Задача на выстрелы егэ

Версия для печати и копирования в MS Word

1

При артиллерийской стрельбе автоматическая система делает выстрел по цели. Если цель не уничтожена, то система делает повторный выстрел. Выстрелы повторяются до тех пор, пока цель не будет уничтожена. Вероятность уничтожения некоторой цели при первом выстреле равна 0,5, а при каждом последующем  — 0,7. Сколько выстрелов потребуется для того, чтобы вероятность уничтожения цели была не менее 0,99?

В ответе укажите наименьшее необходимое количество выстрелов.


2

При артиллерийской стрельбе автоматическая система делает выстрел по цели. Если цель не уничтожена, то система делает повторный выстрел. Выстрелы повторяются до тех пор, пока цель не будет уничтожена. Вероятность уничтожения некоторой цели при первом выстреле равна 0,3, а при каждом последующем  — 0,5. Сколько выстрелов потребуется для того, чтобы вероятность уничтожения цели была не менее 0,97?

В ответе укажите наименьшее необходимое количество выстрелов.


3

При артиллерийской стрельбе автоматическая система делает выстрел по цели. Если цель не уничтожена, то система делает повторный выстрел. Выстрелы повторяются до тех пор, пока цель не будет уничтожена. Вероятность уничтожения некоторой цели при первом выстреле равна 0,6, а при каждом последующем  — 0,7. Сколько выстрелов потребуется для того, чтобы вероятность уничтожения цели была не менее 0,98?

В ответе укажите наименьшее необходимое количество выстрелов.


4

При артиллерийской стрельбе автоматическая система делает выстрел по цели. Если цель не уничтожена, то система делает повторный выстрел. Выстрелы повторяются до тех пор, пока цель не будет уничтожена. Вероятность уничтожения некоторой цели при первом выстреле равна 0,8, а при каждом последующем  — 0,9. Сколько выстрелов потребуется для того, чтобы вероятность уничтожения цели была не менее 0,99?

В ответе укажите наименьшее необходимое количество выстрелов.

При артиллерийской стрельбе автоматическая система делает выстрел по цели. Если цель не уничтожена, то система делает повторный выстрел. Выстрелы повторяются до тех пор, пока цель не будет уничтожена. Вероятность уничтожения некоторой цели при первом выстреле равна 0,3, а при каждом последующем — 0,6. Сколько выстрелов потребуется для того, чтобы вероятность уничтожения цели была не менее 0,97?

(Ященко 36 вариантов 2023 Задача 4 из Варианта 26)

Решение:

При решении данной задачи целесообразно сначала найти вероятность не попадания автоматической системой в цель ни при первом, ни при втором, ни при третьем и т.д. выстрелах. Вероятность промаха при первом выстреле будет равна

P1 = 1 — 0,3;

— вероятность промаха при двух выстрелах

P2 = (1 — 0,3)(1 — 0,6);

— вероятность промаха при трех выстрелах

P3 = (1 — 0,3)(1 — 0,6)(1 — 0,6) 

и т.д.

Зная вероятность промаха Pn при n выстрелах, вычислим вероятность попадания как обратную величину 1 — Pn. Найдем число выстрелов, при котором вероятность поражения цели не менее 0,97:

— при первом выстреле:

P = 1 — (1 — 0,3) = 0,3;

— при двух выстрелах:

P = 1 — (1 — 0,3)(1 — 0,6) = 0,72;

— при трех выстрелах:

P = 1 — (1 — 0,3)(1 — 0,6)(1 — 0,6) = 0,888;

— при четырех выстрелах

P = 1 — (1 — 0,3)(1 — 0,6)3 = 0,9552;

— при пяти выстрелах

P = 1 — (1 — 0,3)(1 — 0,6)4 = 0,98208.

Ответ: 5.

При артиллерийской стрельбе автоматическая система делает выстрел по цели. Если цель не уничтожена, то система делает повторный выстрел. Выстрелы повторяются до тех пор, пока цель не будет уничтожена. Вероятность уничтожения некоторой цели при первом выстреле равна 0,4, а при каждом последующем – 0,6. Сколько выстрелов потребуется для того, чтобы вероятность уничтожения цели была не менее 0,98?

Источники: mathege, alexlarin.

Решение:

    Вероятности при 1-м выстреле:

Попадание = 0,4
Промах = 1 – 0,4 = 0,6

    Вероятности при всех последующих выстрелах:

Попадание = 0,6
Промах = 1 – 0,6 = 0,4

С какого выстрела попали История выстрелов Вероятность Сумма со всеми предыдущими вероятностями Сравнение с 0,98
1 попадание 0,4 0,4 < 0,98
2 промах попадание 0,6·0,6 = 0,36 0,76 < 0,98
3 промах промах попадание 0,6·0,4·0,6 = 0,144 0,904 < 0,98
4 промах промах промах попадание 0,6·0,4·0,4·0,6 = 0,0576 0,9616 < 0,98
5 промах промах промах промах попадание 0,6·0,4·0,4·0,4·0,6 = 0,02304 0,98464 > 0,98

    Вероятность будет не менее 0,98 после 5 выстрелов.
Ответ: 5.

Есть три секунды времени? Для меня важно твоё мнение!

Насколько понятно решение?

Средняя оценка: 3.6 / 5. Количество оценок: 43

Оценок пока нет. Поставь оценку первым.

Новости о решённых вариантах ЕГЭ и ОГЭ на сайте ↙️

Вступай в группу vk.com 😉

Расскажи, что не так? Я исправлю в ближайшее время!

В отзыве оставь любой контакт для связи, если хочешь, что бы я тебе ответил.

Еще одна статья по теории вероятностей. В ней собраны задачи на проценты, вероятности зависимых событий, а также задачи, требующие последовательного подсчёта разных вероятностей. Эти задачи относятся к категории «трудные задачи», однако разобрав их с нами, они таковыми вам уже не покажутся.

Теоретическая часть

Если имеются события А и В, то

формулыЭти формулы следуют применять, когда А и В – зависимые совместные события (более простые случаи рассмотрены в предыдущих статьях (часть1, часть 2, часть 3, часть 4).

Задачи о зависимых событиях

Задача 5.1 В торговом центре два одинаковых автомата продают кофе. Вероятность того, что к концу дня в автомате закончится кофе, равна 0,4. Вероятность того, что кофе закончится в обоих автоматах, равна 0,22. Найдите вероятность того, что к концу дня кофе останется в обоих автоматах.

Решение.
1-й способ.

Так как 0,4 ·0,4 ≠ 0,22, то события «кофе закончился в 1-ом автомате» и «кофе закончился во 2-ом автомате» зависимые. Обозначим через А событие «кофе остался в первом автомате», через В – «кофе остался во втором автомате». Тогда P(A) = P(B) = 1- 0,4 = 0,6.

Событие «кофе остался хотя бы в одном автомате» – это А U В, его вероятность равна Р(А U В) = 1 — 0,22 = 0,78, так как оно противоположно событию «кофе закончился в обоих автоматах». По формуле для пересечения событий: P(A ∩ B) = P(A) + P(B) — P(A ∪ B)= 0,6 + 0,6 — 0,78 = 0,42

2-й способ
Обозначим через Х событие «кофе закончился в первом автомате», через Y – «кофе закончился во втором автомате».
Тогда по условию Р(X) = Р(Y) = 0,4, P(X ∩ Y) = 0,22. Так как P(X ∩ Y) ≠ P(X) · P(Y), то события Х и Y зависимые. По формуле для объединения событий:

P(X∪Y)=P(X)+P(Y)-P(X∩Y) = 0,4 + 0,4 – 0,22 = 0,58.

Мы нашли вероятность события Х U Y «кофе закончился хотя бы в одном автомате». Противоположным событием будет  «кофе остался в обоих автоматах», его вероятность равна = 1 –P(X ∪ Y) = 1 –0,58 = 0,42.

3-й способ.
Составим таблицу вероятностей возможных результатов в конце дня.

Второй автомат
кофе закончился кофе остался
Первый автомат кофе закончился 0,22
кофе остался

По условию вероятность события «кофе закончился в обоих автоматах» равна 0,22. Это число мы сразу записали в соответствующую ячейку таблицы.

В первом автомате кофе закончится с вероятностью 0,4, поэтому сумма чисел в верхних ячейках таблицы должна быть равна 0,4. Значит, в правой верхней ячейке должно быть число 0,4 – 0,22 = 0,18.

Второй автомат
кофе закончился кофе остался
Первый автомат кофе закончился 0,22 0,18
кофе остался

Во втором автомате кофе закончится с вероятностью 0,4, поэтому сумма чисел в левых ячейках таблицы также должна быть равна 0,4. Значит, в левой нижней ячейке должно быть число 0,4 – 0,22 = 0,18.

Второй автомат
кофе закончился кофе остался
Первый автомат кофе закончился 0,22 0,18
кофе остался 0,18

Так как сумма чисел во всех четырёх ячейках должна быть равна 1, то искомое число в правой нижней ячейке равно 1 – 0,22 – 0,18 – 0,18 = 0,42.

Второй автомат
кофе закончился кофе остался
Первый автомат кофе закончился 0,22 0,18
кофе остался 0,18 0,42

Ответ: 0,42.

Задачи на проценты

Задача 5.2 Агрофирма закупает куриные яйца в двух домашних хозяйствах. 60% яиц из первого хозяйства – яйца высшей категории, а из второго хозяйства – 40% яиц высшей категории. Всего высшую категорию получает 48% яиц. Найдите вероятность того, что яйцо, купленное у этой агрофирмы, окажется из первого хозяйства.

Решение.
Пусть х – искомая вероятность. Пусть всего закуплено n яиц. Тогда в первом хозяйстве закуплено x · n яиц, из них 0,6х·n высшей категории. Во втором хозяйстве закуплено (1- x) · n яиц, из них 0,4 • (1- x) • n высшей категории. Всего высшую категорию имеют 0,48n яиц.

Отсюда

Ответ: 0,4

Задача 5.3 На фабрике керамической посуды 20% произведённых тарелок имеют дефект. При контроле качества продукции выявляется 70% дефектных тарелок. Остальные тарелки поступают в продажу. Найдите вероятность того, что случайно выбранная при покупке тарелка не имеет дефектов. Ответ округлите до сотых.

Решение.
Пусть всего произведено х тарелок. Качественных тарелок 0,8х (80% от общего числа), они поступают в продажу.

Дефектных тарелок 0,2х, из них в продажу поступает 30%, то есть 0,3 • 0,2х = 0,06x.
Всего в продажу поступило 0,8х + 0,06x = 0,86x тарелок.
Вероятность купить тарелку без дефектов равна frac {0,8x}{0,86x}= frac {40}{43} ≈ 0,93

Ответ: 0,93.

Разные задачи

Задача 5.4 На рок-фестивале выступают группы – по одной от каждой из заявленных стран. Порядок выступления определяется жребием. Какова вероятность того, что группа из Финляндии будет выступать после группы из Бельгии, но перед группой из Греции? Результат округлите до сотых.

Решение.
1-й способ.
Будем считать исходом порядок выступления групп на фестивале. Разобьём множество исходов на подмножества следующим образом: в одно подмножество будем включать исходы, полученные перестановками рок-групп из Финляндии, Бельгии и Греции (с сохранением мест всех остальных рок-групп).

Тогда в каждом подмножестве будет 6 исходов: ФБГ, ФГБ, БГФ, БФГ, ГБФ, ГФБ. Из этих шести исходов благоприятным будет только БФГ. Следовательно, благоприятными являются 1/6 всех исходов. Искомая вероятность равна 16 ≈ 0,17

2-й способ (этот способ не является математически верным, но при решении на экзамене может помочь, если первый способ непонятен)

Так как в условии не указано общее число рок-групп, будем считать, что их всего три: из Финляндии, Бельгии и Греции. Будем считать исходом порядок выступлений, всего 6 исходов: ФБГ, ФГБ, БГФ, БФГ, ГБФ, ГФБ. Благоприятным является только исход БФГ. Искомая вероятность равна  16 ≈ 0,17.

Ответ: 0,17.

Задача 5.5 При артиллерийской стрельбе автоматическая система делает выстрел по цели. Если цель не уничтожена, то система делает повторный выстрел. Выстрелы повторяются до тех пор, пока цель не будет уничтожена. Вероятность уничтожения некоторой цели при первом выстреле равна 0,2, а при каждом последующем  0,7. Сколько выстрелов потребуется для того, чтобы вероятность уничтожения цели была не менее 0,98?

Решение.
1-й способ
Вероятность промаха при первом выстреле равна 1 – 0,2 = 0,8. Вероятность промаха при каждом последующем равна 0,3. Подсчитаем число выстрелов, при котором цель остаётся непоражённой с вероятностью менее 1 – 0,98 = 0,02.

Вероятность непоражения
после второго выстрела равна 0,8 • 0,3 = 0,24;
после третьего  0,24 • 0,3 = 0,072;
после четвёртого  0,072 • 0,3 = 0,0216;
после пятого  0,0216 • 0,3 = 0,00648.

Следовательно, необходимо 5 выстрелов.

2-й способ (этот способ имеет математическое значение, но непригоден на экзамене из-за необходимости приближённого вычисления логарифма)

Вероятность непоражения после n выстрелов равна 0,8cdot 0,3^{n-1}, так как при первом выстреле вероятность промаха 0,8, а при каждом последующем 0,3.

По условию необходимо, чтобы


Ответ: 5.

Задача 5.6 Чтобы поступить в институт на специальность «Архитектура», абитуриент должен набрать на ЕГЭ не менее 60 баллов по каждому из трёх предметов – математике, русскому языку и истории. Чтобы поступить на специальность «Живопись», нужно набрать не менее 60 баллов по каждому из трёх предметов – русскому языку, истории и литературе.
Вероятность того, что абитуриент Н. получит не менее 60 баллов по истории, равна 0,8, по русскому языку  0, 5, по литературе  0,6 и по математике 0,9.
Найдите вероятность того, что Н. сможет поступить хотя бы на одну из двух упомянутых специальностей.

Решение.

Вероятность того, что Н. не сможет набрать 60 баллов ни по литературе, ни по математике равна (1 – 0,6) • (1 –0,9) = 0,4 • 0,1 = 0,04. Следовательно, хотя бы по одному из этих двух предметов он получит 60 баллов с вероятностью 1 – 0,04 = 0,96.
Для поступления нужно набрать требуемый балл по русскому языку, истории и хотя бы по одному предмету из литературы и математики. Вероятность поступления равна 0,5 • 0,8 • 0,96 = 0,384.

Ответ: 0,384.

Задача 5.7 В Волшебной стране бывает два типа погоды: хорошая и отличная, причём погода, установившись утром, держится неизменной весь день. Известно, что с вероятностью 0,9 погода завтра будет такой же, как и сегодня. Сегодня 11 марта, погода в Волшебной стране хорошая. Найдите вероятность того, что 14 марта в Волшебной стране будет отличная погода.

Решение.

Составим таблицу вероятностей для погоды в Волшебной стране.

11 марта 12 марта 13 марта 14 марта

хорошая

1

отличная 0

Погода 12 марта с вероятностью 0,9 останется хорошей, с вероятностью 0,1 станет отличной. Занесём эти данные в таблицу.

11 марта 12 марта 13 марта 14 марта
хорошая 1 0,9
отличная 0 0,1

Хорошая погода 13 марта может быть в двух случаях.
1) Погода 12 марта была хорошей и не изменилась. Вероятность этого равна 0,9 • 0,9 = 0,81.
2) Погода 12 марта была отличной и изменилась. Вероятность этого равна 0,1 • 0,1 = 0,01.

Таким образом, вероятность хорошей погоды 13 марта равна 0,81 + 0,01 = 0,82. Вероятность отличной погоды 13 марта равна 1 – 0,82 = 0,18. Заносим эти данные в таблицу.

11 марта 12 марта 13 марта 14 марта
хорошая 1 0,9 0,82
отличная 0 0,1 0,18

Отличная погода 14 марта может быть в двух случаях.
1) Погода 13 марта была хорошей и изменилась. Вероятность этого равна 0,82 • 0,1 = 0,082.
2) Погода 13 марта была отличной и не изменилась. Вероятность этого равна 0,18 • 0,9 = 0,162.

Таким образом, вероятность отличной погоды 14 марта равна 0,082 + 0,162 = 0,244.

11 марта 12 марта 13 марта 14 марта
хорошая 1 0,9 0,82
отличная 0 0,1 0,18 0,244

Ответ: 0,244.

Подведем итог

Это последняя часть материала по началам теории вероятностей, знание которого необходимо для успешной сдачи ЕГЭ по математике профильного уровня.

Для закрепления изученного предлагаю вам задачи для самостоятельного решения.

Вы также можете проверить правильность их выполнения, внеся свои ответы в предлагаемую форму.

Также рекомендую изучить «Задачи с параметром» и другие уроки по решению заданий ЕГЭ по математике, которые представлены на нашем канале Youtube.

Спасибо, что поделились статьей в социальных сетях

Источник «Подготовка к ЕГЭ. Математика. Теория вероятностей». Под редакцией Ф.Ф. Лысенко, С.Ю. Кулабухова

Задание. При артиллерийской стрельбе автоматическая система делает выстрел по цели. Если цель не уничтожена, то система делает повторный выстрел. Выстрелы повторяются до тех пор, пока цель не будет уничтожена. Вероятность уничтожения некоторой цели при первом выстреле равна 0,3, а при каждом последующем – 0,9. Сколько выстрелов потребуется для того, чтобы вероятность уничтожения цели была не менее 0,96.

Решение:

Вероятность уничтожения цели не менее 0,96

1 выстрел: Вероятность попадания равна 0,3 < 0,96

2 выстрел: Вероятность промаха, учитывая 1 выстрел будет равна (1 — 0,3)·(1 — 0,9) = 0,7 · 0,1 = 0,07

Тогда вероятность попадания равна 1 — 0,07 = 0,93 < 0,96

3 выстрел: Вероятность промаха, учитывая 1 и 2 выстрел будет равна 0,07 · (1-0,9) = 0,07 · 0,1 = 0,007

Тогда вероятность попадания равна 1 — 0,007 = 0,993 > 0,96

Значит, для того, чтобы вероятность уничтожения цели была не менее 0,96, потребуется 3 выстрела

Ответ: 3

Оставить комментарий

Рубрики

  • Демоверсия ЕГЭ по информатике
  • Демоверсия ЕГЭ по математике
  • Демоверсия ОГЭ по информатике
  • Демоверсия ОГЭ по математике
  • Материалы по аттестации
  • Решаем ЕГЭ по математике
    • Задание 1
    • Задание 10
    • Задание 11
    • Задание 12
    • Задание 13
    • Задание 14
    • Задание 15
    • Задание 16
    • Задание 2
    • Задание 3
    • Задание 4
    • Задание 5
    • Задание 6
    • Задание 7
    • Задание 8
    • Задание 9
  • Решаем ОГЭ по математике
    • Задание 21
    • Задание 22
    • Задание 24
  • Скачать экзаменационные варианты по информатике
    • ЕГЭ по информатике
    • ОГЭ по информатике
  • Скачать экзаменационные варианты по математике
    • ЕГЭ по математике
    • ОГЭ по математике
  • Тематическое планирование

Яндекс.Метрика

Решение задач о выстрелах и попаданиях в цель

стрелок попадает в цель с вероятностью

В предыдущих статьях мы разобрали популярные учебные задачи по теории вероятностей: задачи про бросание игральных костей и задачи о подбрасывании монет.

Перейдем еще к одному типу задач: про стрелков, которые делают выстрелы по целям (или мишеням), причем вероятности попаданий для каждого стрелка обычно заданы, а нужно найти вероятность ровно одного попадания, или не более двух попаданий, или всех трех и так далее, в зависимости от конкретной задачи.

Основной метод решения подобных задач — использование теорем о сложении и умножении вероятностей, который мы и разберем на примерах ниже. А перед примерами вы найдете онлайн калькулятор, который поможет решить подобные задачи буквально в один клик! Удобно решать самому? Посмотрите видеоурок и скачайте бесплатный шаблон Excel для решения задач о выстрелах.

Нужна помощь? Решаем теорию вероятностей на отлично

Лучшее спасибо — порекомендовать эту страницу

Онлайн решение задачи про попадание в цель

Выберите количество стрелков и затем введите в поля вероятности $p_i$ их попаданий в цель (десятичный разделитель — точка):

Видеоурок и шаблон Excel

Посмотрите наш ролик о решении задач с выстрелами: как использовать Excel для решения типовых задач с 2, 3 и 4 стрелками (выстрелами).

Расчетный файл Эксель из видео можно бесплатно скачать.

Два стрелка

Начнем традиционно с более простых задач, а именно, с двух стрелков. Пусть первый стрелок попадает в цель с вероятностью $p_1$, а второй — с вероятностью $p_2$ (конкретные числа см. в примерах ниже). Соответственно, сразу можно сделать вывод, что промахиваются они с вероятностями $q_1=1-p_1$ и $q_2=1-p_2$.

Чтобы иметь возможность оперировать с событиями, нужно сначала их (события) ввести. Кстати, сразу заметим, что события эти независимые (то есть вероятность попадания первого стрелка не зависит от того, как стреляет второй и наоборот). Итак, пусть:

Событие $A_1$ = (Первый стрелок попал в цель),

Событие $A_2$ = (Второй стрелок попал в цель).

Соответственно, события $overline{A_1}$, $overline{A_2}$ обозначают промах первого и второго стрелка (не попал в цель).

Сразу можно выписать все, что нам стало известно к этому времени о данных событиях, в терминах теории вероятности (так сказать, формализуем задачу, чтобы легче было ее решать дальше):
$$
P(A_1)=p_1, quad P(A_2)=p_2, quad Pleft(overline{A_1}right)=1-p_1=q_1, quad Pleft(overline{A_2}right)=1-p_2=q_2.
$$

Теперь можно переходить к подсчету вероятностей попаданий. Например, пусть событие $X$ =(При двух выстрелах не было ни одного поражения цели). Вопрос, когда такое случится? Ясно, что когда ни первый стрелок, ни второй не попадут в цель, то есть одновременно произойдут события $overline{A_1}$ и $overline{A_2}$, что можно записать как произведение событий: $X=overline{A_1} cdot overline{A_2}$. Согласно теореме умножения вероятностей независимых событий, вероятность произведения событий равна произведению соответствующих вероятностей, или:
$$
P(X)=Pleft(overline{A_1} cdot overline{A_2}right)= Pleft(overline{A_1}right) cdot Pleft(overline{A_2}right) = q_1 cdot q_2. qquad (1)
$$

Рассмотрим еще одно событие $Y$ =(При двух выстрела ровно один стрелок попадет в цель). Как можно записать это событие через уже известные нам $A_1$ и $A_2$? Подумаем, когда такое событие произойдет:
1. Когда первый стрелок попадет в цель (событие $A_1$) и одновременно с этим второй стрелок промахнется (событие $overline{A_2}$), то есть получили произведение событий $A_1 cdot overline{A_2}$.

2. Когда второй стрелок попадет в цель (событие $A_2$) и одновременно с этим первый стрелок промахнется (событие $overline{A_1}$), то есть получили произведение событий $overline{A_1} cdot A_2$.

Так как других вариантов для получения одного попадания нет, а эти два варианта — несовместные (они не могут произойти одновроменно, или первая ситуация, или вторая), то по теореме сложения вероятностей несовместных событий:
$$
P(Y) = Pleft(A_1 cdot overline{A_2} + overline{A_1} cdot A_2right)= Pleft(A_1 cdot overline{A_2} right)+ Pleft( overline{A_1} cdot A_2right) =
$$
дальше уже по известной теореме умножения вероятностей раскрываем скобки:
$$
= P(A_1) cdot left(overline{A_2} right) + Pleft( overline{A_1} right) cdot P(A_2) = p_1 cdot q_2 + q_1 cdot p_2.
$$
Мы получили формулу, позволяющую найти вероятность в точности одного попадания в цель:
$$
P(Y) = p_1 cdot q_2 + q_1 cdot p_2. qquad (2)
$$

Если вы одолели последние пару абзацев, дальше все будет проще, поверьте:). Просто нужно привыкнуть к формулам, а потом они сами будут подсказывать вам верный ход решения.

Ну и наконец, найдем вероятность события $Z$ = (Оба стрелка попадут в цель), которое, как вы наверное и сами уже поняли, можно выразить так: $Z = A_1 cdot A_2$. Итоговая формула:
$$
P(Z) = P(A_1 cdot A_2) = P(A_1) cdot P(A_2)= p_1 cdot p_2. qquad (3)
$$

Большая теоретическая часть окончена, теперь можно решать примеры как орешки.

Пример 1. Два одновременно стреляют по мишени. Вероятность попадания по мишени у первого стрелка равна 0,6, у второго — 0,7. Какова вероятность того, что в мишени будет только одна пробоина?

Не будем повторять все выкладки выше, для этого мы их и делали подробно. Сразу перейдем к решению. Так как нужно найти вероятность всего одного попадания, используем формулу (2), где по условию $p_1=0,6$, $p_2=0,7$, значит $q_1=1-p_1=0,4$, $q_2=1-p_2=0,3$. Получаем:
$$
P = p_1 cdot q_2 + q_1 cdot p_2 = 0,6 cdot 0,3 + 0,4 cdot 0,7 = 0,46.$$

Пример 2. Два стрелка, для которых вероятности попадания в мишень равны соответственно 0,7 и 0,8, производят по одному выстрелу. Найти вероятность того, что мишень поражена дважды.

Опять же, нужно только применить формулу (3) с данными задачи $p_1=0,7$, $p_2=0,8$ и сразу получим ответ:
$$
P = p_1 cdot p_2=0,7 cdot 0,8 = 0,56.
$$

Пример 3. Производятся два выстрела по цели, вероятности попадания равны 0,3 и 0,4. Найти вероятность того, что хотя бы один выстрел попал в цель.

На этот раз задача будет решена не в одно, а в два действия, но пусть это вас не пугает. Как обычно, в задачах содеражащих фразу «хотя бы один…» мы помимо основного события: $Q$ = (Хотя бы один выстрел попал в цель) вводим сразу противоположное событие $overline{Q}$ = (Ни один выстрел не попал в цель, 0 попаданий). А дальше уже известно, применяем формулу (1), которая выведена выше:
$$
P(overline{Q}) = q_1 cdot q_2= (1-0,3) cdot (1-0,4) =0,7 cdot 0,6 = 0,42.
$$
Вероятность нужного нам события тогда равна:
$$
P(Q) = 1- P(overline{Q}) = 1 — 0,42 = 0,58.
$$

Три стрелка

три попадания в цель. найдем вероятность

К двум устрелявшимся стрелкам наконец присоединяется третий, бодрый и полный сил. А мы принимаемся за вывод формул. Напомню общую постановку задачи: три стрелка, вероятности попаданий в цель которых равны $p_1$, $p_2$ и $p_3$, делают по одному выстрелу и подсчитывают число попаданий. Наша задача — вычислить вероятности 1, 2, 3 или ни одного попадания.

Начало одинаковое — формализуем задачу и вводим независимые события:

Событие $A_1$ = (Первый стрелок попал в цель),

Событие $A_2$ = (Второй стрелок попал в цель),

Событие $A_3$ = (Третий стрелок попал в цель).

Известно, что:
$$
P(A_1)=p_1, quad P(A_2)=p_2, quad P(A_3)=p_3, \ Pleft(overline{A_1}right)=1-p_1=q_1, quad Pleft(overline{A_2}right)=1-p_2=q_2, quad Pleft(overline{A_3}right)=1-p_3=q_3.
$$

Вероятность того, что не будет ни одного попадания, вычисляется абсолютно аналогично случаю для двух стрелков, только добавляется третий сомножитель (см. формулу (1)), так как все трое должны промахнуться:
$$
P_0=Pleft(overline{A_1} cdot overline{A_2} cdot overline{A_3}right)= Pleft(overline{A_1}right) cdot Pleft(overline{A_2}right) cdot Pleft(overline{A_3}right)= q_1 cdot q_2 cdot q_3. qquad (4)
$$

Найдем вероятность события $X_1$ = (Из трех стрелков в цель попал только один). Опять таки, когда может произойти это событие? Опишем словами возможные ситуации:
1. Когда первый стрелок попадет в цель (событие $A_1$), и одновременно с этим второй стрелок промахнется (событие $overline{A_2}$) и третий стрелок промахнется (событие $overline{A_3}$), то есть получили произведение событий $A_1 cdot overline{A_2} cdot overline{A_3}$.

2. Второй стрелок попадет в цель (событие $A_2$), а первый и третий промахнутся, то есть $overline{A_1} cdot A_2 cdot overline{A_3}$
3. Третий стрелок попадет в цель (событие $A_3$), а первый и второй промахнутся, то есть $overline{A_1} cdot overline{A_2} cdot A_3$

Итого событие можно представить как сумму этих трех несовместных сложных событий:
$$
X_1= A_1 cdot overline{A_2} cdot overline{A_3} + overline{A_1} cdot A_2 cdot overline{A_3} + overline{A_1} cdot overline{A_2} cdot A_3.
$$
Используя теоремы сложения и умножения вероятностей, придем к итоговой формуле:
$$
P_1 = P(X_1)= \ = P(A_1) cdot Pleft(overline{A_2} right) cdot Pleft(overline{A_3} right) + Pleft(overline{A_1}right) cdot P(A_2) cdot Pleft(overline{A_3} right) + Pleft(overline{A_1} right) cdot Pleft(overline{A_2} right) cdot P(A_3)=\
= p_1 cdot q_2 cdot q_3 + q_1 cdot p_2 cdot q_3 + q_1 cdot q_2 cdot p_3. qquad (5)
$$

Желающие потренироваться в выводе формул могут на этом этапе самостоятельно попытаться выписать вероятности для 2 и 3 попаданий (соответственно, $P_2$ и $P_3$), и сравнить с теми формулами, что я приведу ниже:
$$
P_2 = P(X_2)= \
= P(A_1) cdot P(A_2) cdot Pleft(overline{A_3} right) + P(A_1)cdot Pleft(overline{A_2} right) cdot P(A_3) + Pleft(overline{A_1} right) cdot P(A_2) cdot P(A_3)=\
= p_1 cdot p_2 cdot q_3 + p_1 cdot q_2 cdot p_3 + q_1 cdot p_2 cdot p_3. qquad (6)
$$

$$
P_3 = P(X_3)= P(A_3) cdot P(A_2) cdot P(A_3) = p_1 cdot p_2 cdot p_3. qquad (7)
$$

Теперь, вооружившись формулами до зубов, снова возвращаемся к задачнику и решаем примеры буквально в одну строчку (конечно, если вы оформляете эти работы для сдачи преподавателю, используйте в решении и вывод формул, приведенный выше).

Пример 4. Три стрелка производят по одному выстрелу. Вероятности попадания 1-го, 2-го и 3-го стрелков соответственно равны: 0,2, 0,3 и 0,4. Найти вероятность получения одного попадания?

Так как речь идет об одном попадании, используем формулу (5), куда подставляем значения из условия задачи:
$$
p_1=0,2, quad p_2=0,3, quad p_3=0,4, quad q_1=0,8, quad q_2=0,7, quad q_3=0,6
$$
Получаем:
$$
P_1 = p_1 cdot q_2 cdot q_3 + q_1 cdot p_2 cdot q_3 + q_1 cdot q_2 cdot p_3=\
= 0,2 cdot 0,7cdot 0,6 + 0,8 cdot 0,3 cdot 0,6 + 0,8 cdot 0,7 cdot 0,4 = 0,452.
$$

Пример 5. 3 стрелка делают по одному выстрелу в мишень. Вероятности попадания для каждого стрелка соответственно равны 0,8; 0,7; 0,5. Определите вероятность того, что в мишени окажется ровно 2 пробоины.

Так как речь идет о двух попаданиях, используем формулу (6), куда подставляем значения из условия задачи:
$$
p_1=0,8, quad p_2=0,7, quad p_3=0,5, quad q_1=0,2, quad q_2=0,3, quad q_3=0,5
$$
Получаем:
$$
P_2 = p_1 cdot p_2 cdot q_3 + p_1 cdot q_2 cdot p_3 + q_1 cdot p_2 cdot p_3 = \
= 0,8 cdot 0,7 cdot 0,5 + 0,8 cdot 0,3 cdot 0,5 + 0,2 cdot 0,7 cdot 0,5 = 0,47.
$$

Пример 6. Из трех орудий произвели залп по цели. Вероятность попадания в цель при одном выстреле из первого орудия равна 0,8; для второго и третьего орудий эти вероятности соответственно равны 0,7 и 0,9. Найти вероятность хотя бы одного попадания при одном залпе из всех орудий.

Надеюсь, вас не смутили орудия вместо стрелков? На самом деле, не суть важно, что происходит: три стрелка вышли на линию, или три пушки готовят залп, или три снайпера целятся в одного террориста. С точки зрения теории вероятностей, все формулы остаются прежними.

Поэтому смело приступаем к решению. Требуется найти вероятность события $A$ = (Будет хотя бы одно попадания при одновременном залпе из всех орудий), поэтому введем для простоты расчетов противоположное событие $overline{A}$ = (Все три орудия дали промашку), вероятность которого найдем по формуле (4), подставляя значения:
$$
p_1=0,8, quad p_2=0,7, quad p_3=0,9, quad q_1=0,2, quad q_2=0,3, quad q_3=0,1
$$
Получаем:
$$
Pleft(overline{A} right) = P_0 = q_1 cdot q_2 cdot q_3 = 0,2 cdot 0,3 cdot 0,1 = 0,006.
$$
Искомая вероятность:
$$
P(A) = 1 — Pleft(overline{A} right) = 1 — 0,006 = 0,994.
$$

Задачи на формулу Бернулли

Когда я писала первый вариант статьи, этого раздела не было. Но ведь задачи, когда выстрелы попадают в цель с одинаковой вероятностью, встречаются весьма и весьма часто и фактически являются частным и более простым случаем разобранных выше. Так что перед вами дополнительный раздел, надеюсь, он окажется полезным:).

Итак, вернемся к нашим стрелкам. Теперь будем считать, что вероятность попадания в цель при каждом выстреле одинакова и равна $p$, число выстрелов равно $n$ и конечно, как и прежде, выстрелы попадают в цель независимо друг от друга. Хм… Что-то знакомое? Конечно! Это схема независимых повторных испытаний, иначе говоря, схема Бернулли.

Ну вот, скажете вы, только научились решать одним способом, и тут на тебе, «схема Бернулли»!

А я отвечу, что в ней как минимум пара преимуществ:

  • нужно запомнить всего одну формулу вместо нескольких (см. выше)
  • теперь количество стрелков может быть не только 2, 3 или 4 (что уже громоздко), а практически любое — 5, 10, 12…

Пора приступать. Сначала сама формула, а потом разберем несколько примеров для закрепления пройденного:).


Пусть производится $n$ выстрелов, вероятность попадания в цель каждом из которых равна $p$. Вероятность, что окажется в точности $k$ попаданий, можно вычислить по формуле Бернулли:

$$
P_n(k)=C_n^k cdot p^k cdot (1-p)^{n-k} = C_n^k cdot p^k cdot q^{n-k}.
$$

Пример 7. Стрелок производит 4 выстрела, вероятность попадания при каждом из них равна $p=0,8$. Найти вероятность того, что:
1) Стрелок попадёт 3 раза
2) Стрелок попадёт не менее 3-ёх раз.

Вот она, типовая задача на формулу Бернулли. Наши параметры: $n=4$ (число выстрелов), $p=0,8$ (вероятность попадания при одном выстреле), $q=1-p=0,2$ (вероятность промаха).

1) Вероятность того, что стрелок попадёт 3 раза:

$$
P_4(3)=C_4^3 cdot 0,8^3 cdot 0,2^{4-3} = 4 cdot 0,8^3 cdot 0,2 =0,41.
$$

2) Вероятность того, что стрелок попадёт не менее 3-ёх раз из 4 (то есть или 3, или 4 раза — складываем вероятности соответствующих событий):

$$
P_4(k ge 3) =P_4(3) + P_4(4)=0,41+ C_4^4 cdot 0,8^4 cdot 0,2^{0} = 0,41+0,8^4 =0,819.
$$

И это все! Проще некуда, но не забывайте, что задачи разные, где-то формула Бернулли подходит (повторяем: вероятности одинаковые, события независимые и повторные), а где-то — нет (как в разобранных в начале этой статьи задачах).

Пример 8. Вероятность попасть в десятку у данного стрелка при одном выстреле равна 0,2. Определить вероятность выбивания не менее 20 очков при десяти выстрелах.

И опять проверяем выполнение условий схемы Бернулли: вероятности одинаковые (да, $p=0,2$), выстрелы независимые, число выстрелов задано ($n=10$).

Сформулируем вопрос задачи математически: что значит выбито не менее 20 очков? Это значит, что в 10 выстрелах было не менее 2 попаданий в цель (то есть 2, 3, 4,…, 10). Что-то многовато…

В таком случае проще подсчитать сначала вероятность противоположного события: «В 10 выстрелах было менее 2 попаданий в цель» (то есть 0 или 1). Вот тут полегче, давайте посчитаем:

$$
P_{10}(k lt 2) =P_{10}(0) + P_{10}(1)=C_{10}^{0} cdot 0,2^{0} cdot 0,8^{10}+ C_{10}^{1} cdot 0,2^{1} cdot 0,8^{9} =\
=0,8^{10}+ 10 cdot 0,2 cdot 0,8^{9} =0,376.
$$

Тогда искомая вероятность выбить не менее 20 очков будет:

$$
P_{10}(k ge 2) =1-P_{10}(k lt 2)=1-0,376=0,624.
$$

Пригодится: онлайн калькулятор для таких задач

Другие задачи про выстрелы и попадания

теория вероятностей. задачи про выстрелы

Конечно же, не все задачи про выстрелы можно решать по данным формулам (точнее, не все вписываются в эту схему напрямую), это лишь один из популярных классов задач. Для полноты изложения я приведу еще несколько типовых задач с немного отличающимся решением. Задачи из существенно других разделов (например, на формулу Байеса или построение ряда распределения случайной величины) будут разобраны в других статьях.

Пример 9. Вероятность того, что стрелок попадет в цель при одном выстреле, равна 0,7. Производится пять независимых выстрелов. Какова вероятность того, что в мишени окажется хотя бы одна пробоина?

Требуется найти вероятность события $A$ = (В мишени окажется хотя бы одна пробоина), поэтому вводим сначала противоположное событие $overline{A}$ = (Все пять выстрелов не попали в цель). Если обозначить вероятность попадания в цель как $p=0,7$ (она одинакова при каждом выстреле), а вероятность промаха как $q=1-p=0,3$, то вероятность всех пяти промахов будет
$$
Pleft(overline{A} right) = q^5 = 0,3^5.
$$
Искомая вероятность:
$$
P(A) = 1 — Pleft(overline{A} right) = 1 — 0,3^5 = 0,998.
$$

Общий случай: как найти вероятность наступления хотя бы одного события

Пример 10. Два стрелка стреляют по мишени по одному разу. Вероятность того, что оба попали равна 0,42, а вероятность того что оба промахнулись, 0,12. Найти вероятность попадания в мишень каждым стрелком при одном выстреле.

Если обозначить вероятности попадания первым и вторым стрелком соответственно как $p_1$ и $p_2$, то, используя формулы (1) и (3), запишем условие задачи в виде системы уравнений:
$$
P_2 = p_1 cdot p_2 = 0,42;\
P_0 = (1-p_1) cdot (1-p_2) = 0,12.\
$$
Решая эту систему, найдем искомые вероятности попадания для каждого стрелка: $p_1 = 0,6$ и $p_2 = 0,7$ (или наоборот, $p_1 = 0,7$ и $p_2 = 0,6$).

Пример 11. Вероятность хотя бы одного попадания в цель при четырех выстрелах равна 0,9984. Найти вероятность попадания в цель при одном выстреле.

Если обозначить вероятность попадания в цель как $p$ (она одинакова при каждом выстреле), а вероятность промаха как $q=1-p$, то вероятность 4 промахов при четырех выстрелах будет равна $q^4$, а соответственно вероятность хотя бы одного попадания в цель при четырех выстрелах — $1-q^4$. Получаем уравнение:
$$
1-q^4=0,9984;\
q^4=0,0016;\
q=0,2;\
p=1-q=0,8.
$$
Нашли вероятность попадания в цель при одном выстреле, она равна 0,8.

Пример 12. Два стрелка независимо выстрелили по мишени по два раза. Меткость первого стрелка равна 0,8; второго – 0,7. Найти вероятность того, что в мишень попадут все четыре пули.

Все 4 пули попадут в мишень, если первый стрелок попадет оба раза (вероятность попадания при одном выстреле у него $p_1=0,8$), и одновременно второй стрелок попадет оба раза (вероятность попадания при одном выстреле у него $p_2=0,7$). По правилу умножения вероятностей
$$
P = p_1 cdot p_1 cdot p_2 cdot p_2 = 0,8 cdot 0,8 cdot 0,7 cdot 0,7 = 0,3136.
$$

Лучшее спасибо — порекомендовать эту страницу

Полезная информация

  • Онлайн калькуляторы
  • Онлайн учебник
  • Более 200 примеров
  • Решенные контрольные
  • Формулы и таблицы
  • Сдача тестов
  • Решение на заказ
  • Онлайн помощь

Решебник по вероятности

В решебнике вы найдете более 700 задач о выстрелах и попаданиях с полными решениями (вводите часть текста для поиска своей задачи):

Понравилась статья? Поделить с друзьями:
  • Задача с кузнечиком егэ математика
  • Задача которая была в выпускном экзамене upsc в декабре 2013 решение
  • Задача с кредитом егэ по математике профиль 2022
  • Задача или сдача экзамена
  • Задача с кофе автоматами егэ