Задача про пцр тест егэ по математике 2022

При подозрении на наличие некоторого заболевания пациента отправляют на ПЦР-тест. Если заболевание действительно есть, то тест подтверждает его в 86% случаев. Если заболевания нет, то тест выявляет отсутствие заболевания в среднем в 94% случаев. Известно, что в среднем тест оказывается положительным у 10% пациентов, направленных на тестирование.

При обследовании некоторого пациента врач направил его на ПЦР-тест, который оказался положительным. Какова вероятность того, что пациент действительно имеет это заболевание?

Спрятать решение

Решение.

Пусть событие A  — пациент болен, событие B  — тест выявляет наличие заболевания. Тогда P(A)  =  x  — вероятность того, что пациент болен. Если заболевание действительно есть, то тест подтверждает его в 86% случаев, значит, вероятность того, что пациент болен и тест подтверждает это, равна P(AB)  =  x · 0,86. Если заболевания нет, то тест выявляет отсутствие заболевания в 94% случаев, значит, вероятность того, что пациент не болен, а тест дал положительный результат, равна (1 − x) · (1 − 0,94). Тогда вероятность того, что тест окажется положительным, равна P левая круглая скобка B правая круглая скобка =x умножить на 0,86 плюс левая круглая скобка 1 минус x правая круглая скобка умножить на левая круглая скобка 1 минус 0,94 правая круглая скобка =0,1. Отсюда выразим x:

x умножить на 0,86 плюс левая круглая скобка 1 минус x правая круглая скобка умножить на левая круглая скобка 1 минус 0,94 правая круглая скобка =0,1 равносильно x умножить на 0,86 плюс левая круглая скобка 1 минус x правая круглая скобка умножить на 0,06=0,1 равносильно

 равносильно 0,86x плюс 0,06 минус 0,06x=0,1 равносильно 0,8x=0,04 равносильно x=0,05.

Тогда вероятность того, что человек, у которого тест оказался положительным, действительно имеет заболевание, равна

P левая круглая скобка A|B правая круглая скобка = дробь: числитель: P левая круглая скобка AB правая круглая скобка , знаменатель: P левая круглая скобка B правая круглая скобка конец дроби = дробь: числитель: 0,05 умножить на 0,86, знаменатель: 0,1 конец дроби = дробь: числитель: 0,043, знаменатель: 0,1 конец дроби =0,43.

Ответ: 0,43.

Приведем другое решение (автор Виталий Вяликов).

Пусть x  — число больных пациентов и y  — число здоровых. Тогда всего имеется x + y пациентов.

Общее число положительных ПЦР-тестов по условию равно 0,1(x + y), из которых 0,86x тестов приходится на больных пациентов и 0,06y тестов  — на здоровых. Тогда

0,1 левая круглая скобка x плюс y правая круглая скобка =0,86x плюс 0,06y равносильно y=19x.

Поэтому вероятность того, что положительный ПЦР-тест был взят у больного пациента, равна

 дробь: числитель: 0,86x, знаменатель: 0,1 левая круглая скобка x плюс 19x правая круглая скобка конец дроби = дробь: числитель: 0,86x, знаменатель: 2x конец дроби =0,43.

Решение:

    Пусть некоторый пациент имеет заболевание с вероятностью х, тогда не имеет это заболевание с вероятностью 1 – х.
    Положительный результат анализа может быть в 2-х случаях:
    1) Пациент имеет заболевание и получает положительный результат, вероятность этого события (86% = 0,86):

х·0,86

    2) Пациент не имеет это заболевание, тест дал ложный результат, вероятность (94% = 0,94):

(1 – х)·(1 – 0,94)

    Зная, что тест в среднем оказывается положительным у 10% = 0,1 пациентов, составим уравнение:

х·0,86 + (1 – х)·(1 – 0,94) = 0,1
х·0,86 + (1 – х)·0,06 = 0,1
х·0,86 + 0,06 – 0,06х = 0,1
х·0,80 = 0,1 – 0,06  
х·0,8 = 0,04
x=frac{0,04}{0,8}=0,05

    Вероятность того, что пациент болен, при условии, что тест уже оказался положительным, называется условной вероятностью и находится по формуле:

P(A|B)=frac{P(AB)}{P(B)}, где 

   Р(В) – вероятность того, что тест оказался положительным;
   Р(АВ) – вероятность, что пациент болен и тест положительный;

P(A|B)=frac{0,05cdot 0,86}{0,1}=0,43

Ответ: 0,43.

Решение:

Пусть х — вероятность того, что человек здоров, тогда (1 — х) — вероятность того, что человек болен.

Получить отрицательный результат можно в двух случаях: если человек здоров (95% = 0,95ИЛИ если человек болен (100% — 85% = 15% = 0,15).

На математическом языке запись будет выглядеть так (союз ИЛИ — логическое сложение):

0,95х + 0,15(1 — х)

В поликлинике отрицательный тест выпадает с вероятностью 38% = 0,38. Составим уравнение:

0,95х + 0,15(1-х) = 0,38;

0,95х + 0,15 — 0,15х = 0,38;

0,8х = 0,23;

х = 0,2875 — вероятность того, что человек здоров.

Найдем отношение числа здоровых людей (0,2875) с отрицательным тестом (0,95) к числу всех людей, получивших отрицательный тест (0,38):

Ответ: 0,72.

Возможно, тебе понадобится формула Байеса для нахождения условной вероятности.

#917

Skip to content

ЕГЭ Профиль №10. Теория вероятностей повышенной сложности

ЕГЭ Профиль №10. Теория вероятностей повышенной сложностиadmin2022-07-26T23:47:28+03:00

Скачать файл в формате pdf.

ЕГЭ Профиль №10. Теория вероятностей повышенной сложности

Задача 1. Симметричную монету бросают 10 раз. Во сколько раз вероятность события «выпадет ровно 5 орлов» больше вероятности события «выпадет ровно 4 орла»?

Ответ

ОТВЕТ: 1,2.

Задача 2. Симметричную монету бросают 17 раз. Во сколько раз вероятность события «выпадет ровно 8 орлов» больше вероятности события «выпадет ровно 7 орлов»?

Ответ

ОТВЕТ: 1,25.

Задача 3. В одном ресторане в г. Тамбове администратор предлагает гостям сыграть в «Шеш-беш»: гость бросает одновременно две игральные кости. Если он выбросит комбинацию 5 и 6 очков хотя бы один раз из двух попыток, то получит комплимент от ресторана: чашку кофе или десерт бесплатно. Какова вероятность получить комплимент? Результат округлите до сотых.

Ответ

ОТВЕТ: 0,11.

Задача 4. В одном ресторане в г. Тамбове администратор предлагает гостям сыграть в игру: гость бросает одновременно две игральные кости. Если он выбросит комбинацию которая в сумме даёт 10 очков хотя бы один раз из двух попыток, то получит комплимент от ресторана: чашку кофе или десерт бесплатно. Какова вероятность получить комплимент? Результат округлите до сотых.

Ответ

ОТВЕТ: 0,16.

Задача 5. Игральную кость бросили один или несколько раз. Оказалось, что сумма всех выпавших очков равна 4. Какова вероятность того, что был сделан один бросок? Ответ округлите до сотых.

Ответ

ОТВЕТ: 0,63.

Задача 6. Игральную кость бросили один или несколько раз. Оказалось, что сумма всех выпавших очков равна 3. Какова вероятность того, что было сделано два броска? Ответ округлите до сотых.

Ответ

ОТВЕТ: 0,24.

Задача 7. Игральную кость бросали до тех пор, пока сумма всех выпавших очков не превысила число 3. Какова вероятность того, что для этого потребовалось два броска? Ответ округлите до сотых.

Ответ

ОТВЕТ: 0,42.

Задача 8. Игральную кость бросали до тех пор, пока сумма всех выпавших очков не превысила число 8. Какова вероятность того, что для этого потребовалось два броска? Ответ округлите до сотых.

Ответ

ОТВЕТ: 0,28.

Задача 9. При подозрении на наличие некоторого заболевания пациента отправляют на ПЦР-тест. Если заболевание действительно есть, то тест подтверждает его в 86% случаев. Если заболевания нет, то тест выявляет отсутствие заболевания в среднем в 94% случаев. Известно, что в среднем тест оказывается положительным у 10% пациентов, направленных на тестирование.

При обследовании некоторого пациента врач направил его на ПЦР-тест, который оказался положительным. Какова вероятность того, что пациент действительно имеет это заболевание?

Ответ

ОТВЕТ: 0,43.

Задача 10. При подозрении на наличие некоторого заболевания пациента отправляют на ПЦР-тест. Если заболевание действительно есть, то тест подтверждает его в 91% случаев. Если заболевания нет, то тест выявляет отсутствие заболевания в среднем в 93% случаев. Известно, что в среднем тест оказывается положительным у 13% пациентов, направленных на тестирование.

При обследовании некоторого пациента врач направил его на ПЦР-тест, который оказался положительным. Какова вероятность того, что пациент действительно имеет это заболевание?

Ответ

ОТВЕТ: 0,5.

Задача 11. Стрелок в тире стреляет по мишени до тех пор, пока не поразит её. Известно, что он попадает в цель с вероятностью 0,2 при каждом отдельном выстреле. Сколько патронов нужно дать стрелку, чтобы он поразил цель с вероятностью не менее 0,6?

Ответ

ОТВЕТ: 5.

Задача 12. Стрелок в тире стреляет по мишени до тех пор, пока не поразит её. Известно, что он попадает в цель с вероятностью 0,7 при каждом отдельном выстреле. Сколько патронов нужно дать стрелку, чтобы он поразил цель с вероятностью не менее 0,95?

Ответ

ОТВЕТ: 3.

Задача 13. Стрелок стреляет по пяти одинаковым мишеням. На каждую мишень даётся не более двух выстрелов, и известно, что вероятность поразить мишень каждым отдельным выстрелом равна 0,6. Во сколько раз вероятность события «стрелок поразит ровно пять мишеней» больше вероятности события «стрелок поразит ровно четыре мишени»?

Ответ

ОТВЕТ: 1,05.

Задача 14. Стрелок стреляет по пяти одинаковым мишеням. На каждую мишень даётся не более двух выстрелов, и известно, что вероятность поразить мишень каждым отдельным выстрелом равна 0,5. Во сколько раз вероятность события «стрелок поразит ровно три мишени» больше вероятности события «стрелок поразит ровно две мишени»?

Ответ

ОТВЕТ: 3.

Задача 15. В викторине участвуют 6 команд. Все команды разной силы, и в каждой встрече выигрывает та команда, которая сильнее. В первом раунде встречаются две случайно выбранные команды. Ничья невозможна. Проигравшая команда выбывает из викторины, а победившая команда играет со следующим случайно выбранным соперником. Известно, что в первых трёх играх победила команда А. Какова вероятность того, что эта команда выиграет четвёртый раунд?

Ответ

ОТВЕТ: 0,8.

Задача 16. В викторине участвуют 5 команд. Все команды разной силы, и в каждой встрече выигрывает та команда, которая сильнее. В первом раунде встречаются две случайно выбранные команды. Ничья невозможна. Проигравшая команда выбывает из викторины, а победившая команда играет со следующим случайно выбранным соперником.  Известно, что в первых двух играх победила команда А. Какова вероятность того, что эта команда выиграет третий раунд?

Ответ

ОТВЕТ: 0,75.

Задача 17. Турнир по настольному теннису проводится по олимпийской системе: игроки случайным образом разбиваются на игровые пары; проигравший в каждой паре выбывает из турнира, а победитель выходит в следующий тур, где встречается со следующим противником, который определён жребием. Всего в турнире участвует 16 игроков, все они играют одинаково хорошо, поэтому в каждой встрече вероятность выигрыша и поражения у каждого игрока равна 0,5. Среди игроков два друга – Иван и Алексей. Какова вероятность того, что этим двоим в каком-то туре придётся сыграть друг с другом?

Ответ

ОТВЕТ: 0,125.

Задача 18. Турнир по настольному теннису проводится по олимпийской системе в несколько туров: если в туре участвует чётное число игроков, то они разбиваются на случайные игровые пары. Если число игроков нечётно, то с помощью жребия выбираются случайные игровые пары, а один игрок остаётся без пары и не участвует в туре. Проигравший в каждой паре (ничья невозможна) выбывает из турнира, а победители и игрок без пары, если он есть, выходят в следующий тур, который проводится по таким же правилам. Так продолжается до тех пор, пока не останутся двое, которые играют между собой финальный тур, то есть последнюю партию, которая выявляет победителя турнира.

Всего в турнире участвует 20 игроков, все они играют одинаково хорошо, поэтому в каждой встрече вероятность выигрыша и поражения у каждого игрока равна 0,5. Среди игроков два друга – Иван и Алексей. Какова вероятность того, что этим двоим в каком-то туре придётся сыграть друг с другом?

Ответ

ОТВЕТ: 0,1.

Задача 19. Первый член последовательности целых чисел равен 0. Каждый следующий член последовательности с вероятностью (p = 0,8) на единицу больше предыдущего и с вероятностью (1 — p) на единицу меньше предыдущего. Какова вероятность того, что какой-то член этой последовательности окажется равен  ( — 1)?

Ответ

ОТВЕТ: 0,25.

Задача 20. Первый член последовательности целых чисел равен 0. Каждый следующий член последовательности с вероятностью (p = frac{{20}}{{23}}) на единицу больше предыдущего и с вероятностью (1 — p) на единицу меньше предыдущего. Какова вероятность того, что какой-то член этой последовательности окажется равен  ( — 1)?

Ответ

ОТВЕТ: 0,15.

Задача 21. Первый игральный кубик обычный, а на гранях второго кубика нет чётных чисел, а нечётные числа 1, 3 и 5 встречаются по два раза. В остальном кубики одинаковые.

Один случайно выбранный кубик бросают два раза. Известно, что в каком-то порядке выпали 3 и 5 очков. Какова вероятность того, что бросали второй кубик?

Задача 22. Первый игральный кубик обычный, а на гранях второго кубика нет нечётных чисел, а чётные числа 2, 4 и 6 встречаются по два раза. В остальном кубики одинаковые.

Один случайно выбранный кубик бросают два раза. Известно, что в каком-то порядке выпали 4 и 6 очков. Какова вероятность того, что бросали первый кубик?

Задача 23. Маша коллекционирует принцесс из Киндер-сюрпризов. Всего в коллекции 10 различных принцесс, и они равномерно распределены, то есть в каждом очередном Киндер-сюрпризе может с равными вероятностями оказаться любая из 10 принцесс. У Маши уже есть две разные принцессы из коллекции. Какова вероятность того, что для получения следующей принцессы Маше придётся купить ещё 2 или 3 шоколадных яйца?
Задача 24. Маша коллекционирует принцесс из Киндер-сюрпризов. Всего в коллекции 10 различных принцесс, и они равномерно распределены, то есть в каждом очередном Киндер-сюрпризе может с равными вероятностями оказаться любая из 10 принцесс. У Маши уже есть шесть разных принцесс из коллекции. Какова вероятность того, что для получения следующей принцессы Маше придётся купить ещё 1 или 2 шоколадных яйца?
Задача 25. В городе 48% взрослого населения – мужчины. Пенсионеры составляют 12,6% взрослого населения, причём доля пенсионеров среди женщин равна 15%. Для социологического опроса выбран случайным образом мужчина, проживающий в этом городе. Найдите вероятность события «выбранный мужчина является пенсионером».
Задача 26. В городе 44% взрослого населения – мужчины. Пенсионеры составляют 14,4% взрослого населения, причём доля пенсионеров среди женщин равна 10%. Для социологического опроса выбран случайным образом мужчина, проживающий в этом городе. Найдите вероятность события «выбранный мужчина является пенсионером».

№10 профильного ЕГЭ. Презентация на урок.

nz-tv.pdf
nz-tv.pptx

Задачи

1. В ящике три красных и три синих фломастера. Фломастеры вытаскивают по очереди в случайном порядке. Какова вероятность того, что первый раз синий фломастер достанут третьим по счёту?

2. В кофейне «Восток» администратор предлагает гостям сыграть в следующую игру: за одну попытку гость бросает одновременно две игральные кости. Всего у него есть две попытки. Если в результате хотя бы одной из попыток на обоих костях оказывается одно и тоже число очков, клиент получает чашку кофе латте в подарок. Какова вероятность выиграть чашку латте?

3. Чтобы поступить в институт на специальность «Лингвистика», абитуриент должен набрать на ЕГЭ не менее 64 баллов по каждому из трёх предметов — математика, русский язык и иностранный язык. Чтобы поступить на специальность «Социология», нужно набрать не менее 64 баллов по каждому из трёх предметов — математика, русский язык и обществознание.
Вероятность того, что абитуриент Б. получит не менее 64 баллов по математике, равна 0,5, по русскому языку — 0,9, по иностранному языку — 0,7 и по обществознанию — 0,9.
Найдите вероятность того, что Б. сможет поступить хотя бы на одну из двух упомянутых специальностей.

4. При бросании двух игральных костей в сумме выпало 6 очков. Какова вероятность, что хотя бы раз выпало два очка?

5. Игральную кость подбросили два раза. Известно, что два очка не выпали ни разу. Найдите при этом условии вероятность того, что «сумма выпавших очков окажется равна 4

6. Игральную кость бросили один или несколько раз. Оказалось, что сумма всех выпавших очков равна 4. Какова вероятность того, что был сделан один бросок? Ответ округлите до сотых.

7. Игральную кость бросали до тех пор, пока сумма всех выпавших очков не превысила число 6. Какова вероятность того, что для этого потребовалось два броска? Ответ округлите до сотых.

8. В городе 48 % взрослого населения — мужчины. Пенсионеры составляют 12,6 % взрослого населения, причём доля пенсионеров среди женщин равна 15 %. Для опроса выбран случайным образом мужчина, проживающий в этом городе. Найдите вероятность события «выбранный мужчина является пенсионером».

9. Маша коллекционирует принцесс из Киндер-сюрпризов. Всего в коллекции 10 разных принцесс, и они равномерно распределены, то есть в каждом очередном Киндер-сюрпризе может с равными вероятностями оказаться любая из 10 принцесс. У Маши уже есть шесть разных принцесс из коллекции. Какова вероятность того, что для получения следующей принцессы Маше придётся купить ещё 1 или 2 шоколадных яйца?

10. Первый игральный кубик обычный, а на гранях второго кубика нет нечетных чисел, а четные числа 2, 4 и 6 встречаются по два раза. В остальном кубики одинаковые. Один случайно выбранный кубик бросают два раза. Известно, что в каком-то порядке выпали 4 и 6 очков. Какова вероятность того, что бросали первый кубик?

11. При подозрении на наличие некоторого заболевания пациента отправляют на ПЦР-тест. Если заболевание действительно есть, то тест подтверждает его в 91% случаев. Если заболевание нет, то тест выявляет отсутствие заболевания в среднем в 93% случаев. Известно, что в среднем тест оказывается положительным у 10% пациентов, направленных на тестирование. При обследовании некоторого пациента врач направил его на ПЦР-тест, который оказался положительным. Какова вероятность того, что пациент действительно имеет это заболевание? Результат округлите до сотых.

12. Турнир по настольному теннису проводится по олимпийской системе: игроки случайным образом разбиваются на пары; проигравший в каждой паре выбывает из турнира, а победитель выходит в следующий тур, где встречается со следующим противником, который определен жребием. Всего в турнире 8 игроков, все они играют одинаково хорошо, поэтому в каждой встрече вероятность проигрыша и поражения у каждого игрока равна 0,5. Среди игроков два друга — Иван и Алексей. Какова вероятность того, что этим двоим в каком-то туре придется сыграть друг с другом?

13. Симметричную монету бросают 3 раза. Найти вероятность того, что орёл выпал два раза.

14. Симметричную монету бросают 11 раз. Во сколько раз вероятность события «выпадет ровно 5 орлов» больше вероятности события «выпадет ровно 4 орла»?

15. Стрелок стреляет по пяти одинаковым мишеням. На каждую мишень дается не более двух выстрелов, и известно, что вероятность поразить мишень каждым отдельным выстрелом равна 0,6. Во сколько раз вероятность события «стрелок поразит ровно 5 мишеней» больше вероятности события «стрелок поразит ровно 4 мишени»?

16. Стрелок в тире стреляет по мишени до тех пор, пока не поразит её. Известно, что он попадает в цель с вероятностью 0,2 при каждом отдельном выстреле. Сколько патронов нужно дать стрелку, чтобы он поразил цель с вероятностью не менее 0,4?

Понравилась статья? Поделить с друзьями:
  • Задача про плиточника егэ
  • Задача про отели егэ
  • Задача про опушку леса егэ
  • Задача про мертвую петлю физика егэ
  • Задача про линзы на егэ по математике