решать и решать!

Как готовиться к заданиям повышенной сложности

Задание № 10 Задача легкая. Здесь важно внимательно читать условие. Внимание на единицы измерения! Все величины подставлять в одних единицах измерения.
Задание № 11 Текстовая задача. Не считаю ее сложной. Обратите внимание на вопрос задачи, что именно спрашивают в условии и в каких единицах измерения необходимо записать ответ. Часто школьники пишут скорость не того пешехода или производительность не той трубы.
Задания № 13, № 15 Задания решаемые, но должна быть база по всем темам алгебры. Особенное внимание необходимо обратить на область определения (в особенности это касается логарифма, тангенса и котангенса). Нужно уметь применять те тождественные преобразования, которые помогут решить задачу, а не заведут в тупик, и знать все формулы наизусть.
Задания № 14, № 16 Задачи по геометрии. Самое сложное в них — это умение доказать. Для этого школьник должен владеть всем материалом планиметрии и стереометрии, знать все теоремы и следствия из них, уметь их доказывать. И еще важен чертеж! Он может либо стать эффективным инструментом и подсказать правильный ход решения, либо, если сделан некорректно, помешать решению задачи.
Задание № 17 Несложная задача. Это задание на умение формализовать текстовую задачу, то есть записать условие задачи в виде уравнений или неравенств (этого же требует и решение задачи № 11). На ЕГЭ под этим номером пока стабильно дают задачу на проценты. Теоретически может быть и задача на поиск оптимального решения, но такие варианты пока встречались только в диагностических работах. После формализации условия получается стандартная математическая задача о нахождении экстремума функции или на нахождение наибольшего (наименьшего) значения функции на отрезке (аналогично задаче № 12). Здесь важно не пользоваться готовыми формулами, а разбираться, почему в этой задаче так, а в другой иначе. Только тогда можно научиться переводить условие текстовой задачи на язык математики.
Задание № 18 Для решения этой задачи необходимо отличное владение предметом. Поможет ее решить знание свойств элементарных функций, умение исследовать функции и строить их графики. Все это есть в школьном курсе математики.
Задание № 19 Это задача для тех, кому интересна математика. В ходе решения может возникнуть необходимость обратиться к любому разделу предмета из программы любого класса. Нужно найти в своей голове и грамотно применить эти знания. В одной задаче может сочетаться арифметическая прогрессия со свойствами делимости чисел и нахождением наибольшего значения. Для решения этой задачи нужно понимать, когда достаточно привести пример, а когда необходимо строгое обоснование.

Понравилась статья? Поделить с друзьями:
  • Егэ по математике мцко для учителей
  • Жюль верн полное собрание сочинений в 50 томах
  • Егэ по истории написать онлайн
  • Егэ по информатике учебные пособия
  • Егэ по биологии учебник по подготовке